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ABSTRACT 
 

This work presents the design and implementation of a 

massively parallel 3-SAT solver, specifically targeting 

random problem instances. Our approach is deterministic 

and features very little communication overhead and 

basically no load-balancing cost at all. In the context of 

most current parallel SAT solvers running only on a 

handful of cores, we implemented our solver on Nvidia's 

CUDA platform, utilizing more than 200 parallel 

streaming processors, and employing several millions of 

threads to work through single problem instances. As 

most common sequential solver techniques had to be 

discarded, our approach is additionally supported by a 

new set of global heuristics, designed specifically to be 

easily exploited by the underlying thread parallelism. 

 

 

KEYWORDS: GPGPU, thread level parallelism, load 

balancing and sharing, random 3-SAT.   

 

 

1. INTRODUCTION 
 

As parallel resources are becoming increasingly cheap to 

acquire, more and more established algorithms are being 

revised to take advantage of this, in order to boost their 

performance and/or gain new insights into the inner 

workings of long known problems. Together with the 

field of high performance computing, the realm of 

compute intensive algorithms is trying to make the most 

of this. Here many NP-complete problems are being 

investigated [9], with one of the most discussed being 

Boolean Satisfiability (SAT). It was the first problem to 

be proven NP-complete [4] and subject to different 

solving approaches for almost fifty years by now. It is 

studied intensively by theoreticians due to its proximity to 

a whole different class of problems (as 2-SAT is merely 

P-complete) and arguably being the most bare-bones NP-

complete problem. In practice the problem retains its 

relevance by still occurring in many applications of 

current interest like theorem proving, FPGA routing, and 

Electronic Design Automation. 

 

1.1. Previous Work: The Parallel Track 
 

Most current high end SAT solvers are still sequential 

algorithms [7], [15], [16] based on extending the classic 

Davis-Putnam-Logemann-Loveland (DPLL) procedure 

[5], [6], by incorporating additional state data collected 

over the course of a sequential solving run. In recent years 

several successful parallel solvers have emerged, 

establishing a new “parallel track” in annual SAT 

competitions in 2008. This newer generation of solvers, 

however, is still mainly based on the core DPLL 

framework and the techniques developed for their 

sequential predecessors. PSATO [21] and Gradsat [2], [3] 

are two examples for high end parallel solvers, which 

consist of bringing their sequential counterparts ([20] and 

[15]) to a parallel platform. As with Nagsat [8], they are 

based on a master-slave approach, where the master runs 

a modified DPLL procedure and distributes sub-problems 

to the available parallel nodes - which again run their 

version of the DPLL algorithm. The current state of the 

art is represented by the portfolio-based ManySAT [10]: 

Its parallel approach consists of running several different 

(and carefully calibrated) sequential solvers in parallel, 

returning the first result obtained by any one of them.  

 

As can be seen, the current parallel track is still mainly 

based on the advancements made during developing 

sequential solvers. The execution itself is either done on 

just a few local cores (34 for Gradsat, 29 for PSATO) or 

small scale grids with high communication costs and a 

comparatively small set of largely independent processing 

units. All their design decisions are of course validated by 

their success. The question for massive parallelism in 

SAT solving, however, still remains largely unanswered. 

 

1.2. Enter GPGPU 
 

While current parallel solvers are primarily implemented 

to run on computer clusters, an alternative test bed is 



provided by GPGPU: General Purpose computing on 

Graphics Processing Units. As a lot of graphical tasks are 

inherently parallel, graphics hardware is designed to 

efficiently handle computations concurrently. GPGPU is 

the idea of utilizing this processing power to solve 

problems unrelated to computer graphics. In late 2006, 

Nvidia introduced its CUDA API [14], which allows for 

direct access to a CUDA enabled graphics card’s parallel 

hardware, and thereby supplies developers with a highly 

efficient co-processor to handle specific workloads. 

 

2. A PARALLEL CUDA SAT SOLVER 
 

Since its introduction, CUDA is continuously developed 

further, with its latest incarnation being manifested in the 

Fermi chipset announced for 2010 [19]. CUDA offers 

massive thread parallelism without the need for an 

expensive computer cluster setup, and allows for the 

concurrent execution of hundreds of thousands of 

lightweight threads, running on several hundreds of 

CUDA streaming processors (around 200 on current 

graphics cards and 512 on Fermi). A batch of 32 threads 

is bundled within a so called warp, which denotes the 

amount of threads actually being physically executed in 

parallel on a single processor. On a larger scale, threads 

are part of a CUDA thread block, which denotes a bundle 

of threads operating on a set amount of shared memory. 

The parallel paradigm for CUDA is a block-wide SIMD 

model. That is, all threads of the same block are required 

to execute the same instruction, while different blocks 

may execute different functions. The execution of a 

function on the hardware itself is organized in so called 

CUDA kernels. A kernel simply denotes a procedure 

running on the graphics card - the device. Each kernel is 

invoked by the host, i.e., the computer containing the 

device, and operates on a grid of CUDA thread blocks, 

which is also defined by the host. 

 

Besides its parallel architecture, the most defining CUDA 

aspects for our work are the constraints of the platform, 

primarily the limiting amount of on-chip memory. In 

essence, two distinct disadvantages present themselves: 

First, with the vast number of threads running in parallel, 

the remaining available space for additional state data per 

single thread becomes very limited. Essentially all 

modern SAT solver frameworks are used to employing 

quite a large amount of such state data, while dealing with 

a single “current” formula (like implication graphs, 

databases of learned clauses, and so on). Our massively 

parallel solver, however, deals with thousands of search 

paths at once, and the hardware simply does not provide 

the memory resources which would allow the same 

amount of state data per search path. 

 

The second memory induced issue is much more 

straightforward: Less space means shorter formulas. Note 

that current generation SAT solvers often do not even use 

the term “formula” when addressing a problem instance, 

but rather refer to it as “clause database”, due to the 

impressive length of formulas current solvers are able to 

deal with. Not so with limited CUDA resources, however, 

which results in compatible CUDA solver formulas being 

of a much more compact format. 

 

Luckily, both of these memory issues push our solver in 

the same direction: random 3-SAT instances. Current 

solver advances allow for industrial problems containing 

more than hundreds of thousands of clauses and variables 

to be solved in mere minutes, due to the inherent and 

exploitable structures encoded within such instances. 

Purely random SAT instances, however, lack such 

internal structure, and consequently state hard problems 

via much smaller formulas. Furthermore, it has been 

discovered that modern indispensible solver techniques 

such as clause learning and complex state dependent 

heuristics, like conflict graphs, often degenerate to brute-

force style rules when handling chaotic random instances 

- for example by regularly backtracking to the last 

decision made, instead of some more meaningful 

decisions higher up in the search tree. Consequently, 

parallel SAT solving seems to be well suited to handling 

random instances, as their smaller size reduces the 

amount of memory required to handle them, and common 

memory intensive techniques are additionally not 

guaranteed to deliver the same performance boosts as they 

do in the case of industrial (i.e., structured) problems - 

and may thus be discarded without impacting the overall 

solver too much. 

 

2.1. The Base Algorithm 
 

The D&C-3SAT algorithm parallelized and brought to 

CUDA in this work employs a divide-and-conquer 

approach for solving 3-SAT instances, as is depicted by 

Algorithm 1. It takes a formula f in Conjunctive Normal 

Form (CNF) over n Boolean variables and r clauses, with 

each clause consisting of at most three literals (the CNF 

format denotes a conjunction of clauses, with each clause 

being a disjunction of literals). The algorithm is described 

in detail in [13] and is a simplified version of the 

algorithm presented in [17]. Besides providing a 

framework suitable to be easily parallelized, the algorithm 

also reduces the worst-case time complexity from O(r • 2
n
) 

(the brute force approach) to O(r • 1.84
n
) [14, pp. 171ff]. 

 

The core idea of this approach is to exploit the fact that all 

possibilities to satisfy any given clause can be broken 

down to three different cases: Initially, the first literal is 

set to true, which either contributes to solving the formula 

or the subsequent recursion returns a contradiction. In the 

latter case, setting the first literal to true obviously did not 

work, and thus the corresponding variable is set to falsify 



the literal. In order to satisfy the clause now, the second 

literal is set to true, and the process is repeated. In case 

this again leads to a conflict, the final, third approach is 

taken by setting the first two literals to false and only the 

last one to true. 

 

Algorithm 1: Divide & Conquer SAT Solver 

 Data: Formula f in CNF 

1  if length(f) < limit then return brute_force_solve(f); 

2  Clause c ← pick_random_clause(f); 

3  // Note: c consists at most of literals lita, litb, litc; 

4  if literals_contained_in(c) equals 1 then 

5   Formula f1←apply(f, lita=true); 

6   return D&C-3SAT(f1); 

7  end 

8  if literals_contained_in(c) equals 2 then 

10   Formula f1←apply(f, lita=true); 

11   Formula f2←apply(f, lita=false, litb=true); 

12   return D&C-3SAT(f1) OR D&C-3SAT(f2); 

13  end 

14  if literals_contained_in(c) equals 3 then 

15   Formula f1←apply(f, lita=true); 

16   Formula f2←apply(f, lita=false, litb=true); 

17   Formula f3←apply(f, lita=false, litb=false, litc=true); 

18   return D&C-3SAT(f1) OR D&C-3SAT(f2)  

OR D&C-3SAT(f3); 

19  end 

 

Thus, in every step of the recursion some clause is 

selected, and - depending on the number of literals it 

carries - the search expands in up to three new directions, 

following all possibilities to satisfy the chosen clause. The 

recursion is terminated as soon as a sub-formula drops 

below some clause limit and is solved by a brute-force 

solver, or the applied decisions satisfy all remaining 

clauses on their own. This algorithm has already been 

implemented and experimentally evaluated on a 

workstation cluster in order to demonstrate process 

migration techniques [1]. Due to the used platform and 

the different focus of research, the running times are far 

from the results obtained on our GPU. 

 

2.1. Adapting the Procedure for Parallelism 
 

During the parallelization of the sequential divide-and-

conquer algorithm, two central elements of the procedure 

were altered, in order to better suit it to the underlying 

CUDA platform. First, the brute-force solver cutting off 

the recursion before it arrives at empty formulas was 

completely discarded. Second, the original decision 

heuristic to choose the next clause to be satisfied is 

replaced by a much simpler rule: Always choose the first 

clause. Both of these changes went through several 

iterations over the course of development, with the 

following findings leading to the current version of the 

procedure: 

 

First, the brute-force solver breaks a pure SIMD paradigm, 

as most streaming processors are typically occupied with 

processing sub-formulas, and only a few would actually 

execute the brute-force solver. This alone would not be a 

big issue in itself, as it was already mentioned that 

different CUDA thread blocks may handle different tasks 

without seriously impacting the overall performance. 

However, in contrast to the default formula simplification, 

brute-force solving requires a certain amount of block-

wide shared memory. Again, this fact alone is not an issue. 

In combination with the fact that most blocks do not 

execute the brute-force solver, however, this results in 

every block requiring the guarantee that this amount of 

shared memory is available, even though it mostly will 

not be used at all. On CUDA, this means the allocation of 

additional shared memory resources before the respective 

kernel even starts, which seriously impacts performance 

and is mostly not even required. Consequently the brute-

force solver was discarded from the overall procedure, as 

its benefits did not outweigh its maintenance costs. 

 

Second, the solver's decision heuristic. Simply choosing 

the first clause offers - at first - basically only a single 

advantage: It is really cheap. On the other side, there are a 

lot of arguments against it: Essentially every state-of-the-

art solver employs complex decision heuristics and in 

doing so, benefits from partly huge performance 

improvements. However, the key word hereby is complex, 

which in our SIMD approach with hundreds of thousands 

of search paths running in parallel is just not feasible, as 

the required memory resources per formula are simply not 

available. Nevertheless, a multitude of different 

approaches was tested - among others, an additional 

heuristic kernel, employing a scoring system similar to 

the common VSIDS (Variable State Independent 

Decaying Sum) [18] heuristic - with the somewhat 

surprising result that it did not pay off at all to try and 

make good  local decisions (i.e., per search path). Instead, 

a second heuristic was introduced, to complement the 

first-clause rule: Before actually solving an instance, it is 

first reorganized in order to sort its clauses by relevance. 

A clause is considered to be more “relevant” than another, 

if it contains a set of more often occurring variables. This 

order is preserved in every sub formula created during the 

following solving process, and we thus gain the property 

that the first clause of every formula being processed 

automatically denotes the globally recommended decision 

clause. 

 

 

 

 

 



2.2. The Parallelization 
 

The central approach of the parallelization it to avoid the 

consecutive execution of the recursive calls in the 

sequential version, by executing all (up to) three calls in 

parallel. Thus each input formula may spawn three new 

search paths, and consequently the amount of managed 

formulas triples during every step in the worst case. In 

order to deal with this, an additional swapping mechanism 

is introduced, which keeps the amount of formulas 

residing on the device on a near constant level. Swapping 

occurs after a batch of formulas has been processed by the 

device, and either transfers a formula surplus back to the 

host, or supplies the device with previously swapped out 

formulas in case too many of the newly created formulas 

feature contradictions and are discarded. The overall 

implementation may hence be designated a master-slave 

approach, as the slave/device iteratively processes 

formula batches which are continuously refilled by the 

master/host. 

 

As this means that every step of the solver loop includes 

the transfer of quite some data between host and device, 

all data is being bit-encoded to reduce the resulting traffic 

costs. A single search path consists thereby of its (partial) 

variable assignment, and the actual formula resulting from 

applying this assignment to the original problem instance. 

The bit encoding allows one 32 bit integer to store a 

complete clause, and two bits per variable (while one bit 

is enough to encode true/false assignments, two bits allow 

for additional states such as unknown and error). 

 

To access all this data, we employ a “read once, write 

once” strategy. Usually in CUDA programming, threads 

read their workload from global memory into shared 

memory, execute their function, and write the result back 

to global memory. The locality of our approach, however, 

allows for the circumvention of the shared memory 

entirely: Threads do not need to communicate with each 

other, and only work on a single clause at the same time. 

This clause is encoded within a single integer, and 

therefore is loaded once from global memory into a 

register. There it is being operated on as a temporary 

variable and immediately written back to global memory. 

Due to our development on the GT200 platform, we are 

able to benefit from relaxed rules for coalesced memory 

access, which allows for this strategy to be handled 

efficiently by the underlying CUDA hardware, and thus to 

actually improve the solving procedure. 

 

Note that while single threads handle single clauses, a 

complete formula is not being processed by a single 

thread, but by a set of 32 threads, i.e., a warp. By issuing 

a single warp to handle a single formula, we can operate 

on the formula in parallel without any need for additional 

costly synchronization between the threads, since warps 

are guaranteed to be physically executed in parallel on the 

device. Therefore, our kernels operate on a CUDA grid 

comprised of thread blocks containing 192 threads, which 

split up into 2 • 3 warps. Three warps at a time access the 

same input formula and produce a unique output formula. 

Thus a single block reads two input formulas and employs 

six warps to produce six different output formulas. 

 

In order actually start the solving process, an additional 

pre-process kernel is invoked. This kernel takes the initial 

problem instance and optimistically applies every 

assignment permutation of the x most occurring variables. 

The value of x is chosen to immediately obtain a 

completely filled formula batch, thus avoiding a partially 

idle startup phase on the device. This initial batch is then 

being fed to the actual solving mechanism - the kernel 

pipeline. 

 

2.3. The Kernel Pipeline 
 

The kernel pipeline denotes a series of kernels which are 

successively applied to the formula batch currently 

residing on the device. Each of these kernels performs a 

single operation of the overall solver loop. After being 

processed by the kernel pipeline once, a single step of the 

divide-and-conquer recursion has been applied to a 

formula batch containing n formulas. Furthermore, all 

thereby newly created 3 • n formulas have been checked 

for contradictions and validity, and the next formula batch 

has been constructed from all remaining valid formulas.  

 

More specifically, the kernel pipeline executes the 

following steps: 

 

 SAT Rules: Triple the number of formulas within the 

batch by applying new assignments to each formula 

according to the rules of Algorithm 1. 

 1D Prefix Scan: Scan all formulas for validity, in 

order to discard any conflicting search paths marked 

by the previous SAT kernel. 

 Copy: Use the prefix scan result to condense all valid 

formulas into a new, compact formula batch. 

 2D Prefix Scan: Scan all remaining formulas, in 

order to discard any nullified clauses. 

 Defragmentation: Use the 2D prefix scan result to 

rearrange all remaining valid formulas in order to 

form continuous formula strings without nullified 

clauses mixed in between. 

 Swapping: Adjust the size of the new batch by either 

trimming or reinforcing the amount of contained 

formulas. (Note that this is a host-side action and thus 

not actually performed by a CUDA kernel. It is 

included as a part of this list for the sake of 

convenience only.) 

 



 
 

Figure 1. The Kernel Pipeline 

 

A complete overview of the kernel pipeline is provided by 

Figure 1, where for each step the state of the active 

formula batch is shown before entering and after leaving 

the respective CUDA kernel. One row within the batch 

corresponds to a single formula and each formula consists 

in turn of several blocks representing the formula’s 

various clauses. A filled block denotes a valid clause, 

while an empty block depicts either an invalid clause or a 

clause slot which is no longer in use. As can be seen, the 

initial formula is taken by the preprocess kernel, which 

generates the first actual formula batch. When creating 

new formulas, any involved thread may set a flag to 

notify its warp that the currently processed formula is 

invalid. These flags are then checked by the following 

kernel, which employs the CUDPP library [11] to run a 

parallel prefix scan over all the flags of the active formula 

batch. The result of this scan is subsequently used in the 

following kernel, which collects all valid formulas into a 

new formula batch. Such newly created formulas, 

however, are still littered with nullified clauses, resulting 

from the last decisions being applied. To pack these 

clauses tightly together in order to form uninterrupted 

formula strings again, CUDPP is employed once more to 

run a 2D prefix scan over all formulas and their respective 

clauses. The result of this scan is then used by a 

defragmentation kernel which compresses all valid 

formulas by reordering their clauses and thus regaining 

continuous formula sequences. 

 

The final step consists of checking the actual size of the 

newly formed formula batch, and invoking the swapping 

mechanism if necessary: In case enough formulas were 

produced to overwhelm the hardware during the next 

expansion, some of those formulas are being swapped 

back to the host. In contrast, if most of the newly created 

formulas turned out to be invalid and thus had to be 

discarded, the host swaps previously stored formulas back 

to the device, in order to resupply the now lacking 

formula batch. Are no formulas left to swap back in, the 

search space has been exhausted and the formula is not 

satisfiable. Note that swapping is not explicitly depicted 

in Figure 1, as it is not performed by a CUDA kernel on 

the device, but by the host itself. 

 

As can be seen, most steps of the kernel pipeline merely 

rearrange formula data to generate the solid formula 

batches being processed by the SAT kernel. This kernel is 

where most of the actual solver work is being done: 

Variable decisions are being applied, and new formulas 

are generated. It is executed right after the swapping 

mechanism has adjusted the new batch size, and will be 

explained in more detail, as it is the essential kernel of the 

overall solver: 

 

As its first step, each warp determines its own workload, 

i.e., which of the formulas contained in the current batch 

the warp is supposed to process, which route of the core 

recursion it has to follow, and where the actual result 

should be stored. New formulas are then being generated 

by taking the first clause of the input formula and 

applying the assignments denoted by the core recursion. 

To this end, each warp employs its threads to iterate the 

clauses of its input formula and to work through the 

following set of solver rules: 

 

 Subsumption: Discard any clause containing a 

decision literal. 

 Resolution: Discard any occurrence of a negated 

decision literal in all clauses. 

 Conflicts: In case any clause of the formula contains 

only a negated decision literal, mark the overall 

(output) formula as invalid. 

 

Note that it is not always possible for every warp to create 

a new formula: If the decision clause contains less than 

three literals, the solver is unable to expand the respective 

input formula into three new output formulas. In this case, 

the respective warp acknowledges its missing purpose and 

shuts itself down. On the CUDA side, the streaming 

processor executing this warp is then immediately being 

tasked with the execution of one of the remaining warps 

by the CUDA scheduler. Accordingly, as long as the 

solver provides enough work for the device, the streaming 

processors can simply be flooded with work and the 

device will operate at around its full capacity. Thus, no 

additional load balancing mechanism is necessary, as all 

tasks are distributed to the available processors 

automatically be the running CUDA scheduler. 

 

Once all warps are done, the resulting fragmented batch 

of clauses is then being fed back into the kernel pipeline. 

This loop continues until an empty formula is created - 

and the formula thus was satisfied - or all available search 

paths have been exhausted. In both cases, the program 

terminates and reports the obtained result. 
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As can be seen, the overall procedure is deterministic. It 

might not be known in what order the formulas of a batch 

will be processed, but all decisions being made are known 

beforehand and are not dependent on any random 

scheduling behavior. The only randomness that might 

occur (and has been confirmed in experiments) takes 

place when the solver produces two or more solutions in 

the same step. In this case, it cannot be guaranteed which 

warp will succeed in constituting its own solution as the 

solver’s final one. 

 

3. RESULTS 
 

When presenting the outcome of implementing our 

massively parallel solver, two central aspects are 

considered: First, the results delivered by the actual 

solving of SAT instances, and second an evaluation of the 

algorithm's parallelization in general and on CUDA 

hardware. 

 

The benchmark problems used to evaluate our solver were 

taken from the open Satisfiability Library [12]. As it was 

the primary goal to achieve a successful parallelization, 

we chose a set of comparatively small problems, in order 

to be able to quickly experiment with small scale 

modifications and parameter variations. The set consists 

of 100 random instances, all known to be satisfiable and 

containing 75 variables and 325 clauses - resulting in a 

clauses-to-variables ratio of 4.33, slightly above the 

known threshold for problem hardness. 

 

Figure 2 presents the results of solving the complete input 

set on two different CUDA graphics cards, specifically a 

GeForce GTX 285 (blue/dotted line) and a GeForce GTX 

260 (red/plain line). While the x-axis depicts the number 

of solved instances, the y-axis denotes the accumulated 

amount of time needed to solve this number of instances 

in seconds. Both cards utilize (among other things) a 

different number of parallel streaming processors (240 on 

the GTX 285 and 216 on the GTX 260), which - besides a 

more complex SLI setup - is basically the only way to 

check CUDA algorithms for processor scaling.  

 

Figure 3 is laid out the same way, and depicts the results 

of solving the same instance set on the GTX 285 alone, 

while using three variations of the central solver 

parameter. This parameter denotes the amount of 

formulas handled concurrently, and is limited by the 

number of formulas the graphics card is able to store at 

the same time. Note that the fastest configuration is 

actually not the one using the most memory resources, as 

the continuous formula transfer from host to device 

eventually begins to slow down the overall solving 

process.  

 

 
Figure 2. Solving the SATLIB 75-325 Set 

 

 
Figure 3. Adjusting the Batch Size 

 

 
Figure 4. Decision Heuristic Impact 

 

Figure 4 shows the impact of our two complementary 

decision heuristics (sorting by “relevance” and always 

choosing the first clause). Again the same set of 100 

formulas is being solved on the GTX 285 card, once with 

the un-altered formulas (blue/dotted line), and once with 

all formula clauses sorted by relevance (red/plain line). 

Note that the y-axis of this figure denotes not seconds, but 

minutes. 

 

Adhering to the SIMT paradigm, the parallelization itself 

depends on a massive number of threads flooding the 

parallel hardware with work, and thereby trying to never 

leave one of the processors idle and waiting for something 

to do. Furthermore, the parallelization is designed to 

break up into individual threads in the last possible 

moment (i.e., when it comes to actually iterating a 

formula's clauses), and thereby minimizing divergence 

within the executed warps. In order to evaluate how 

successful such goals are being accomplished, CUDA 
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provides a profiling tool which employs a wide range of 

counters to help evaluate the successful use of the utilized 

CUDA hardware. Table 1 shortly summarizes the overall 

useful activity of a streaming processor during the 

execution of our solver. 

 

Table 1. Profiler Results 

 
CUDA Kernel Occupancy Instruction Throughput 

SAT Kernel 

Copy Kernel 

Defrag Kernel 

0.75 

0.94 

0.94 

1.00 

0.58 

0.91 

 

3.1. Discussion 
 

The main issue with our approach lies where sequential 

algorithms gain most of their performance: Collect 

various amounts of state data while solving, feed this data 

to a set of complex heuristics, and use the resulting advice 

to make smart decisions which lead to some ingenious 

route through a gigantic SAT search space. Our 

framework, however, does not allow for such costly 

mechanisms per followed path, as the required resources 

are not available on CUDA. While being a clear 

disadvantage, this also forced the development to 

primarily focus on actual parallelism to organize and 

speed up the solving process. Consequently, we had to re-

think, and often discard, common sequential solving 

techniques, in order to fully take advantage of the parallel 

CUDA processing power, and exploit the highest level of 

thread parallelism possible. Accordingly, the hereby 

presented solver framework should not be viewed as a 

finished product, but rather as an initial stepping stone 

towards a competitive parallel SAT solver. 

 

As such, there is no comparison chart with contemporary 

sequential solvers. They are built on a highly advanced 

DPLL framework and trump our solver by magnitudes. 

Although we were able to gain several performance 

boosts during the development of our framework, there is 

simply no competition worth speaking of. Furthermore, 

the most useful comparison with another solver would be 

a different massively parallel solver on a multicore 

platform, in order to determine the success of alternative 

solving approaches in this setting. However, to our 

knowledge, there are none such solvers currently 

available. 

 

4. FUTURE WORK 
 

In its current version, our solver framework offers three 

specific degrees of freedom where new heuristics may be 

applied, in order to improve our decision making: First, 

when swapping formulas (in or out), it has to be decided 

which ones are moved. Second, the process to determine 

the next decision clause may be further worked on, as it is 

the most relevant aspect of how the search is organized. 

Third, the order by which newly generated formulas are 

being organized when forming a new formula batch might 

be reworked, in order to complement the currently 

employed swapping strategy. While we already propose 

solutions for all of these - and were able to produce some 

interesting results - our implemented techniques are not 

comparable with the level of sophistication commonly 

found in state-of-the-art sequential solvers. 

 

Besides new heuristics, it also might pay off to remodel 

some of the internal framework. Specifically, we have 

observed that our solver is able to process an impressive 

number of formulas - around 5.5 million per second on 

average on the GTX 260 - and at the same time 

(predictably) being slowed down by costly memory 

transfers. Accordingly, it might be beneficial to further 

reduce said transfer costs by not modeling a single search 

patch by partial assignment and the respective sub-

formula, but instead only the partial assignment. In order 

to still be able to detect conflicts, formulas would then 

have to be constructed on demand. While this would 

drastically reduce the amount to be transferred per solver 

loop iteration, it would require the allocation of enough 

shared memory resources to store such temporarily 

generated formulas, and the additional computational 

overhead of actually handling them. 

 

Furthermore, note that the solver might also very easily be 

expanded to run on more than just a single CUDA card: 

In order to be executed on n cards, the pre-processing 

kernel simply needs to generate an initial batch of n times 

the size a single card is able to handle. This batch is then 

split up, and distributed to all n available graphics cards. 

 

4.1. Perspective for Massive parallelism 
 

It is probably safe to say that parallel platforms will 

continue their successful rise. Therefore, it seems only a 

matter of time until state of the art solvers incorporate the 

use of massively parallel hardware, and routinely involve 

techniques depending on the advantages offered by such 

platforms. This paper does not present such a solver. We 

would like to think, however, that this paper presents 

some groundwork, from which such a solver may be built 

in the near future. 

 

How this may actually proceed, however, is still open to 

debate. With the development of high end sequential 

solvers, we see the careful guiding of a single search path 

on one side of a spectrum, with massive parallelism and 

millions of concurrent - but largely unguided - searches 

residing at the opposite end. While solvers like ManySAT 

move from the single path end to the parallel side, we 

started at the purely parallel side and slowly developed 

onwards to the more guided side of the spectrum. It will 



probably be interesting to see what kinds of solver emerge 

once these two paths meet in the middle, at what point of 

the spectrum the most successful solver will be found, and 

what part may be handled most effectively by actual 

parallelism within an overall solver framework. 

 

Consequently, there may be two basic approaches when 

further developing parallel solvers: Either expanding 

parallelism in hybrid solvers - the common contemporary 

approach - or finding some way to employ known 

successful techniques from the sequential toolbox within 

a resource-scarce parallel environment. 

 

5. CONCLUSION 
 

In this paper, we presented a SIMT 3-SAT solver 

framework, which discards most common solver 

techniques introduced by sequential solvers, and instead 

solely relies on massive thread parallelism to solve 

problem instances. To share actual results, the solver was 

developed to run on available Nvidia CUDA hardware. 

The underlying algorithm, however, does not rely on any 

platform specific features, and thus may very 

straightforwardly be brought to any other SIMT platform 

as well. Our central goal was not to present the next high 

end SAT solver, but rather to determine what massive 

parallelism might actually be able to bring to the table of 

SAT solving. The solver offers various degrees of 

freedom to easily allow for further experimentation and 

expansion of the framework - all within a comfortable 

desktop environment, without the need of a large 

computer cluster setup to which the solver might be 

brought on a later stage. 
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