3-SAT on CUDA: Towards a Massively Parallel SAT Solver

Quirin Meyer, Fabian Schonfeld, Marc Stamminger, Rolf Wanka
Department of Computer Science, University of Erlangen-Nuremberg, Germany
{quirin.meyer | marc.stamminger | rwanka}@cs.fau.de
fabian.schoenfeld@gmx.net

ABSTRACT

This work presents the design and implementation of a
massively parallel 3-SAT solver, specifically targeting
random problem instances. Our approach is deterministic
and features very little communication overhead and
basically no load-balancing cost at all. In the context of
most current parallel SAT solvers running only on a
handful of cores, we implemented our solver on Nvidia's
CUDA platform, utilizing more than 200 parallel
streaming processors, and employing several millions of
threads to work through single problem instances. As
most common sequential solver techniques had to be
discarded, our approach is additionally supported by a
new set of global heuristics, designed specifically to be
easily exploited by the underlying thread parallelism.

KEYWORDS: GPGPU, thread level parallelism, load
balancing and sharing, random 3-SAT.

1. INTRODUCTION

As parallel resources are becoming increasingly cheap to
acquire, more and more established algorithms are being
revised to take advantage of this, in order to boost their
performance and/or gain new insights into the inner
workings of long known problems. Together with the
field of high performance computing, the realm of
compute intensive algorithms is trying to make the most
of this. Here many NP-complete problems are being
investigated [9], with one of the most discussed being
Boolean Satisfiability (SAT). It was the first problem to
be proven NP-complete [4] and subject to different
solving approaches for almost fifty years by now. It is
studied intensively by theoreticians due to its proximity to
a whole different class of problems (as 2-SAT is merely
P-complete) and arguably being the most bare-bones NP-
complete problem. In practice the problem retains its
relevance by still occurring in many applications of

current interest like theorem proving, FPGA routing, and
Electronic Design Automation.

1.1. Previous Work: The Parallel Track

Most current high end SAT solvers are still sequential
algorithms [7], [15], [16] based on extending the classic
Davis-Putnam-Logemann-Loveland (DPLL) procedure
[5], [6], by incorporating additional state data collected
over the course of a sequential solving run. In recent years
several successful parallel solvers have emerged,
establishing a new “parallel track” in annual SAT
competitions in 2008. This newer generation of solvers,
however, is still mainly based on the core DPLL
framework and the techniques developed for their
sequential predecessors. PSATO [21] and Gradsat [2], [3]
are two examples for high end parallel solvers, which
consist of bringing their sequential counterparts ([20] and
[15]) to a parallel platform. As with Nagsat [8], they are
based on a master-slave approach, where the master runs
a modified DPLL procedure and distributes sub-problems
to the available parallel nodes - which again run their
version of the DPLL algorithm. The current state of the
art is represented by the portfolio-based ManySAT [10]:
Its parallel approach consists of running several different
(and carefully calibrated) sequential solvers in parallel,
returning the first result obtained by any one of them.

As can be seen, the current parallel track is still mainly
based on the advancements made during developing
sequential solvers. The execution itself is either done on
just a few local cores (34 for Gradsat, 29 for PSATO) or
small scale grids with high communication costs and a
comparatively small set of largely independent processing
units. All their design decisions are of course validated by
their success. The question for massive parallelism in
SAT solving, however, still remains largely unanswered.

1.2. Enter GPGPU

While current parallel solvers are primarily implemented
to run on computer clusters, an alternative test bed is

provided by GPGPU: General Purpose computing on
Graphics Processing Units. As a lot of graphical tasks are
inherently parallel, graphics hardware is designed to
efficiently handle computations concurrently. GPGPU is
the idea of utilizing this processing power to solve
problems unrelated to computer graphics. In late 2006,
Nvidia introduced its CUDA API [14], which allows for
direct access to a CUDA enabled graphics card’s parallel
hardware, and thereby supplies developers with a highly
efficient co-processor to handle specific workloads.

2. APARALLEL CUDA SAT SOLVER

Since its introduction, CUDA is continuously developed
further, with its latest incarnation being manifested in the
Fermi chipset announced for 2010 [19]. CUDA offers
massive thread parallelism without the need for an
expensive computer cluster setup, and allows for the
concurrent execution of hundreds of thousands of
lightweight threads, running on several hundreds of
CUDA streaming processors (around 200 on current
graphics cards and 512 on Fermi). A batch of 32 threads
is bundled within a so called warp, which denotes the
amount of threads actually being physically executed in
parallel on a single processor. On a larger scale, threads
are part of a CUDA thread block, which denotes a bundle
of threads operating on a set amount of shared memory.
The parallel paradigm for CUDA is a block-wide SIMD
model. That is, all threads of the same block are required
to execute the same instruction, while different blocks
may execute different functions. The execution of a
function on the hardware itself is organized in so called
CUDA kernels. A kernel simply denotes a procedure
running on the graphics card - the device. Each kernel is
invoked by the host, i.e., the computer containing the
device, and operates on a grid of CUDA thread blocks,
which is also defined by the host.

Besides its parallel architecture, the most defining CUDA
aspects for our work are the constraints of the platform,
primarily the limiting amount of on-chip memory. In
essence, two distinct disadvantages present themselves:
First, with the vast number of threads running in parallel,
the remaining available space for additional state data per
single thread becomes very limited. Essentially all
modern SAT solver frameworks are used to employing
quite a large amount of such state data, while dealing with
a single “current” formula (like implication graphs,
databases of learned clauses, and so on). Our massively
parallel solver, however, deals with thousands of search
paths at once, and the hardware simply does not provide
the memory resources which would allow the same
amount of state data per search path.

The second memory induced issue is much more
straightforward: Less space means shorter formulas. Note

that current generation SAT solvers often do not even use
the term “formula” when addressing a problem instance,
but rather refer to it as “clause database”, due to the
impressive length of formulas current solvers are able to
deal with. Not so with limited CUDA resources, however,
which results in compatible CUDA solver formulas being
of a much more compact format.

Luckily, both of these memory issues push our solver in
the same direction: random 3-SAT instances. Current
solver advances allow for industrial problems containing
more than hundreds of thousands of clauses and variables
to be solved in mere minutes, due to the inherent and
exploitable structures encoded within such instances.
Purely random SAT instances, however, lack such
internal structure, and consequently state hard problems
via much smaller formulas. Furthermore, it has been
discovered that modern indispensible solver techniques
such as clause learning and complex state dependent
heuristics, like conflict graphs, often degenerate to brute-
force style rules when handling chaotic random instances
- for example by regularly backtracking to the last
decision made, instead of some more meaningful
decisions higher up in the search tree. Consequently,
parallel SAT solving seems to be well suited to handling
random instances, as their smaller size reduces the
amount of memory required to handle them, and common
memory intensive techniques are additionally not
guaranteed to deliver the same performance boosts as they
do in the case of industrial (i.e., structured) problems -
and may thus be discarded without impacting the overall
solver too much.

2.1. The Base Algorithm

The D&C-3SAT algorithm parallelized and brought to
CUDA in this work employs a divide-and-conquer
approach for solving 3-SAT instances, as is depicted by
Algorithm 1. It takes a formula f in Conjunctive Normal
Form (CNF) over n Boolean variables and r clauses, with
each clause consisting of at most three literals (the CNF
format denotes a conjunction of clauses, with each clause
being a disjunction of literals). The algorithm is described
in detail in [13] and is a simplified version of the
algorithm presented in [17]. Besides providing a
framework suitable to be easily parallelized, the algorithm
also reduces the worst-case time complexity from O(r « 2")
(the brute force approach) to O(r « 1.84") [14, pp. 171ff].

The core idea of this approach is to exploit the fact that all
possibilities to satisfy any given clause can be broken
down to three different cases: Initially, the first literal is
set to true, which either contributes to solving the formula
or the subsequent recursion returns a contradiction. In the
latter case, setting the first literal to true obviously did not
work, and thus the corresponding variable is set to falsify

the literal. In order to satisfy the clause now, the second
literal is set to true, and the process is repeated. In case
this again leads to a conflict, the final, third approach is
taken by setting the first two literals to false and only the
last one to true.

Algorithm 1: Divide & Conquer SAT Solver

Data: Formula f in CNF
if length(f) < limit then return brute_force_solve(f);

1

» Clause ¢ « pick_random_clause(f);

3 Il Note: ¢ consists at most of literals lit,, lity, lit;

4 ifliterals_contained_in(c) equals 1 then

5 Formula f,<—apply(f, lit,=true);

6 return D&C-3SAT(f,);

;- end

g if literals_contained_in(c) equals 2 then

10 Formula fi«—apply(f, lit,=true);

1 Formula fy—apply(f, lit,=false, lit,=true);

12 return D&C-3SAT(f;) OR D&C-3SAT(f,);

13 end

14 If literals_contained_in(c) equals 3 then

15 Formula fy«<—apply(f, lit,=true);

16 Formula f<—apply(f, lit,=false, lit,=true);

17 Formula fy«<—apply(f, lit,=false, lit,=false, lit.=true);

18 return D&C-3SAT(f;) OR D&C-3SAT(f,)
OR D&C-3SAT(f3);

19 end

Thus, in every step of the recursion some clause is
selected, and - depending on the number of literals it
carries - the search expands in up to three new directions,
following all possibilities to satisfy the chosen clause. The
recursion is terminated as soon as a sub-formula drops
below some clause limit and is solved by a brute-force
solver, or the applied decisions satisfy all remaining
clauses on their own. This algorithm has already been
implemented and experimentally evaluated on a
workstation cluster in order to demonstrate process
migration techniques [1]. Due to the used platform and
the different focus of research, the running times are far
from the results obtained on our GPU.

2.1. Adapting the Procedure for Parallelism

During the parallelization of the sequential divide-and-
conquer algorithm, two central elements of the procedure
were altered, in order to better suit it to the underlying
CUDA platform. First, the brute-force solver cutting off
the recursion before it arrives at empty formulas was
completely discarded. Second, the original decision
heuristic to choose the next clause to be satisfied is
replaced by a much simpler rule: Always choose the first
clause. Both of these changes went through several
iterations over the course of development, with the

following findings leading to the current version of the
procedure:

First, the brute-force solver breaks a pure SIMD paradigm,
as most streaming processors are typically occupied with
processing sub-formulas, and only a few would actually
execute the brute-force solver. This alone would not be a
big issue in itself, as it was already mentioned that
different CUDA thread blocks may handle different tasks
without seriously impacting the overall performance.
However, in contrast to the default formula simplification,
brute-force solving requires a certain amount of block-
wide shared memory. Again, this fact alone is not an issue.
In combination with the fact that most blocks do not
execute the brute-force solver, however, this results in
every block requiring the guarantee that this amount of
shared memory is available, even though it mostly will
not be used at all. On CUDA, this means the allocation of
additional shared memory resources before the respective
kernel even starts, which seriously impacts performance
and is mostly not even required. Consequently the brute-
force solver was discarded from the overall procedure, as
its benefits did not outweigh its maintenance costs.

Second, the solver's decision heuristic. Simply choosing
the first clause offers - at first - basically only a single
advantage: It is really cheap. On the other side, there are a
lot of arguments against it: Essentially every state-of-the-
art solver employs complex decision heuristics and in
doing so, benefits from partly huge performance
improvements. However, the key word hereby is complex,
which in our SIMD approach with hundreds of thousands
of search paths running in parallel is just not feasible, as
the required memory resources per formula are simply not
available. Nevertheless, a multitude of different
approaches was tested - among others, an additional
heuristic kernel, employing a scoring system similar to
the common VSIDS (Variable State Independent
Decaying Sum) [18] heuristic - with the somewnhat
surprising result that it did not pay off at all to try and
make good local decisions (i.e., per search path). Instead,
a second heuristic was introduced, to complement the
first-clause rule: Before actually solving an instance, it is
first reorganized in order to sort its clauses by relevance.
A clause is considered to be more “relevant” than another,
if it contains a set of more often occurring variables. This
order is preserved in every sub formula created during the
following solving process, and we thus gain the property
that the first clause of every formula being processed
automatically denotes the globally recommended decision
clause.

2.2. The Parallelization

The central approach of the parallelization it to avoid the
consecutive execution of the recursive calls in the
sequential version, by executing all (up to) three calls in
parallel. Thus each input formula may spawn three new
search paths, and consequently the amount of managed
formulas triples during every step in the worst case. In
order to deal with this, an additional swapping mechanism
is introduced, which keeps the amount of formulas
residing on the device on a near constant level. Swapping
occurs after a batch of formulas has been processed by the
device, and either transfers a formula surplus back to the
host, or supplies the device with previously swapped out
formulas in case too many of the newly created formulas
feature contradictions and are discarded. The overall
implementation may hence be designated a master-slave
approach, as the slave/device iteratively processes
formula batches which are continuously refilled by the
master/host.

As this means that every step of the solver loop includes
the transfer of quite some data between host and device,
all data is being bit-encoded to reduce the resulting traffic
costs. A single search path consists thereby of its (partial)
variable assignment, and the actual formula resulting from
applying this assignment to the original problem instance.
The bit encoding allows one 32 bit integer to store a
complete clause, and two bits per variable (while one bit
is enough to encode true/false assignments, two bits allow
for additional states such as unknown and error).

To access all this data, we employ a “read once, write
once” strategy. Usually in CUDA programming, threads
read their workload from global memory into shared
memory, execute their function, and write the result back
to global memory. The locality of our approach, however,
allows for the circumvention of the shared memory
entirely: Threads do not need to communicate with each
other, and only work on a single clause at the same time.
This clause is encoded within a single integer, and
therefore is loaded once from global memory into a
register. There it is being operated on as a temporary
variable and immediately written back to global memory.
Due to our development on the GT200 platform, we are
able to benefit from relaxed rules for coalesced memory
access, which allows for this strategy to be handled
efficiently by the underlying CUDA hardware, and thus to
actually improve the solving procedure.

Note that while single threads handle single clauses, a
complete formula is not being processed by a single
thread, but by a set of 32 threads, i.e., a warp. By issuing
a single warp to handle a single formula, we can operate
on the formula in parallel without any need for additional
costly synchronization between the threads, since warps

are guaranteed to be physically executed in parallel on the
device. Therefore, our kernels operate on a CUDA grid
comprised of thread blocks containing 192 threads, which
split up into 2 « 3 warps. Three warps at a time access the
same input formula and produce a unique output formula.
Thus a single block reads two input formulas and employs
six warps to produce six different output formulas.

In order actually start the solving process, an additional
pre-process kernel is invoked. This kernel takes the initial
problem instance and optimistically applies every
assignment permutation of the x most occurring variables.
The value of x is chosen to immediately obtain a
completely filled formula batch, thus avoiding a partially
idle startup phase on the device. This initial batch is then
being fed to the actual solving mechanism - the kernel
pipeline.

2.3. The Kernel Pipeline

The kernel pipeline denotes a series of kernels which are
successively applied to the formula batch currently
residing on the device. Each of these kernels performs a
single operation of the overall solver loop. After being
processed by the kernel pipeline once, a single step of the
divide-and-conquer recursion has been applied to a
formula batch containing n formulas. Furthermore, all
thereby newly created 3 « n formulas have been checked
for contradictions and validity, and the next formula batch
has been constructed from all remaining valid formulas.

More specifically, the kernel pipeline executes the
following steps:

o SAT Rules: Triple the number of formulas within the
batch by applying new assignments to each formula
according to the rules of Algorithm 1.

e 1D Prefix Scan: Scan all formulas for validity, in
order to discard any conflicting search paths marked
by the previous SAT kernel.

e Copy: Use the prefix scan result to condense all valid
formulas into a new, compact formula batch.

e 2D Prefix Scan: Scan all remaining formulas, in
order to discard any nullified clauses.

e Defragmentation: Use the 2D prefix scan result to
rearrange all remaining valid formulas in order to
form continuous formula strings without nullified
clauses mixed in between.

e Swapping: Adjust the size of the new batch by either
trimming or reinforcing the amount of contained
formulas. (Note that this is a host-side action and thus
not actually performed by a CUDA kernel. It is
included as a part of this list for the sake of
convenience only.)

o
=
D
o
=
o
o
®
»
@
S
2
O
o
=
<<
A
@
=
=]
@

= 1

Out In In Out
I R e (s) NN
CCCCOD e |SCCEEECEE prefix L [
OO e | 0 Oam
] |, |ETeserm scan over || i Commerme
I e | | S e lid CED RN (N e
oo | (e Vali (T e CE e
O mereers| | (0'MUISS | | oemereere oo
OO | | s BN
[y

SAT Kernel Defrag Kernel 2D Prefix Scan

In Out In Out In
EEEEENCTT BB [EECEE M| | .
N BTN (SN ST (SR prefix
EENINGDN | (BN BOrT]| |DESCEoND DEDDDGDC]| |EEECEEEEE
O BT || RS s T | | CEmmsrme SCan over
OO0 S| | S| |
OO G| | | |mssscescw0N-€Mpty
CCCOIOOD BCEemeTT| |COOOrD COOOOO| (OO ofauses
CCOLICIID Meereerrl| |COCCOooo OO |Cooo
CCOIOIrO Eemmeererl| |COCCOOOrO Cooron)| (oo

Figure 1. The Kernel Pipeline

A complete overview of the kernel pipeline is provided by
Figure 1, where for each step the state of the active
formula batch is shown before entering and after leaving
the respective CUDA kernel. One row within the batch

initial formula is taken by the preprocess kernel, which
generates the first actual formula batch. When creating
new formulas, any involved thread may set a flag to
notify its warp that the currently processed formula is
invalid. These flags are then checked by the following
kernel, which employs the CUDPP library [11] to run a
parallel prefix scan over all the flags of the active formula
batch. The result of this scan is subsequently used in the
following kernel, which collects all valid formulas into a
new formula batch. Such newly created formulas,
however, are still littered with nullified clauses, resulting
from the last decisions being applied. To pack these
clauses tightly together in order to form uninterrupted
formula strings again, CUDPP is employed once more to
run a 2D prefix scan over all formulas and their respective
clauses. The result of this scan is then used by a
defragmentation kernel which compresses all valid
formulas by reordering their clauses and thus regaining
continuous formula sequences.

The final step consists of checking the actual size of the
newly formed formula batch, and invoking the swapping
mechanism if necessary: In case enough formulas were
produced to overwhelm the hardware during the next
expansion, some of those formulas are being swapped
back to the host. In contrast, if most of the newly created
formulas turned out to be invalid and thus had to be
discarded, the host swaps previously stored formulas back
to the device, in order to resupply the now lacking
formula batch. Are no formulas left to swap back in, the
search space has been exhausted and the formula is not

satisfiable. Note that swapping is not explicitly depicted
in Figure 1, as it is not performed by a CUDA kernel on
the device, but by the host itself.

As can be seen, most steps of the kernel pipeline merely
rearrange formula data to generate the solid formula
batches being processed by the SAT kernel. This kernel is
where most of the actual solver work is being done:
Variable decisions are being applied, and new formulas
are generated. It is executed right after the swapping
mechanism has adjusted the new batch size, and will be
explained in more detail, as it is the essential kernel of the
overall solver:

As its first step, each warp determines its own workload,
i.e., which of the formulas contained in the current batch
the warp is supposed to process, which route of the core
recursion it has to follow, and where the actual result
should be stored. New formulas are then being generated
by taking the first clause of the input formula and
applying the assignments denoted by the core recursion.
To this end, each warp employs its threads to iterate the
clauses of its input formula and to work through the
following set of solver rules:

e Subsumption: Discard any clause containing a
decision literal.

e Resolution: Discard any occurrence of a negated
decision literal in all clauses.

e Conflicts: In case any clause of the formula contains
only a negated decision literal, mark the overall
(output) formula as invalid.

Note that it is not always possible for every warp to create
a new formula: If the decision clause contains less than
three literals, the solver is unable to expand the respective
input formula into three new output formulas. In this case,
the respective warp acknowledges its missing purpose and
shuts itself down. On the CUDA side, the streaming
processor executing this warp is then immediately being
tasked with the execution of one of the remaining warps
by the CUDA scheduler. Accordingly, as long as the
solver provides enough work for the device, the streaming
processors can simply be flooded with work and the
device will operate at around its full capacity. Thus, no
additional load balancing mechanism is necessary, as all
tasks are distributed to the available processors
automatically be the running CUDA scheduler.

Once all warps are done, the resulting fragmented batch
of clauses is then being fed back into the kernel pipeline.
This loop continues until an empty formula is created -
and the formula thus was satisfied - or all available search
paths have been exhausted. In both cases, the program
terminates and reports the obtained result.

As can be seen, the overall procedure is deterministic. It
might not be known in what order the formulas of a batch
will be processed, but all decisions being made are known
beforehand and are not dependent on any random
scheduling behavior. The only randomness that might
occur (and has been confirmed in experiments) takes
place when the solver produces two or more solutions in
the same step. In this case, it cannot be guaranteed which
warp will succeed in constituting its own solution as the
solver’s final one.

3. RESULTS

When presenting the outcome of implementing our
massively parallel solver, two central aspects are
considered: First, the results delivered by the actual
solving of SAT instances, and second an evaluation of the
algorithm's parallelization in general and on CUDA
hardware.

The benchmark problems used to evaluate our solver were
taken from the open Satisfiability Library [12]. As it was
the primary goal to achieve a successful parallelization,
we chose a set of comparatively small problems, in order
to be able to quickly experiment with small scale
modifications and parameter variations. The set consists
of 100 random instances, all known to be satisfiable and
containing 75 variables and 325 clauses - resulting in a
clauses-to-variables ratio of 4.33, slightly above the
known threshold for problem hardness.

Figure 2 presents the results of solving the complete input
set on two different CUDA graphics cards, specifically a
GeForce GTX 285 (blue/dotted line) and a GeForce GTX
260 (red/plain line). While the x-axis depicts the number
of solved instances, the y-axis denotes the accumulated
amount of time needed to solve this number of instances
in seconds. Both cards utilize (among other things) a
different number of parallel streaming processors (240 on
the GTX 285 and 216 on the GTX 260), which - besides a
more complex SLI setup - is basically the only way to
check CUDA algorithms for processor scaling.

Figure 3 is laid out the same way, and depicts the results
of solving the same instance set on the GTX 285 alone,
while using three variations of the central solver
parameter. This parameter denotes the amount of
formulas handled concurrently, and is limited by the
number of formulas the graphics card is able to store at
the same time. Note that the fastest configuration is
actually not the one using the most memory resources, as
the continuous formula transfer from host to device
eventually begins to slow down the overall solving
process.

60 = == == = 240 cores

50 | e 216 COTES

40 "
» /4""
20 St

1 100
Figure 2. Solving the SATLIB 75-325 Set

50 -

45 | o409 B

| ———u#8192
401 #16384 MM
30 e
20 JM y =

. e’

15 o el
10 e
5 o ppe
4 J 2,

1 100

Figure 3. Adjusting the Batch Size
50 +
= = = = random o=
42 e
e sorted r~
33 P el
Lo
25 g
_
17 e
L.

8 1
P

1 100

Figure 4. Decision Heuristic Impact

Figure 4 shows the impact of our two complementary
decision heuristics (sorting by “relevance” and always
choosing the first clause). Again the same set of 100
formulas is being solved on the GTX 285 card, once with
the un-altered formulas (blue/dotted line), and once with
all formula clauses sorted by relevance (red/plain line).
Note that the y-axis of this figure denotes not seconds, but
minutes.

Adhering to the SIMT paradigm, the parallelization itself
depends on a massive number of threads flooding the
parallel hardware with work, and thereby trying to never
leave one of the processors idle and waiting for something
to do. Furthermore, the parallelization is designed to
break up into individual threads in the last possible
moment (i.e., when it comes to actually iterating a
formula's clauses), and thereby minimizing divergence
within the executed warps. In order to evaluate how
successful such goals are being accomplished, CUDA

provides a profiling tool which employs a wide range of
counters to help evaluate the successful use of the utilized
CUDA hardware. Table 1 shortly summarizes the overall
useful activity of a streaming processor during the
execution of our solver.

Table 1. Profiler Results

CUDA Kernel Occupancy Instruction Throughput
SAT Kernel 0.75 1.00

Copy Kernel 0.94 0.58

Defrag Kernel 0.94 0.91

3.1. Discussion

The main issue with our approach lies where sequential
algorithms gain most of their performance: Collect
various amounts of state data while solving, feed this data
to a set of complex heuristics, and use the resulting advice
to make smart decisions which lead to some ingenious
route through a gigantic SAT search space. Our
framework, however, does not allow for such costly
mechanisms per followed path, as the required resources
are not available on CUDA. While being a clear
disadvantage, this also forced the development to
primarily focus on actual parallelism to organize and
speed up the solving process. Consequently, we had to re-
think, and often discard, common sequential solving
techniques, in order to fully take advantage of the parallel
CUDA processing power, and exploit the highest level of
thread parallelism possible. Accordingly, the hereby
presented solver framework should not be viewed as a
finished product, but rather as an initial stepping stone
towards a competitive parallel SAT solver.

As such, there is no comparison chart with contemporary
sequential solvers. They are built on a highly advanced
DPLL framework and trump our solver by magnitudes.
Although we were able to gain several performance
boosts during the development of our framework, there is
simply no competition worth speaking of. Furthermore,
the most useful comparison with another solver would be
a different massively parallel solver on a multicore
platform, in order to determine the success of alternative
solving approaches in this setting. However, to our
knowledge, there are none such solvers currently
available.

4. FUTURE WORK

In its current version, our solver framework offers three
specific degrees of freedom where new heuristics may be
applied, in order to improve our decision making: First,
when swapping formulas (in or out), it has to be decided
which ones are moved. Second, the process to determine
the next decision clause may be further worked on, as it is

the most relevant aspect of how the search is organized.
Third, the order by which newly generated formulas are
being organized when forming a new formula batch might
be reworked, in order to complement the currently
employed swapping strategy. While we already propose
solutions for all of these - and were able to produce some
interesting results - our implemented techniques are not
comparable with the level of sophistication commonly
found in state-of-the-art sequential solvers.

Besides new heuristics, it also might pay off to remodel
some of the internal framework. Specifically, we have
observed that our solver is able to process an impressive
number of formulas - around 5.5 million per second on
average on the GTX 260 - and at the same time
(predictably) being slowed down by costly memory
transfers. Accordingly, it might be beneficial to further
reduce said transfer costs by not modeling a single search
patch by partial assignment and the respective sub-
formula, but instead only the partial assignment. In order
to still be able to detect conflicts, formulas would then
have to be constructed on demand. While this would
drastically reduce the amount to be transferred per solver
loop iteration, it would require the allocation of enough
shared memory resources to store such temporarily
generated formulas, and the additional computational
overhead of actually handling them.

Furthermore, note that the solver might also very easily be
expanded to run on more than just a single CUDA card:
In order to be executed on n cards, the pre-processing
kernel simply needs to generate an initial batch of n times
the size a single card is able to handle. This batch is then
split up, and distributed to all n available graphics cards.

4.1. Perspective for Massive parallelism

It is probably safe to say that parallel platforms will
continue their successful rise. Therefore, it seems only a
matter of time until state of the art solvers incorporate the
use of massively parallel hardware, and routinely involve
techniques depending on the advantages offered by such
platforms. This paper does not present such a solver. We
would like to think, however, that this paper presents
some groundwork, from which such a solver may be built
in the near future.

How this may actually proceed, however, is still open to
debate. With the development of high end sequential
solvers, we see the careful guiding of a single search path
on one side of a spectrum, with massive parallelism and
millions of concurrent - but largely unguided - searches
residing at the opposite end. While solvers like ManySAT
move from the single path end to the parallel side, we
started at the purely parallel side and slowly developed
onwards to the more guided side of the spectrum. It will

probably be interesting to see what kinds of solver emerge
once these two paths meet in the middle, at what point of
the spectrum the most successful solver will be found, and
what part may be handled most effectively by actual
parallelism within an overall solver framework.

Consequently, there may be two basic approaches when
further developing parallel solvers: Either expanding
parallelism in hybrid solvers - the common contemporary
approach - or finding some way to employ known
successful techniques from the sequential toolbox within
a resource-scarce parallel environment.

5. CONCLUSION

In this paper, we presented a SIMT 3-SAT solver
framework, which discards most common solver
techniques introduced by sequential solvers, and instead
solely relies on massive thread parallelism to solve
problem instances. To share actual results, the solver was
developed to run on available Nvidia CUDA hardware.
The underlying algorithm, however, does not rely on any
platform specific features, and thus may very
straightforwardly be brought to any other SIMT platform
as well. Our central goal was not to present the next high
end SAT solver, but rather to determine what massive
parallelism might actually be able to bring to the table of
SAT solving. The solver offers various degrees of
freedom to easily allow for further experimentation and
expansion of the framework - all within a comfortable
desktop environment, without the need of a large
computer cluster setup to which the solver might be
brought on a later stage.

REFERENCES

[1] ©O.Bonorden. “Load balancing in the bulk-synchronous-
parallel setting using process migrations”. In Proc. 21st
Int. Parallel and Distributed Processing (IPDPS), pages
1-9, 2007.

[2] W. Chrabakh and R. Wolski. “GrADSAT: A Parallel SAT
Solver for the Grid”. Technical Report 2003-05, UCSB,
Mar. 2003.

[3] W. Chrabakh and R. Wolski. “GridSAT: A system for
satisfiability problems using a computational grid”.
Parallel Computing, 32:660-687, 2006.

[4] S. A. Cook. “The complexity of theorem-proving
procedures”. In Proc. 3@ ACM Symp. On Theory of
Computing (STOC), pages 151-158, 1971.

[5] M. Davis, G. Logemann and D. Loveland. “A machine
program for theorem proving”. Commun. ACM, 5(7):394-
397, 1962.

[6] M. Davis and H. Putnam. “A computing procedure for
quantification theory”. J. ACM, 7:201-215, 1960.

[71 N. Eén and N. Sérensson. “An extensible SAT-solver”. In
Proc. SAT 2003, pages 502-518, 2003.

[8] S.L.Formanand A. M. Segre. “NAGSAT: A randomized,
complete, parallel solver for 3-SAT”. In Proc. SAT 2002,
pages 236-243, 2002.

[91 M. R. Garey and D. S. Johnson, COMPUTERS AND
INTRACTIBILITY — A GUIDE TO THE THEORY OF
NP-COMPLETENESS. Freeman, New York, 1979.

[10] Y. Hamadi and S. Jabbour. “ManySAT: A parallel SAT
solver”. Journal on Satisfiability, Boolean Modelling and
Computation, 6:245-262, 20009.

[11] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A.
Davidson. “CUDPP: Cuda data parallel primitives library”.
http://www.gpgpu.org/developer/cudpp/, 2008.

[12] H. H. Hoos and T. Stiitzle. “SATLIB: An online resource
for research on SAT”. In Proc. SAT 2000, pages 283-292,
2002.

[13]1J. Hromkovi¢. ALGORITHMICS FOR HARD
PROBLEMS. Springer, 2001.

[14] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym.
“NVIDIA Tesla: A unified graphics and computation
architecture”. IEEE Micro, 28(2):39-55, 2008.

[15] Y. S. Mahajan, Z. Fu, and S. Malik. “Zchaff2004: An
efficient SAT solver”. In Proc. SAT 2004 (Selected
Papers), pages 360-375, 2004.

[16] J. P. Marques-Silva and K. A. Sakallah. “GRASP: A
search algorithm for propositional satisfiability”. IEEE
Trans. Comput., 48:506-521, 1999.

[17] B. Monien and E. Speckenmeyer. “Solving Satisfiability
in less than 2" steps”. Discrete Applied Mathematics,
10:287-295, 1985.

[18] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. “Chaff: Engineering an efficient SAT
solver”. In Proc. 38" Design Automation Conference
(DAC), pages 530-535, 2001.

[19] NVIDIA, “Next generation CUDA compute architecture,
code named Fermi”. http://www.nvidia.com/object/fermi
architecture.html, 2009.

[20] H. Zhang. “SATO: An efficient propositional prover”. In
Proc. Int. Conf. on Automated Deduction (CADE-97),
pages 272-275, 1997.

[21] H. Zhang, M. P. Bonacina, and J. Hsiang. “PSATO: A
distributed propositional prover and its application to
quasigroup problems”. Journal of Symbolic Computation,
21:543-560, 1996.

