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Abstract

In this paper we address the problem of optimal center placement for scattered data approximation using radial
basis functions (RBF) by introducing the concept of floating centers. Given an initial least-squares solution, we
optimize the positions and the weights of the RBF centers by minimizing a nonlinear error function. By optimiz-
ing the center positions, we obtain better approximations with a lower number of centers, which improves the
numerical stability of the fitting procedure. We combine the nonlinear RBF fitting with a hierarchical domain de-
composition technique. This provides a powerful tool for surface reconstruction from oriented point samples. By
directly incorporating point normal vectors into the optimization process, we avoid the use of off-surface points
which results in less computational overhead and reduces undesired surface artifacts. We demonstrate that the
proposed surface reconstruction technique is as robust as recent methods which compute the indicator function of
the solid described by the point samples. In contrast to indicator function based methods, our method computes a
global distance field which can directly be used for shape registration.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry

and Object Modeling—

1. Introduction

Many applications in engineering and science build on accu-
rate digital models of real-world objects. Typical examples
include the digitalization of manufactured parts for quality
control, statues and artifacts in archeology, or human bod-
ies for movies and video games. Using modern 3D scanners,
it is possible to acquire point clouds containing millions of
points sampled from an object. As scanners are imperfect de-
vices, scanned data usually contains noise. Occlusion leads
to areas which are not visible to the scanner and thus to holes
in the point cloud.

The process of building a geometric model (e.g. a polyg-
onal mesh) from such point clouds is usually referred to as
surface reconstruction. A good surface reconstruction algo-
rithm should thereby adapt to varying sampling density, be
able to deal with noise and smoothly interpolate holes in the
point set.

In this paper we describe such an algorithm which is based
on hierarchical nonlinear Radial Basis Function (RBF) fit-
ting. Our main contributions are:
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e We introduce the concept of floating centers for RBF scat-
tered data approximation.

e We propose an efficient GPU implementation for nonlin-
ear center optimization.

e We present a hierarchical approximation framework for
surface reconstruction from oriented point samples.

Using our hierarchical approximation algorithm, we are
able to quickly compute a distance field for large point
clouds. We demonstrate the value of our method for sur-
face reconstructions in three and four dimensions. Further-
more, we outline the prospective use of our algorithm for
deformable shape registration.

1.1. Related Work

The problem of reconstructing a surface from unorganized
points has long been discussed in the computer graphics and
the computer vision communities. The algorithms developed
in this process can be roughly classified in Delaunay based
methods and implicit methods.

Delaunay based methods work on the Voronoi diagram
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Figure 1: Hierarchical reconstruction of the dancing children data set from 620.744 points with normal vectors: (from left to
right) reconstructions at level 1, 3, 6 and 9 and the computed distance field.

or its dual, the Delaunay triangulation, of the input points
(see [CGO6] for a detailed survey on Delaunay based meth-
ods). The benefit of many Delaunay based methods is that
they are supported by rigorous theoretical guarantees which
means that the output of the algorithms is proven to be cor-
rect under certain sampling conditions. On the other hand,
Delauney based methods usually seek to interpolate the in-
put data which makes them susceptible to noise.

Implicit methods seek to approximate the input points by
the zero set of an implicit function f. A surface is then gen-
erated by extracting the zero set of the implicit function us-
ing marching cubes [LC87] or similar algorithms [Blo94].
The main advantage of implicit methods is that they decou-
ple the complexity of the reconstructed shape from the size
of the input point cloud which enables the reconstruction
of data sets containing millions of points. Aside from that,
they are more resilient to noise and guaranteed to produce
closed manifold surfaces. Implicit methods mainly differ in
the way how they represent and compute the function f. In
their pioneering work, Hoppe et al. [HDD*92] define f to
be a piecewise linear function which is obtained by com-
puting the signed distance to the tangent plane of the clos-
est point. Ohtake et al. [OBA*03] approximate the points
locally by quadratic polynomials and blend these local re-
constructions to produce a smooth global function. Another
powerful class of implicit surface reconstruction methods
uses radial basis functions (RBF) to describe the implicit
function f: Carr et al. [CBC*01] use globally supported ba-
sis functions which they combine with a greedy algorithm
for center reduction and a fast approximate method for fit-
ting and evaluating of the RBF. In Walder et al. [WSC06],
the input points and normal vectors are approximated by
RBFs with local support. The centers and the support of the
basis functions are chosen such that high frequency detail
can be reconstructed in high curvature regions. Samozino
et al. [SAAYO06] propose to approximate the point cloud by
compactly supported RBFs which are placed on the me-
dial axis of the object. Ohtake et al. [OBS03] follow the
idea of Floater and Iske [FI96] and compute a hierarchy
PlcP?c...cP™ =P of the point set. Each level of
the hierarchy is then interpolated by fitting RBFs of decreas-
ing support to the residual of the underlying level.

Closely related to the above methods is another class of

reconstruction algorithms which recently gained enormous
popularity. Namely those which compute the indicator func-
tion of the solid enclosed by the point cloud [Kaz05,KBHO06,
ACSTDO07, JR07, MPSO08]. Such methods are usually very
fast and resilient to noise. However, since they only compute
an indicator function, they may not be used for applications
which require a global distance field, e.g. non-rigid surface
registration [LSP0O8, SWGO0S].

The surface reconstruction method presented in this paper
falls into the category of RBF based implicit methods. The
difference to previous RBF based methods is that we hierar-
chically approximate the data in a least-squares sense. The
hierarchy is thereby based on locally refining the approxi-
mating function, thus combining the advantages of local and
global approaches.

1.2. Overview

The remainder of this paper is structured as follows: In the
next section, we show how scattered data approximation us-
ing radial basis functions can be used for surface reconstruc-
tion and introduce the idea of floating centers. In Section 3,
we present an efficient GPU implementation for nonlinear
RBF approximation. Section 4 suggests the use of a hierar-
chical approximation scheme to speed up the reconstruction
procedure and to facilitate the reconstruction of large point
sets. Results for three- and four-dimensional, i.e. time de-
pendent, data sets are presented in Section 5. We conclude
our work and outline several future research directions in
Section 6.

2. Floating RBF Approximation

We start this section with a short introduction on scattered
data approximation using RBFs in general. Later on, we will
show how surface reconstruction from oriented points can
be formulated as scattered data approximation problem. Fi-
nally, we present the concept of floating centers which we
use to optimize the fitting result.

The scattered data interpolation problem can be formu-
lated as follows:
Given a set of function values F = {f,...,fn} € R, sam-
pled at piecewise distinct locations P = {py,...,pn} € R?,
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find the parameters of an analytic function f : R? — R such
that f minimizes some smoothness measure and interpolates
the values f; at positions p;, i.e.

flpi)=fi, 1<i<n ey

In case of fitting radial basis functions, the function f is de-
fined as the sum of m scaled and translated radial symmet-
ric basis functions ¢c; : RY — R and a d-variate polynomial

P(x) = Zﬁzo B; bi(x) of low degree:
Fx) = X 00, (x) + P(x), @
Jj=1

where ¢; are the centers/translates and o; the weights/scales
of the basis functions. The choice of the basis function ¢
determines which smoothness energy is minimized, e.g. the
generalized Duchon splines [Duc77] in three dimensions

Oc; (x) = ||¢; — tz minimize the thin plate energy.

RBF interpolation usually assumes that one basis function
is located at each sample position, i.e. m =n and ¢; = p;.
The parameters oo = {o;} and B = {B;} of the function f,
which is in a sense smooth and meets the interpolation con-
ditions (1) and the side conditions Pla=0 (see [CBC*01]
for a detailed derivation), may then be computed by solving
the linear system

eoalllelel e

® € R, &;;=0p,(p;) and
P € R P ;=b,(pi). (4)

where

As real-life data mostly contains noise, it is usually more
desirable to approximate the data instead of interpolating it.
Most papers [CBC*01, WSC06] do this by solving a reg-
ularized interpolation problem similar to Tikhonov regular-
ization in statistics, i.e. they modify Equation (3) to be

Ik

Id is the identity matrix and the parameter € is used to bal-
ance smoothness against fitting accuracy: Large values for €
result in a smoother function and small values in a tighter fit.

The approach which we follow in this paper is to reduce
the number of centers used for RBF approximation. Assume
that we are given m center locations ¢;, where m < n. In-
stead of enforcing the interpolation conditions (1), we seek
the parameters {o;} and {B;} of f such that the discrete
least-squares error

n
- 112
E(f)= Y IIf(pe) = fil )
k=1
of the fit is minimized. Minimizing the error E(f) corre-
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sponds to solving the linear system

o

ATA{ 5

} = A"[7], ©)

with A = [dA) P], where
b e R & ;= 0, (pi)
and P is defined as in Equation (4).

Reducing the number of centers offers two advantages
over the regularization approach: Firstly, the size of the sys-
tem matrix in Equation (6) is now roughly (m x m) instead
of (n x n) as in Equation (3). Secondly, formulating the RBF
fitting problem as an approximation problem allows us to
naturally incorporate point normal vectors as we will show
in the next section.

2.1. Computing an Initial Fit

To improve the readability, we restrict the discussion in this
section to the case of fitting a surface to points in 3-dim-
ensional space. The generalization of the formulas for fit-
ting a d-dimensional hypersurface is straight forward. Let
‘P be a set of n points, P = {py,...,pn}, which have been
sampled from a surface M by a 3D scanner. We assume
that each point p; is equipped with a unit normal vector
n; € N = {ny,...,n,} which describes the orientation of M
at p;. Most scanning devices infer these normal vectors from
neighborhood relationships during scanning. If normal vec-
tors are not provided by the scanner, they can be estimated as
proposed in [HDD*92]. To make the fitting procedure scale
invariant, we initially translate and scale the point cloud P
such ghat all points are completely contained in the unit cube
[0,1]°.

We wish to find an implicit function f such that its zero set
f = 0 approximates the points from P. Thus, we set the tar-
get function values f; to zero for all points p;. Next we need
to compute the parameters of f such that the error-functional
in Equation (5) is minimized.

To avoid the trivial solution that f is zero anywhere, Turk
et al. [TO99] propose to add additional non-zero valued con-
straints inside or outside the surface. These so called off-
surface points are new points which are created by mov-
ing points along the normal vectors and assigning them the
signed distance to the surface as function value f;. The prob-
lem with these manufactured off-surface points is that they
may penetrate other surface sheets which means that further
heuristics have to be employed to test whether an off-surface
point is valid. It also increases the memory requirements and
the costs for solving the interpolation/approximation prob-
lem.

Instead of using artificially generated off-surface points,
we reformulate the approximation problem such that it di-
rectly incorporates the point normal vectors which have been
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Figure 2: Tivo different sets of RBF centers: (left) center
placement optimized for fitting inverse quadratic basis func-
tions (blue line) does not produce an optimal result when
used with multiquadric basis functions (red line) and vice
versa (right).

recorded by the scanner. The gradient V f of an implicit dis-
tance function corresponds to the normal vectors of a level-
set f = c¢. Thus, we can assume that the gradient of a function
f, which is a good approximation to the distance function
of P, is also in accordance with the point normal vectors
n; at p;. We use this observation to extend the energy func-
tional (5) by adding a term which punishes deviations of V f
from the point normal vectors:

E(f)=0Y ()~ fil>+8 Y V() —mill*, (D)
i=1 i=1

where 6 = (1 — 6). The parameter 8 can be used to balance
between a good fit in the function values versus a good fit in
the gradient. Using unit length normal vectors and assuming
that the sample points are completely contained in the unit
cube, we found that 6 = 0.95 is a good compromise and use
this value for all data-sets shown in this paper.

The next step is to select a basis function ¢ and a set of
centers {€;}. As can be seen from Figure 2, the fitting ac-
curacy is influenced by the placement of the centers which
is in turn influenced by the choice of the basis function ¢:
Center positions which yield a good fit using a specific basis
function do not necessarily produce a good approximation
when combined with another basis function. Because of this
dilemma, the final choice of center locations is postponed
to the next section. While basically any basis function could
be used, we choose ¢ to be the inverse quadratic (1Q) basis
function:

1
I+ [le—x|*8
The 1Q is infinitely smooth and contains a so called shape
parameter §. As polynomial P in Equation (2) we use a 3-

variate linear polynomial. Thus, the function f which we
seek to optimize is defined as

de(X) ®

F(x) = i%’% (%) + (%) + b ©)
L

Figure 3: Fitting a curve to 2D points: (from left to right)
Initial fit, fit after 10 and 35 nonlinear optimization steps.

For now, let us assume that we use a sub set of the input
points P as centers: Say we have a budget of m centers, then
we randomly select m points of P and use them as centers

C={&,....em}€P.

Minimizing Equation (7) subject to the unknown parame-
ters of the function f in (9) poses a linear least-squares prob-
lem. The solution can therefore be found by solving the nor-
mal equation

Bt=c, (10)

where t = [ 0y, ..., 0y, n.x, 0.y, 0.2, ]T is the vector con-
taining the unknowns. A detailed specification of the matrix
B and the vector ¢ can be found in the supplemental material
to this paper.

The system of linear equations in (10) can be solved nu-
merically stable using a singular value decomposition. The
implicit function f in (9) is now fully defined and the ap-
proximating surface can be extracted by computing the zero
set f = 0. The leftmost image of Figure 3 shows an example
of an approximating curve in 2D. Two 3D examples of RBF
approximations using fixed centers can be seen on the left
side of the image in Figure 4.

2.2. Optimizing the Center Positions

The solution of Equation (10) gives the parameters of the
best fitting function f for a given set of centers {¢1,...,¢mn}.
However, as previously mentioned, it is not clear how to se-
lect the center locations since their choice strongly depends
on the shape of the original object and the used basis func-
tions.

Previous work proposed various heuristics for placing the
centers, e.g. on a sub set of the data points [CBC*01] or on a
regular grid. Iske [Isk00] demonstrates that choosing maxi-
mal uniformly distributed centers is desirable as it reduces
the condition number of the resulting linear system. In a
more recent contribution, Samozino et al. [SAAY06] place
the centers on the medial-axis of the object described by
the point cloud. The authors give empirical results that their
method generates better fits when used in conjunction with
compactly supported Wendland basis functions [Wen95].
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Figure 4: Convergence behavior of the center optimization:
The upper image shows the approximation using 40 (top)
and 90 centers (bottom) before and after 50 nonlinear opti-
mization steps. The lower left plot shows the relative error
over 100 iterations for 30, 60 and 90 centers, respectively.
The lower right plot shows the average least-squares error
before (red line) and after (blue line) 20 iterations of center
optimization depending on the number of centers.

Instead of sticking to a certain heuristic for placing the
centers, similarly to [FH99, JBL*06], we propose to con-
sider the search for the most suitable center locations as an
optimization problem itself. Thus, the least-squares error in
Equation (7) is not only minimized subject to the weights
and the polynomial P of the RBF, but to the positions of the
centers as well. Due to the iterative nature of this minimiza-
tion, we call the process floating centers optimization.

The RBF in (9) is not linear in the locations of the cen-
ters ¢;. Hence, finding the set of centers €¢; which mini-
mizes the least-squares error in (7) no longer boils down
to solving a linear system. Instead, we use the Levenberg-
Marquardt algorithm [Mar63] (LMA) to find the center loca-
tions and the RBF weights which minimize the least-squares
error E(f) in (7). Given a guess for the parameters t( of f:
to= ( {o;},{¢;},nx,nynzb )T, an LMA iteration com-
putes a solution (ty + 8), which reduces the least-squares er-
ror, i.e. E(fy,+s5) < E(ft,). Therefore, the system of linear
equations

(C+Adiag(C))d=¢g (1D
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is solved using a singular value decomposition again.T The
damping factor A is chosen such that E(f;  5) is guaranteed
to decrease in each step. Then, the current guess is updated
as t;y1 = (t; + 8) and the iteration is continued until a local
minimum is found or the maximum number of iterations has
been reached. As initial guess for the center positions €;, the
weights o; and the linear polynomial P, we use the linear
solution to the least-squares problem which was computed
as explained in the previous section.

The effect of our floating centers optimization for a sim-
ple 2D example can be seen in Figure 3: The leftmost image
shows the fitting of an RBF with 30 centers to the Bunny
data set and the reconstructed distance field. The red dots
mark the positions of the centers and the white line is the
zero isoline of the distance field. The center image and the
image on the right show the approximation after 10 and 35
nonlinear optimization steps, respectively. The convergence
behavior of our floating centers optimization is analyzed in
Figure 4: We used our method to fit RBFs with up to 100
centers to the Squirrel data set consisting of 41K points. The
average least-squares error after the initial fit as a function of
the number of centers is shown as the red line in the right di-
agram. The error after 20 steps of our center optimization is
shown as the blue line. It can be seen that the error is roughly
halved after 20 iterations. This observation is confirmed by
the left diagram which shows the normalized approximation
error depending on the number of iterations for an RBF fit
with 30, 60, and 90 centers.

3. Parallel Computation

The computationally most expensive step during the RBF
fitting procedure is the assembly of the system matrices in
Equations (10) and (11) as each matrix entry requires to sum
over all points of the point cloud. Since the system matrix for
the nonlinear optimization contains 16 times more elements
than the matrix for the initial linear fit, one single floating
centers optimization step is roughly ten times slower than the
initial fit. In order to make the floating centers optimization
applicable for real-life data sets, we present a fast parallel
algorithm for computing the system matrices.

With the matrix elements being independent from each
other, they can obviously be computed in parallel. However,
the number of matrix elements is too small for fully utiliz-
ing modern massively parallel architectures like GPUs, that
require tens of thousands of computational threads to run vir-
tually in parallel in order to be efficient. Therefore, we pro-
pose to parallelize with the respect to the sample points py.
Note that all matrices and vectors in (10) and (11) adhere to
the following computational pattern (see supplemental ma-

T The matrices C and g are detailed in the supplemental material.
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Thread 1 Thread 2 Thread r

Q-1 a2-1 ar—1
AD = 3" F(px) A® = 3" F(p) A = S F(p)
k=qo k=q1 k=g¢r—1
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[ parallel_sum (AW, A®), ..., AM) ]

!

A

Figure 5: Parallelized computation of the system matrices.

terial):
n
A=Y F(p).
k=1

An overview of our parallel approach is depicted in Figure 5:
We split up the summation into » independent sums:

r ) . Giv1—1
A= ZA<'>, where A<'> = Z F(px),
i=0 k=qi

with g = [%7]-k+1 and g = n+ 1. Each sub-sum AW js
computed independently. In a final step we accumulate the
sub sums using a standard parallel reduction.

Bunny Galaad Dancing

IF OPT IF OPT IF OPT
CPU 1,620 | 232K | 6,012 | 843K | 2,565 | 362K
GPU 11 | 2,485 32 | 7,860 14 | 3,549

Table 1: Timings (in ms) for fitting a RBF with 16 centers
(1IF) and 20 nonlinear optimization iterations (OPT) .

We implemented our algorithm in CUDA [NVI09] and
ran tests on different data sets. As can be seen from Table 1,
our GPU version outperforms the CPU version by two or-
ders of magnitude: Using the GPU implementation, we can
compute an initial fit and 14 optimization steps in the time
needed for computing the initial fit on the CPU.

4. Hierarchical Approximation

Fitting only a single level as proposed in the previous sec-
tions works well only for computing rough approximations
of the point cloud. In order to capture small details of the
shape, the number of centers would have to be dramatically
increased. Increasing the number of centers for RBF fitting
is undesirable for two reasons: first, the computation time is
roughly quadratic in the number of centers. Second, increas-
ing the number of centers will also increase the condition
number of the system matrix in (10) which in turn leads to
less reliable fits. One possibility to counter these problems
is to use compactly supported basis functions such as Wend-
lands C? function: ¢(r) = (1 — r)4 (4r + 1). Unfortunately,
using compactly supported basis functions brings up other

>

Figure 6: Hierarchical Approximation: (left) level 1 fit;
(middle) reconstruction of local increments; (right) global
reconstruction a level 2.

issues: They define the distance function only in a neighbor-
hood of the input points and the nice property of extrapola-
tion across holes will be lost.

To overcome the limitations mentioned above, we use an
adaptive octree subdivision, where at each tree level we re-
fine the previous approximation by fitting local offsetting
functions [VMGO09]. Let Q],‘ be an octree cell at level k. Let
¢ be the center of Q]I‘ and d the length of its diagonal. We
define a region of influence for the cell as the sphere @5‘ with
radius (O, qiys - @) centered at ¢ (We use O, diys = 0-65).
Let /7%’ be the residual (i.e. the fitting error) of point p; at
level k and nj; the residual of the gradient fit respectively.

For each octree cell Qé‘ at level k, we fit a function con-
sisting of 16 RBFs which approximates the residuals of the
points in ®;‘. Thereby, we scale the shape parameter § of the
basis functions in (8) such that the ¢(d) is constant, i.e. we
double & as we halve the cell size. This implies that small
cells reconstruct high frequency detail while large cells in
low octree levels reconstruct the base shape.

After all cells of an octree level k have been processed, we
blend the local reconstructions together using the partition of
unity approach of Ohtake et al. [OBA*03]. Thus, we obtain
a global function f* which approximates the residuals NN
and m;}. The residuals for the next level (k + 1) are now
updated as

fiiny,: = 1= 1),
nglyy,; = n — VA (p).

Cells which contain a point p; for which the error in the value
or gradient fit is larger than a predefined threshold

(#es0s> ea) v (i

are further subdivided. This recursion is repeated until no
more cells are subdivided or a maximum tree depth is
reached. The approximating function firee can now be eval-
uated by summing up over the level fits fk:

> 8grad>

depth
Jiree(X) = Z fk(x)
k=1
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We initialize the recursion with a single node containing the
entire point set and the residuals are initially set to the target
values, i.e.

Qi = 0,1,
5 = fi=0,
n; = n;.

A two-dimensional example of our hierarchical fitting al-
gorithm is depicted in Figure 6: The leftmost image shows
the fit at level 1. Local reconstructions can be seen in the
middle image: The orange curve approximates the lower left
cell well and the green curve provides a good fit for the up-
per left cell. The image on the right shows the fit at level two
after the local reconstructions have been blended together.
Reconstructions of a 3D point cloud at various octree depths
are shown in Figure 1.

Our hierarchical approximation is conceptually sim-
ilar to the Multi-level Partition of Unity (MPU) ap-
proach [OBA*03]. However, we would like to stress that
we incrementally reconstruct the approximating function:
While the MPU method discards the information from low
level fits, our approach refines previous fits.

5. Results and Discussion

In this section we discuss the application of our method for
surface reconstruction, reconstruction of time-varying point
data and surface registration. The results presented here were
computed using our hierarchical reconstruction, where in
the first two levels we used the GPU implementation to fit
16 centers and to perform 10 floating centers optimization
steps. For levels above 2 we used the CPU version to fit 6
centers for each cell and no nonlinear optimization was per-
formed. All computations were performed on a 2.93 GHz
Intel Core 17 workstation with 6GB of RAM and a Nvidia
GeForce GTX 260 graphics card with 896 MB of RAM.

Figure 7: Reconstructions of the Neptune statue and a
miniature plastic figure (Galaad).
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5.1. Surface-Reconstruction

The first and most important application for our algorithm is
the reconstruction of 3D models from registered range scans.
Reconstruction from raw point data is especially challenging
as the data usually contains noise, holes and misalignment
artifacts.

The Neptune and the Galaad models in Figure 7 demon-
strate the ability of our algorithm to reconstruct large, com-
plicated models. The Neptun model was reconstructed from
a point cloud containing 3,183,064 points which were taken
from registered range scans. Some parts of the statue (e.g.
the face) have been scanned at a higher resolution. Thus, the
input point cloud contains areas of sharply varying sample
density. The model was reconstructed at an octree depth 9
in 123 seconds at 1,135 MB peek memory and the sur-
face was extracted in 8 seconds using the octree polygonizer
from [KKDHO7]. The Galaad model was acquired using a
Kreon laser scanner. The Kreon scanner samples the object
line-wise. Therefore, the resolution along the laser line is
much finer than the resolution orthogonal to the laser line.
The reconstruction using our method at tree depth 9 took
roughly 67 seconds and 613 MB peek memory including
isosurfacing.

Figure 8: Reconstruction from incomplete data.

The ability of our algorithm to handle incomplete data is
shown in Figure 8: Only the points which lie close to a crest
line were used to reconstruct the Stanford Bunny model. The
missing parts were smoothly interpolated by our method. In
Figure 9, we demonstrate the effect of floating centers when
used together with the hierarchical approximation: Without
floating centers, we need to fit one or two additional levels
in order to obtain the same fitting accuracy.

Figure 9: Impact of floating centers (FC). (from left to
right): Reconstructions at level 3 with and without FC, fit
at level 5 using FC and reconstruction at level 6 without FC.

We compare the results obtained by our method to the
results of the MPU method [OBA*03], the Poisson recon-
struction [KBHO06] and the Wavelet reconstruction [MPS08]
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Figure 10: Comparison with other methods: (top left) MPU,
(top right) Poisson, (bottom left) Wavelet and (bottom right)
our method.

Method Fit | Poly. | Peak Mem. | Grid
MPU 425 411MB_[ 5007
Poisson 43s | 16s 323MB | 512
Wavelet 19s 122MB | 5123
Our method || 36s [ 9s 135MB | 512°

Table 2: The computation times and the memory usage of
the methods compared in Figure 10.

in Figure 10 and Table 2. We used the original implemen-
tations of these methods to reconstruct the Stanford Bunny
from 391,769 raw points, thereby analyzing running times,
memory consumption and the visual quality of the recon-
structed model.

The reconstruction using MPU Implicits contains spuri-
ous surface sheets which originate from the completely local
nature of the fitting method and, as mentioned in a follow-
up paper by the same group, the fitting primitive. The Pois-
son reconstruction and the reconstruction using D4 wavelets,
both at octree level 9, produce results which are comparable
to our reconstruction. A closer look at the area marked by
the red rectangle however unveils that both methods tend to
oversmooth the result, whereas our method shows more con-
trast, hence better captures sharp features. The memory con-
sumption and the running time for reconstructing the Bunny
model are approximately the same for all methods. How-
ever, in contrast to the Poisson and the Wavelet reconstruc-
tion, our method does additionally compute a global distance
field and can therefore be used for surface registration.

As it is difficult to assess the quality of a surface recon-
struction algorithm when only raw points are available as in-

. o

Figure 12: Registering two scans of the bee data set: (left)
Initial alignment, (middle) zero set of the computed distance
function color-coded and transparency by confidence value,
and (right) result of the rigid registration.

put, we performed some artificial tests to compare our algo-
rithm to Poisson surface reconstruction. Therefore, we sam-
pled points and normal vectors directly from known polygon
models (cf. Figure 11) and then reconstructed polygonal sur-
faces using our method and Poisson surface reconstruction.
We then used Metro [CRS98] to compute for each vertex of
the reconstructed mesh the distance to the original mesh and
vice versa. The average errors for the tested models at vari-
ous reconstruction depths are summarized in Table 3. It can
been seen that, at comparable computation times, the fitting
error of our method is usually only half of that when us-
ing Poisson surface reconstruction. Only in the presence of
strong noise, Poisson reconstruction achieves better results.

5.2. Point Cloud Registration

To demonstrate the prospective use of our method for non-
rigid surface registration, we have implemented a simple ICP
based registration algorithm which uses the calculated dis-
tance field to iteratively align two overlapping point sets. In-
stead of searching for correspondences, we can directly min-
imize the distance between the point sets given by the dis-
tance function f. The distance is thereby weighted by a con-
fidence value which is a smooth function of the point density.
The confidence value is computed using the same hierarchi-
cal scheme as for computing the function value, except that
we blend per-cell density estimates instead of function val-
ues. Our distance function could be directly integrated into
the non-rigid registration methods of Li [LSPO8] or Sii-
muth [SWGO0S8]. We illustrate the registration in Figure 12,
where two range scans of a stuffed toy bee are aligned. The
image on the left shows the initial configuration, the mid-
dle image shows the zero set of the reconstructed distance
function for the first data set, which is colored according to
the confidence value. The rightmost image shows the final
alignment after 7 iterations.

submitted to COMPUTER GRAPHICS Forum (1/2010).
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Figure 11: Artificial data sets that were used to evaluate the fitting accuracy of the proposed algorithms. Reconstructions are

shown in the supplemental material.

Data-Set Poisson Our approach
Name #Pts. | Noise | Tree Depth Time | Avg. Error Time | Avg. Error
Dancing Children M 0% 7 5.6s 0.289992 33.8s 0.125806
Dancing Children IM 0% 8 18.8 s 0.104706 42.8's 0.045044
Dancing Children M 0% 9 78.7s 0.040073 60.8 s 0.019344
Dancing Children IM 0.1% 9 91.3s 0.051764 66.2 s 0.046558
Dancing Children IM 0.2% 9 122.7 s 0.073707 72.7s 0.117307
Gargoyle 2M 0% 9 102.5s 0.025558 113.2s 0.012143
Gargoyle 2M 0.1% 9 117.7 s 0.029181 126.5 s 0.026991
Gargoyle 2M 0.2% 9 166.2 s 0.047055 139.7 s 0.078216
Filigree M 0% 8 12.3 s 0.000688 74.7 s 0.000326
Filigree 4M 0% 9 75.3s 0.000256 99.8 s 0.000109
Filigree M 0% 10 205.2's 0.000117 153.6s 0.000070
Livingstone Elephant 8M 0% 9 85.6s 0.035024 3279s | 0.0197755
Livingstone Elephant 8SM 0% 10 204.3 s 0.018907 384.4s | 0.0059160

Table 3: Statistics for the data sets used to assess the fitting accuracy of the proposed algorithm. The first columns show data set
statistics and fitting parameters, the remaining columns show the fitting times and the average distances between the original
mesh and the reconstructed mesh for Poisson surface reconstruction and our method. The average error has been computed at
the mesh vertices using Metro [CRS98]. The reconstructed meshes are shown in the supplemental material.

5.3. Reconstruction of time-varying data

Another interesting application for our hierarchical surface
reconstruction is the reconstruction of time-varying data as
proposed in [WSC06, SWGO08], where the time at which a
data point has been recorded is treated as fourth coordinate.
We have implemented a CPU prototype for the 4D recon-
struction which fits a 4D implicit function f to a time-space
point cloud. Then we extract time slices from f and polygo-
nize them using marching cubes. The reconstruction of the

Figure 13: Meshes reconstructed from the four-dimensional
time-varying hand data set.

submitted to COMPUTER GRAPHICS Forum (1/2010).

implicit function from 4.5 million 4D points at tree depth 8
took roughly 13 minutes and 2.2 GB peek memory using the
proposed method. To obtain the “cut-out” look of Siilmuth
et al. [SWGO8], we restrict the isosurface extraction to areas
where the confidence is larger than a given threshold. Re-
sults of the 4D reconstruction can be seen in Figure 13 and
the accompanying video.

6. Conclusion

We have introduced the concept of floating centers for scat-
tered data approximation using radial basis functions. Our
method optimizes the locations of the RBF centers such that
the approximation error is minimized, thus generating better
fits than conventional methods for RBF approximation. We
presented a fast GPU based implementation for the float-
ing centers optimization. The GPU implementation allows
us to use our algorithm at little additional costs compared to
a CPU implementation.

We have further presented a hierarchical framework
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which is based on locally offsetting the approximating func-
tion. The hierarchical approximation is robust and computes
a global distance field, thus it has applications in surface re-
construction and non-rigid surface registration.

In future, we plan to optimize not only the center position
in the nonlinear optimization step but the shape parameters &
and possibly anisotropic basis functions as well. Further av-
enues for future work include the integration of sample con-
fidence values into the fitting process and the realization of
a streaming out-of-core implementation to reconstruct huge
point clouds.
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