

3-SAT on CUDA: Towards a Massively Parallel SAT Solver

Quirin Meyer, Fabian Schönfeld, Marc Stamminger, Rolf Wanka

Department of Computer Science, University of Erlangen-Nuremberg, Germany

{quirin.meyer | marc.stamminger | rwanka}@cs.fau.de

fabian.schoenfeld@gmx.net

ABSTRACT

This work presents the design and implementation of a

massively parallel 3-SAT solver, specifically targeting

random problem instances. Our approach is deterministic

and features very little communication overhead and

basically no load-balancing cost at all. In the context of

most current parallel SAT solvers running only on a

handful of cores, we implemented our solver on Nvidia's

CUDA platform, utilizing more than 200 parallel

streaming processors, and employing several millions of

threads to work through single problem instances. As

most common sequential solver techniques had to be

discarded, our approach is additionally supported by a

new set of global heuristics, designed specifically to be

easily exploited by the underlying thread parallelism.

KEYWORDS: GPGPU, thread level parallelism, load

balancing and sharing, random 3-SAT.

1. INTRODUCTION

As parallel resources are becoming increasingly cheap to

acquire, more and more established algorithms are being

revised to take advantage of this, in order to boost their

performance and/or gain new insights into the inner

workings of long known problems. Together with the

field of high performance computing, the realm of

compute intensive algorithms is trying to make the most

of this. Here many NP-complete problems are being

investigated [9], with one of the most discussed being

Boolean Satisfiability (SAT). It was the first problem to

be proven NP-complete [4] and subject to different

solving approaches for almost fifty years by now. It is

studied intensively by theoreticians due to its proximity to

a whole different class of problems (as 2-SAT is merely

P-complete) and arguably being the most bare-bones NP-

complete problem. In practice the problem retains its

relevance by still occurring in many applications of

current interest like theorem proving, FPGA routing, and

Electronic Design Automation.

1.1. Previous Work: The Parallel Track

Most current high end SAT solvers are still sequential

algorithms [7], [15], [16] based on extending the classic

Davis-Putnam-Logemann-Loveland (DPLL) procedure

[5], [6], by incorporating additional state data collected

over the course of a sequential solving run. In recent years

several successful parallel solvers have emerged,

establishing a new “parallel track” in annual SAT

competitions in 2008. This newer generation of solvers,

however, is still mainly based on the core DPLL

framework and the techniques developed for their

sequential predecessors. PSATO [21] and Gradsat [2], [3]

are two examples for high end parallel solvers, which

consist of bringing their sequential counterparts ([20] and

[15]) to a parallel platform. As with Nagsat [8], they are

based on a master-slave approach, where the master runs

a modified DPLL procedure and distributes sub-problems

to the available parallel nodes - which again run their

version of the DPLL algorithm. The current state of the

art is represented by the portfolio-based ManySAT [10]:

Its parallel approach consists of running several different

(and carefully calibrated) sequential solvers in parallel,

returning the first result obtained by any one of them.

As can be seen, the current parallel track is still mainly

based on the advancements made during developing

sequential solvers. The execution itself is either done on

just a few local cores (34 for Gradsat, 29 for PSATO) or

small scale grids with high communication costs and a

comparatively small set of largely independent processing

units. All their design decisions are of course validated by

their success. The question for massive parallelism in

SAT solving, however, still remains largely unanswered.

1.2. Enter GPGPU

While current parallel solvers are primarily implemented

to run on computer clusters, an alternative test bed is

provided by GPGPU: General Purpose computing on

Graphics Processing Units. As a lot of graphical tasks are

inherently parallel, graphics hardware is designed to

efficiently handle computations concurrently. GPGPU is

the idea of utilizing this processing power to solve

problems unrelated to computer graphics. In late 2006,

Nvidia introduced its CUDA API [14], which allows for

direct access to a CUDA enabled graphics card’s parallel

hardware, and thereby supplies developers with a highly

efficient co-processor to handle specific workloads.

2. A PARALLEL CUDA SAT SOLVER

Since its introduction, CUDA is continuously developed

further, with its latest incarnation being manifested in the

Fermi chipset announced for 2010 [19]. CUDA offers

massive thread parallelism without the need for an

expensive computer cluster setup, and allows for the

concurrent execution of hundreds of thousands of

lightweight threads, running on several hundreds of

CUDA streaming processors (around 200 on current

graphics cards and 512 on Fermi). A batch of 32 threads

is bundled within a so called warp, which denotes the

amount of threads actually being physically executed in

parallel on a single processor. On a larger scale, threads

are part of a CUDA thread block, which denotes a bundle

of threads operating on a set amount of shared memory.

The parallel paradigm for CUDA is a block-wide SIMD

model. That is, all threads of the same block are required

to execute the same instruction, while different blocks

may execute different functions. The execution of a

function on the hardware itself is organized in so called

CUDA kernels. A kernel simply denotes a procedure

running on the graphics card - the device. Each kernel is

invoked by the host, i.e., the computer containing the

device, and operates on a grid of CUDA thread blocks,

which is also defined by the host.

Besides its parallel architecture, the most defining CUDA

aspects for our work are the constraints of the platform,

primarily the limiting amount of on-chip memory. In

essence, two distinct disadvantages present themselves:

First, with the vast number of threads running in parallel,

the remaining available space for additional state data per

single thread becomes very limited. Essentially all

modern SAT solver frameworks are used to employing

quite a large amount of such state data, while dealing with

a single “current” formula (like implication graphs,

databases of learned clauses, and so on). Our massively

parallel solver, however, deals with thousands of search

paths at once, and the hardware simply does not provide

the memory resources which would allow the same

amount of state data per search path.

The second memory induced issue is much more

straightforward: Less space means shorter formulas. Note

that current generation SAT solvers often do not even use

the term “formula” when addressing a problem instance,

but rather refer to it as “clause database”, due to the

impressive length of formulas current solvers are able to

deal with. Not so with limited CUDA resources, however,

which results in compatible CUDA solver formulas being

of a much more compact format.

Luckily, both of these memory issues push our solver in

the same direction: random 3-SAT instances. Current

solver advances allow for industrial problems containing

more than hundreds of thousands of clauses and variables

to be solved in mere minutes, due to the inherent and

exploitable structures encoded within such instances.

Purely random SAT instances, however, lack such

internal structure, and consequently state hard problems

via much smaller formulas. Furthermore, it has been

discovered that modern indispensible solver techniques

such as clause learning and complex state dependent

heuristics, like conflict graphs, often degenerate to brute-

force style rules when handling chaotic random instances

- for example by regularly backtracking to the last

decision made, instead of some more meaningful

decisions higher up in the search tree. Consequently,

parallel SAT solving seems to be well suited to handling

random instances, as their smaller size reduces the

amount of memory required to handle them, and common

memory intensive techniques are additionally not

guaranteed to deliver the same performance boosts as they

do in the case of industrial (i.e., structured) problems -

and may thus be discarded without impacting the overall

solver too much.

2.1. The Base Algorithm

The D&C-3SAT algorithm parallelized and brought to

CUDA in this work employs a divide-and-conquer

approach for solving 3-SAT instances, as is depicted by

Algorithm 1. It takes a formula f in Conjunctive Normal

Form (CNF) over n Boolean variables and r clauses, with

each clause consisting of at most three literals (the CNF

format denotes a conjunction of clauses, with each clause

being a disjunction of literals). The algorithm is described

in detail in [13] and is a simplified version of the

algorithm presented in [17]. Besides providing a

framework suitable to be easily parallelized, the algorithm

also reduces the worst-case time complexity from O(r • 2
n
)

(the brute force approach) to O(r • 1.84
n
) [14, pp. 171ff].

The core idea of this approach is to exploit the fact that all

possibilities to satisfy any given clause can be broken

down to three different cases: Initially, the first literal is

set to true, which either contributes to solving the formula

or the subsequent recursion returns a contradiction. In the

latter case, setting the first literal to true obviously did not

work, and thus the corresponding variable is set to falsify

the literal. In order to satisfy the clause now, the second

literal is set to true, and the process is repeated. In case

this again leads to a conflict, the final, third approach is

taken by setting the first two literals to false and only the

last one to true.

Algorithm 1: Divide & Conquer SAT Solver

 Data: Formula f in CNF

1 if length(f) < limit then return brute_force_solve(f);

2 Clause c ← pick_random_clause(f);

3 // Note: c consists at most of literals lita, litb, litc;

4 if literals_contained_in(c) equals 1 then

5 Formula f1←apply(f, lita=true);

6 return D&C-3SAT(f1);

7 end

8 if literals_contained_in(c) equals 2 then

10 Formula f1←apply(f, lita=true);

11 Formula f2←apply(f, lita=false, litb=true);

12 return D&C-3SAT(f1) OR D&C-3SAT(f2);

13 end

14 if literals_contained_in(c) equals 3 then

15 Formula f1←apply(f, lita=true);

16 Formula f2←apply(f, lita=false, litb=true);

17 Formula f3←apply(f, lita=false, litb=false, litc=true);

18 return D&C-3SAT(f1) OR D&C-3SAT(f2)

OR D&C-3SAT(f3);

19 end

Thus, in every step of the recursion some clause is

selected, and - depending on the number of literals it

carries - the search expands in up to three new directions,

following all possibilities to satisfy the chosen clause. The

recursion is terminated as soon as a sub-formula drops

below some clause limit and is solved by a brute-force

solver, or the applied decisions satisfy all remaining

clauses on their own. This algorithm has already been

implemented and experimentally evaluated on a

workstation cluster in order to demonstrate process

migration techniques [1]. Due to the used platform and

the different focus of research, the running times are far

from the results obtained on our GPU.

2.1. Adapting the Procedure for Parallelism

During the parallelization of the sequential divide-and-

conquer algorithm, two central elements of the procedure

were altered, in order to better suit it to the underlying

CUDA platform. First, the brute-force solver cutting off

the recursion before it arrives at empty formulas was

completely discarded. Second, the original decision

heuristic to choose the next clause to be satisfied is

replaced by a much simpler rule: Always choose the first

clause. Both of these changes went through several

iterations over the course of development, with the

following findings leading to the current version of the

procedure:

First, the brute-force solver breaks a pure SIMD paradigm,

as most streaming processors are typically occupied with

processing sub-formulas, and only a few would actually

execute the brute-force solver. This alone would not be a

big issue in itself, as it was already mentioned that

different CUDA thread blocks may handle different tasks

without seriously impacting the overall performance.

However, in contrast to the default formula simplification,

brute-force solving requires a certain amount of block-

wide shared memory. Again, this fact alone is not an issue.

In combination with the fact that most blocks do not

execute the brute-force solver, however, this results in

every block requiring the guarantee that this amount of

shared memory is available, even though it mostly will

not be used at all. On CUDA, this means the allocation of

additional shared memory resources before the respective

kernel even starts, which seriously impacts performance

and is mostly not even required. Consequently the brute-

force solver was discarded from the overall procedure, as

its benefits did not outweigh its maintenance costs.

Second, the solver's decision heuristic. Simply choosing

the first clause offers - at first - basically only a single

advantage: It is really cheap. On the other side, there are a

lot of arguments against it: Essentially every state-of-the-

art solver employs complex decision heuristics and in

doing so, benefits from partly huge performance

improvements. However, the key word hereby is complex,

which in our SIMD approach with hundreds of thousands

of search paths running in parallel is just not feasible, as

the required memory resources per formula are simply not

available. Nevertheless, a multitude of different

approaches was tested - among others, an additional

heuristic kernel, employing a scoring system similar to

the common VSIDS (Variable State Independent

Decaying Sum) [18] heuristic - with the somewhat

surprising result that it did not pay off at all to try and

make good local decisions (i.e., per search path). Instead,

a second heuristic was introduced, to complement the

first-clause rule: Before actually solving an instance, it is

first reorganized in order to sort its clauses by relevance.

A clause is considered to be more “relevant” than another,

if it contains a set of more often occurring variables. This

order is preserved in every sub formula created during the

following solving process, and we thus gain the property

that the first clause of every formula being processed

automatically denotes the globally recommended decision

clause.

2.2. The Parallelization

The central approach of the parallelization it to avoid the

consecutive execution of the recursive calls in the

sequential version, by executing all (up to) three calls in

parallel. Thus each input formula may spawn three new

search paths, and consequently the amount of managed

formulas triples during every step in the worst case. In

order to deal with this, an additional swapping mechanism

is introduced, which keeps the amount of formulas

residing on the device on a near constant level. Swapping

occurs after a batch of formulas has been processed by the

device, and either transfers a formula surplus back to the

host, or supplies the device with previously swapped out

formulas in case too many of the newly created formulas

feature contradictions and are discarded. The overall

implementation may hence be designated a master-slave

approach, as the slave/device iteratively processes

formula batches which are continuously refilled by the

master/host.

As this means that every step of the solver loop includes

the transfer of quite some data between host and device,

all data is being bit-encoded to reduce the resulting traffic

costs. A single search path consists thereby of its (partial)

variable assignment, and the actual formula resulting from

applying this assignment to the original problem instance.

The bit encoding allows one 32 bit integer to store a

complete clause, and two bits per variable (while one bit

is enough to encode true/false assignments, two bits allow

for additional states such as unknown and error).

To access all this data, we employ a “read once, write

once” strategy. Usually in CUDA programming, threads

read their workload from global memory into shared

memory, execute their function, and write the result back

to global memory. The locality of our approach, however,

allows for the circumvention of the shared memory

entirely: Threads do not need to communicate with each

other, and only work on a single clause at the same time.

This clause is encoded within a single integer, and

therefore is loaded once from global memory into a

register. There it is being operated on as a temporary

variable and immediately written back to global memory.

Due to our development on the GT200 platform, we are

able to benefit from relaxed rules for coalesced memory

access, which allows for this strategy to be handled

efficiently by the underlying CUDA hardware, and thus to

actually improve the solving procedure.

Note that while single threads handle single clauses, a

complete formula is not being processed by a single

thread, but by a set of 32 threads, i.e., a warp. By issuing

a single warp to handle a single formula, we can operate

on the formula in parallel without any need for additional

costly synchronization between the threads, since warps

are guaranteed to be physically executed in parallel on the

device. Therefore, our kernels operate on a CUDA grid

comprised of thread blocks containing 192 threads, which

split up into 2 • 3 warps. Three warps at a time access the

same input formula and produce a unique output formula.

Thus a single block reads two input formulas and employs

six warps to produce six different output formulas.

In order actually start the solving process, an additional

pre-process kernel is invoked. This kernel takes the initial

problem instance and optimistically applies every

assignment permutation of the x most occurring variables.

The value of x is chosen to immediately obtain a

completely filled formula batch, thus avoiding a partially

idle startup phase on the device. This initial batch is then

being fed to the actual solving mechanism - the kernel

pipeline.

2.3. The Kernel Pipeline

The kernel pipeline denotes a series of kernels which are

successively applied to the formula batch currently

residing on the device. Each of these kernels performs a

single operation of the overall solver loop. After being

processed by the kernel pipeline once, a single step of the

divide-and-conquer recursion has been applied to a

formula batch containing n formulas. Furthermore, all

thereby newly created 3 • n formulas have been checked

for contradictions and validity, and the next formula batch

has been constructed from all remaining valid formulas.

More specifically, the kernel pipeline executes the

following steps:

 SAT Rules: Triple the number of formulas within the

batch by applying new assignments to each formula

according to the rules of Algorithm 1.

 1D Prefix Scan: Scan all formulas for validity, in

order to discard any conflicting search paths marked

by the previous SAT kernel.

 Copy: Use the prefix scan result to condense all valid

formulas into a new, compact formula batch.

 2D Prefix Scan: Scan all remaining formulas, in

order to discard any nullified clauses.

 Defragmentation: Use the 2D prefix scan result to

rearrange all remaining valid formulas in order to

form continuous formula strings without nullified

clauses mixed in between.

 Swapping: Adjust the size of the new batch by either

trimming or reinforcing the amount of contained

formulas. (Note that this is a host-side action and thus

not actually performed by a CUDA kernel. It is

included as a part of this list for the sake of

convenience only.)

Figure 1. The Kernel Pipeline

A complete overview of the kernel pipeline is provided by

Figure 1, where for each step the state of the active

formula batch is shown before entering and after leaving

the respective CUDA kernel. One row within the batch

corresponds to a single formula and each formula consists

in turn of several blocks representing the formula’s

various clauses. A filled block denotes a valid clause,

while an empty block depicts either an invalid clause or a

clause slot which is no longer in use. As can be seen, the

initial formula is taken by the preprocess kernel, which

generates the first actual formula batch. When creating

new formulas, any involved thread may set a flag to

notify its warp that the currently processed formula is

invalid. These flags are then checked by the following

kernel, which employs the CUDPP library [11] to run a

parallel prefix scan over all the flags of the active formula

batch. The result of this scan is subsequently used in the

following kernel, which collects all valid formulas into a

new formula batch. Such newly created formulas,

however, are still littered with nullified clauses, resulting

from the last decisions being applied. To pack these

clauses tightly together in order to form uninterrupted

formula strings again, CUDPP is employed once more to

run a 2D prefix scan over all formulas and their respective

clauses. The result of this scan is then used by a

defragmentation kernel which compresses all valid

formulas by reordering their clauses and thus regaining

continuous formula sequences.

The final step consists of checking the actual size of the

newly formed formula batch, and invoking the swapping

mechanism if necessary: In case enough formulas were

produced to overwhelm the hardware during the next

expansion, some of those formulas are being swapped

back to the host. In contrast, if most of the newly created

formulas turned out to be invalid and thus had to be

discarded, the host swaps previously stored formulas back

to the device, in order to resupply the now lacking

formula batch. Are no formulas left to swap back in, the

search space has been exhausted and the formula is not

satisfiable. Note that swapping is not explicitly depicted

in Figure 1, as it is not performed by a CUDA kernel on

the device, but by the host itself.

As can be seen, most steps of the kernel pipeline merely

rearrange formula data to generate the solid formula

batches being processed by the SAT kernel. This kernel is

where most of the actual solver work is being done:

Variable decisions are being applied, and new formulas

are generated. It is executed right after the swapping

mechanism has adjusted the new batch size, and will be

explained in more detail, as it is the essential kernel of the

overall solver:

As its first step, each warp determines its own workload,

i.e., which of the formulas contained in the current batch

the warp is supposed to process, which route of the core

recursion it has to follow, and where the actual result

should be stored. New formulas are then being generated

by taking the first clause of the input formula and

applying the assignments denoted by the core recursion.

To this end, each warp employs its threads to iterate the

clauses of its input formula and to work through the

following set of solver rules:

 Subsumption: Discard any clause containing a

decision literal.

 Resolution: Discard any occurrence of a negated

decision literal in all clauses.

 Conflicts: In case any clause of the formula contains

only a negated decision literal, mark the overall

(output) formula as invalid.

Note that it is not always possible for every warp to create

a new formula: If the decision clause contains less than

three literals, the solver is unable to expand the respective

input formula into three new output formulas. In this case,

the respective warp acknowledges its missing purpose and

shuts itself down. On the CUDA side, the streaming

processor executing this warp is then immediately being

tasked with the execution of one of the remaining warps

by the CUDA scheduler. Accordingly, as long as the

solver provides enough work for the device, the streaming

processors can simply be flooded with work and the

device will operate at around its full capacity. Thus, no

additional load balancing mechanism is necessary, as all

tasks are distributed to the available processors

automatically be the running CUDA scheduler.

Once all warps are done, the resulting fragmented batch

of clauses is then being fed back into the kernel pipeline.

This loop continues until an empty formula is created -

and the formula thus was satisfied - or all available search

paths have been exhausted. In both cases, the program

terminates and reports the obtained result.

In Out In

prefix

scan over
valid

formulas

In Out

In

prefix

scan over
non-empty

clauses

In Out In Out

1D Prefix Scan Copy Kernel

2D Prefix Scan Defrag Kernel SAT Kernel

Pre-Processing

As can be seen, the overall procedure is deterministic. It

might not be known in what order the formulas of a batch

will be processed, but all decisions being made are known

beforehand and are not dependent on any random

scheduling behavior. The only randomness that might

occur (and has been confirmed in experiments) takes

place when the solver produces two or more solutions in

the same step. In this case, it cannot be guaranteed which

warp will succeed in constituting its own solution as the

solver’s final one.

3. RESULTS

When presenting the outcome of implementing our

massively parallel solver, two central aspects are

considered: First, the results delivered by the actual

solving of SAT instances, and second an evaluation of the

algorithm's parallelization in general and on CUDA

hardware.

The benchmark problems used to evaluate our solver were

taken from the open Satisfiability Library [12]. As it was

the primary goal to achieve a successful parallelization,

we chose a set of comparatively small problems, in order

to be able to quickly experiment with small scale

modifications and parameter variations. The set consists

of 100 random instances, all known to be satisfiable and

containing 75 variables and 325 clauses - resulting in a

clauses-to-variables ratio of 4.33, slightly above the

known threshold for problem hardness.

Figure 2 presents the results of solving the complete input

set on two different CUDA graphics cards, specifically a

GeForce GTX 285 (blue/dotted line) and a GeForce GTX

260 (red/plain line). While the x-axis depicts the number

of solved instances, the y-axis denotes the accumulated

amount of time needed to solve this number of instances

in seconds. Both cards utilize (among other things) a

different number of parallel streaming processors (240 on

the GTX 285 and 216 on the GTX 260), which - besides a

more complex SLI setup - is basically the only way to

check CUDA algorithms for processor scaling.

Figure 3 is laid out the same way, and depicts the results

of solving the same instance set on the GTX 285 alone,

while using three variations of the central solver

parameter. This parameter denotes the amount of

formulas handled concurrently, and is limited by the

number of formulas the graphics card is able to store at

the same time. Note that the fastest configuration is

actually not the one using the most memory resources, as

the continuous formula transfer from host to device

eventually begins to slow down the overall solving

process.

Figure 2. Solving the SATLIB 75-325 Set

Figure 3. Adjusting the Batch Size

Figure 4. Decision Heuristic Impact

Figure 4 shows the impact of our two complementary

decision heuristics (sorting by “relevance” and always

choosing the first clause). Again the same set of 100

formulas is being solved on the GTX 285 card, once with

the un-altered formulas (blue/dotted line), and once with

all formula clauses sorted by relevance (red/plain line).

Note that the y-axis of this figure denotes not seconds, but

minutes.

Adhering to the SIMT paradigm, the parallelization itself

depends on a massive number of threads flooding the

parallel hardware with work, and thereby trying to never

leave one of the processors idle and waiting for something

to do. Furthermore, the parallelization is designed to

break up into individual threads in the last possible

moment (i.e., when it comes to actually iterating a

formula's clauses), and thereby minimizing divergence

within the executed warps. In order to evaluate how

successful such goals are being accomplished, CUDA

0

10

20

30

40

50

60

1 100

240 cores

216 cores

0

5

10

15

20

25

30

35

40

45

50

1 100

#4096

#8192

#16384

0

8

17

25

33

42

50

1 100

random

sorted

provides a profiling tool which employs a wide range of

counters to help evaluate the successful use of the utilized

CUDA hardware. Table 1 shortly summarizes the overall

useful activity of a streaming processor during the

execution of our solver.

Table 1. Profiler Results

CUDA Kernel Occupancy Instruction Throughput

SAT Kernel

Copy Kernel

Defrag Kernel

0.75

0.94

0.94

1.00

0.58

0.91

3.1. Discussion

The main issue with our approach lies where sequential

algorithms gain most of their performance: Collect

various amounts of state data while solving, feed this data

to a set of complex heuristics, and use the resulting advice

to make smart decisions which lead to some ingenious

route through a gigantic SAT search space. Our

framework, however, does not allow for such costly

mechanisms per followed path, as the required resources

are not available on CUDA. While being a clear

disadvantage, this also forced the development to

primarily focus on actual parallelism to organize and

speed up the solving process. Consequently, we had to re-

think, and often discard, common sequential solving

techniques, in order to fully take advantage of the parallel

CUDA processing power, and exploit the highest level of

thread parallelism possible. Accordingly, the hereby

presented solver framework should not be viewed as a

finished product, but rather as an initial stepping stone

towards a competitive parallel SAT solver.

As such, there is no comparison chart with contemporary

sequential solvers. They are built on a highly advanced

DPLL framework and trump our solver by magnitudes.

Although we were able to gain several performance

boosts during the development of our framework, there is

simply no competition worth speaking of. Furthermore,

the most useful comparison with another solver would be

a different massively parallel solver on a multicore

platform, in order to determine the success of alternative

solving approaches in this setting. However, to our

knowledge, there are none such solvers currently

available.

4. FUTURE WORK

In its current version, our solver framework offers three

specific degrees of freedom where new heuristics may be

applied, in order to improve our decision making: First,

when swapping formulas (in or out), it has to be decided

which ones are moved. Second, the process to determine

the next decision clause may be further worked on, as it is

the most relevant aspect of how the search is organized.

Third, the order by which newly generated formulas are

being organized when forming a new formula batch might

be reworked, in order to complement the currently

employed swapping strategy. While we already propose

solutions for all of these - and were able to produce some

interesting results - our implemented techniques are not

comparable with the level of sophistication commonly

found in state-of-the-art sequential solvers.

Besides new heuristics, it also might pay off to remodel

some of the internal framework. Specifically, we have

observed that our solver is able to process an impressive

number of formulas - around 5.5 million per second on

average on the GTX 260 - and at the same time

(predictably) being slowed down by costly memory

transfers. Accordingly, it might be beneficial to further

reduce said transfer costs by not modeling a single search

patch by partial assignment and the respective sub-

formula, but instead only the partial assignment. In order

to still be able to detect conflicts, formulas would then

have to be constructed on demand. While this would

drastically reduce the amount to be transferred per solver

loop iteration, it would require the allocation of enough

shared memory resources to store such temporarily

generated formulas, and the additional computational

overhead of actually handling them.

Furthermore, note that the solver might also very easily be

expanded to run on more than just a single CUDA card:

In order to be executed on n cards, the pre-processing

kernel simply needs to generate an initial batch of n times

the size a single card is able to handle. This batch is then

split up, and distributed to all n available graphics cards.

4.1. Perspective for Massive parallelism

It is probably safe to say that parallel platforms will

continue their successful rise. Therefore, it seems only a

matter of time until state of the art solvers incorporate the

use of massively parallel hardware, and routinely involve

techniques depending on the advantages offered by such

platforms. This paper does not present such a solver. We

would like to think, however, that this paper presents

some groundwork, from which such a solver may be built

in the near future.

How this may actually proceed, however, is still open to

debate. With the development of high end sequential

solvers, we see the careful guiding of a single search path

on one side of a spectrum, with massive parallelism and

millions of concurrent - but largely unguided - searches

residing at the opposite end. While solvers like ManySAT

move from the single path end to the parallel side, we

started at the purely parallel side and slowly developed

onwards to the more guided side of the spectrum. It will

probably be interesting to see what kinds of solver emerge

once these two paths meet in the middle, at what point of

the spectrum the most successful solver will be found, and

what part may be handled most effectively by actual

parallelism within an overall solver framework.

Consequently, there may be two basic approaches when

further developing parallel solvers: Either expanding

parallelism in hybrid solvers - the common contemporary

approach - or finding some way to employ known

successful techniques from the sequential toolbox within

a resource-scarce parallel environment.

5. CONCLUSION

In this paper, we presented a SIMT 3-SAT solver

framework, which discards most common solver

techniques introduced by sequential solvers, and instead

solely relies on massive thread parallelism to solve

problem instances. To share actual results, the solver was

developed to run on available Nvidia CUDA hardware.

The underlying algorithm, however, does not rely on any

platform specific features, and thus may very

straightforwardly be brought to any other SIMT platform

as well. Our central goal was not to present the next high

end SAT solver, but rather to determine what massive

parallelism might actually be able to bring to the table of

SAT solving. The solver offers various degrees of

freedom to easily allow for further experimentation and

expansion of the framework - all within a comfortable

desktop environment, without the need of a large

computer cluster setup to which the solver might be

brought on a later stage.

REFERENCES

[1] O.Bonorden. “Load balancing in the bulk-synchronous-

parallel setting using process migrations”. In Proc. 21st

Int. Parallel and Distributed Processing (IPDPS), pages

1–9, 2007.

[2] W. Chrabakh and R. Wolski. “GrADSAT: A Parallel SAT

Solver for the Grid”. Technical Report 2003-05, UCSB,

Mar. 2003.

[3] W. Chrabakh and R. Wolski. “GridSAT: A system for

satisfiability problems using a computational grid”.

Parallel Computing, 32:660-687, 2006.

[4] S. A. Cook. “The complexity of theorem-proving

procedures”. In Proc. 3rd ACM Symp. On Theory of

Computing (STOC), pages 151-158, 1971.

[5] M. Davis, G. Logemann and D. Loveland. “A machine

program for theorem proving”. Commun. ACM, 5(7):394-

397, 1962.

[6] M. Davis and H. Putnam. “A computing procedure for

quantification theory”. J. ACM, 7:201-215, 1960.

[7] N. Eén and N. Sörensson. “An extensible SAT-solver”. In

Proc. SAT 2003, pages 502-518, 2003.

[8] S. L. Forman and A. M. Segre. “NAGSAT: A randomized,

complete, parallel solver for 3-SAT”. In Proc. SAT 2002,

pages 236-243, 2002.

[9] M. R. Garey and D. S. Johnson, COMPUTERS AND

INTRACTIBILITY – A GUIDE TO THE THEORY OF

NP-COMPLETENESS. Freeman, New York, 1979.

[10] Y. Hamadi and S. Jabbour. “ManySAT: A parallel SAT

solver”. Journal on Satisfiability, Boolean Modelling and

Computation, 6:245-262, 2009.

[11] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A.

Davidson. “CUDPP: Cuda data parallel primitives library”.

http://www.gpgpu.org/developer/cudpp/, 2008.

[12] H. H. Hoos and T. Stützle. “SATLIB: An online resource

for research on SAT”. In Proc. SAT 2000, pages 283-292,

2002.

[13] J. Hromkoviḉ. ALGORITHMICS FOR HARD

PROBLEMS. Springer, 2001.

[14] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym.

“NVIDIA Tesla: A unified graphics and computation

architecture”. IEEE Micro, 28(2):39-55, 2008.

[15] Y. S. Mahajan, Z. Fu, and S. Malik. “Zchaff2004: An

efficient SAT solver”. In Proc. SAT 2004 (Selected

Papers), pages 360-375, 2004.

[16] J. P. Marques-Silva and K. A. Sakallah. “GRASP: A

search algorithm for propositional satisfiability”. IEEE

Trans. Comput., 48:506-521, 1999.

[17] B. Monien and E. Speckenmeyer. “Solving Satisfiability

in less than 2n steps”. Discrete Applied Mathematics,

10:287-295, 1985.

[18] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,

and S. Malik. “Chaff: Engineering an efficient SAT

solver”. In Proc. 38th Design Automation Conference

(DAC), pages 530-535, 2001.

[19] NVIDIA, “Next generation CUDA compute architecture,

code named Fermi”. http://www.nvidia.com/object/fermi

architecture.html, 2009.

[20] H. Zhang. “SATO: An efficient propositional prover”. In

Proc. Int. Conf. on Automated Deduction (CADE-97),

pages 272-275, 1997.

[21] H. Zhang, M. P. Bonacina, and J. Hsiang. “PSATO: A

distributed propositional prover and its application to

quasigroup problems”. Journal of Symbolic Computation,

21:543-560, 1996.

