Multiresolution Attributes for Tessellated Meshes

Henry Schéfer Magdalena Prus

Quirin Meyer
University of Erlangen-Nuremberg

Jochen Siimuth Marc Stamminger

Figure 1: Reproducing fine surface detail using our method for signal optimal displacement mapping. From left to right: Augustus model and
close- ups of the full resolution model (366 MB GPU memory, 19.3 ms rendering time), and our reconstructions with fitting errors €max = 0.1

(90 MB, 11.9 ms) and emax = 0.5 (28 MB, 3.7 ms), respectively.

Abstract

We present a novel representation for storing sub-triangle signals,
such as colors, normals, or displacements directly with the triangle
mesh. Signal samples are stored as guided by hardware-tessellation
patterns. Thus, we can directly render from our representation by
assigning signal samples to attributes of vertices generated by the
hardware tessellator.

Contrary to texture mapping, our approach does not require any at-
las generation, chartification, or uv-unwrapping. Thus, it does not
suffer from texture-related artifacts, such as discontinuities across
chart boundaries or distortion. Moreover, our approach allows spec-
ifying the optimal sampling rate adaptively on a per triangle basis,
resulting in significant memory savings for most signal types.

We propose a signal optimal approach for converting arbitrary sig-
nals, including existing assets with textures or mesh colors, into our
representation. Further, we provide efficient algorithms for mip-
mapping, bi- and tri-linear interpolation directly in our representa-
tion. Our approach is optimally suited for displacement mapping:
it automatically generates crack-free, view-dependent displacement
mapped models enabling continuous level-of-detail.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and tex-
ture; 1.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types;

Keywords: signal dependent storage, tessellation, displacement
mapping

© ACM, 2010.Thisis theauthor'sversionof thework. It is poster
hereby permissiorof ACM for your personalise.Not for redistri-
bution. The definitive versionof thework hasbeenpublishedn
theproceedings.

1 Introduction

The latest feature of graphics hardware is programmable tessella-
tion. Input geometry can be tessellated using a set of new shaders
that control tessellation depth and compute the new vertex posi-
tions. Hardware tessellation can be used to amplify geometry in
order to generate smooth curved surfaces or for displacement map-

ping.

One issue with hardware tessellation is the question how to deter-
mine the attributes for the newly generated vertices (vertex position
and normal, texture coordinates, color, displacement etc.). Depend-
ing on the attribute, three possibilities are used in practice: First,
attributes can simply be interpolated (e.g., texture coordinates).
Second, some attributes can be determined procedurally from the
barycentric coordinates (vertex positions and normals on paramet-
ric surface). Third, the attribute can be baked into a texture. In this
case, the attribute is typically not fetched per vertex and then inter-
polated by the rasterizer, but it is directly read from the texture in a
pixel shader. An important exception are displacement maps, from
which values must be fetched per vertex.

Storing the attributes in textures has a number of disadvantages:
first, a parameterization for the objects is needed, which requires
segmentation, unwrapping the segments, and puzzling the un-
wrapped segments to a texture atlas. Second, it is difficult to adapt
the texture resolution to the given signal, i.e., often large parts of a
texture contain only little information. Finally, displacement map-
ping exhibits artifacts: when displacement values are read per ver-
tex from a texture they are interpolated. Undersampling results
in well visible artifacts at the silhouette of objects, and when tes-
sellation factors are changing smoothly, the resulting mesh shows
swimming artifacts. Mip-mapping does not solve this problem well.
Another problem appears in connection with texture atlases: along
texture seams slight discontinuities may appear, which are hardly
visible for color textures, but result in cracks when using displace-
ment maps.

In this paper, we propose an alternative approach to generate at-
tributes for tessellated meshes. We store for each triangle the at-

sihyscha
Typewritten Text

sihyscha
Typewritten Text
© ACM, 2010. This is the author's version of the work. It is posted
here by permission of ACM for your personal use. Not for redistri-
bution. The definitive version of the work has been published in
the proceedings.

sihyscha
Typewritten Text

sihyscha
Typewritten Text

sihyscha
Typewritten Text

sihyscha
Typewritten Text

tribute values for the vertices generated by different tessellation fac-
tors in a simple list. Whenever the triangle is tessellated at runtime,
we directly fetch the optimized attribute values. Additionally, we
show how attribute values are interpolated and filtered.

We further show how attribute values are determined using a multi-
resolution fitting procedure. The resulting fitting error is used to
control tessellation factors in a level-of-detail fashion. Further-
more, for every triangle we adapt the maximum tessellation fac-
tor for which attribute values are stored. We thus easily adapt the
amount of stored data to the required detail of the signal.

Our approach can be used in any rendering application using tessel-
lation, for example for the rendering of animated subdivision sur-
faces. It assigns attributes to newly generated vertices with high
performance. Data resolution is signal-optimized, and the signal
is stored and reconstructed smoothly at multiple resolutions. Our
method requires no parameterization and is fully automatic.

A particular useful application is to replace a detailed mesh by a
coarse mesh and a displacement map, as shown in Figure 1. Be-
sides the dramatically reduced storage requirements for the index
buffer, we save a significant amount of memory by storing displace-
ment samples only where needed. At the same time we can control
the well-known undersampling and swimming artifacts, and com-
pletely avoid cracks along texture seams. By storing the attribute
values directly in lists without making a detour via a texture, we
reduce the number of stored samples and we assign attribute values
directly at the position they were optimized for.

2 Related Work

The ability to tessellate a coarse input mesh to generate massive
amount of geometry directly in the graphics pipeline is typically
used to generate smooth surfaces via subdivision methods [Niener
et al. 2012; Loop and Schaefer 2008; Loop et al. 2009] and to add
geometric detail via displacement mapping [Valdetaro et al. 2010;
Tatarchuk et al. 2010]. Since all primitives in the input mesh are
processed independently it is important to create consistent transi-
tions to prevent discontinuities, especially if different tessellation
factors are used between adjacent patches.

For displacement, problems appear when a texture atlas is used and
interpolated texture values differ slightly, either for displacement
normals or the displacement values (or both), resulting in shading
discontinuities or well perceivable cracks. Much research was spent
on this issue recently, either by precomputing transitions to stitch
discontinuities [Gonzélez and Patow 2009; Castafio 2008; Sander
et al. 2003] or by creating a parametrization with consistent chart
boundaries and orientation [Ray et al. 2011]; see Ni et al. [2009]
for a survey. Some methods prevent visible cracks by inserting
triangle strips to fill holes [Schwarz et al. 2006] or by creating a
consistent edge subdivison via incremental bisection of faces with
a lower subdivision [Pakdel and Samavati 2004].

Other approaches avoid texture atlas problems using alternative sig-
nal representations. Ptex [Burley and Lacewell 2008] uses per face
texturing by taking advantage of implicit parametrization of quad
patches. Mesh Colors [Yuksel et al. 2010] virtually subdivide the
mesh and use piecewise linear interpolation similar to vertex colors
to reconstruct color signals. Kavan et al. [2011] directly employs
vertex colors by computing optimal attributes at vertices to resem-
ble the input signal. Unfortunately, a pure vertex based represen-
tation is suited for low frequency signals only, since sub-triangle
detail cannot be represented that way. The hybrid signal adaptive
method proposed by Schifer et al. [2012] solves this problem by
combining vertex- and texture-based storage. They use optimal ver-
tex colors for interpolation by default and textures only on triangles

where vertex colors cannot reconstruct the input signal. Finally,
they smoothly blend between both representations.

3 Overview

In the following, we assume that a coarse base mesh is given that
is tessellated on-the-fly using hardware tessellation. One or sev-
eral signals are defined on this mesh, e.g., colors, displacements,
normals, or lighting data. The signals are defined on a finely tes-
sellated reference mesh, in a texture, or procedurally (e.g., lighting
or displacement of parametric surfaces). We propose to bake the
signal(s) into vertex attributes for the tessellated mesh, ideally at
multiple resolutions.

In order to avoid textures, which suffer from the previously men-
tioned shortcomings, we store the attribute values for vertices gen-
erated by tessellation in lists with each triangle. We do this for a
number of different tessellation factors, resulting in multiresolution
attributes (Section 4). Then, we perform a global fitting step to
compute attribute values that optimally resemble the given signal
for different tessellation factors. By controlling tessellation fac-
tors per face using a fitting error, we obtain a signal-adaptive rep-
resentation (Section 5). At render time, the attribute values for all
newly generated vertices are fetched — or interpolated — from our
data structure. We describe how the values can be extracted ef-
ficiently from our data structure and give details on filtering and
mip-mapping (Section 6).

4 Data Layout

Similarly to mesh colors [Yuksel et al. 2010], we store our data di-
rectly with the mesh. However, our subdivision scheme is guided
by the standardized pattern of the hardware tessellator, i.e., we store
all vertex attributes, that correspond exactly to the vertices gener-
ated by the tessellation unit, in a simple array.

To support adaptive tessellation, we use multiple attribute sets for
different tessellation factors. For example, we store the signal for
each power of two tesselation factor. Vertex attributes are stored
separately for vertices corresponding to corner, edge, and inner ver-
tices as depicted in Figure 2. Vertex attributes of shared edges and
corner vertices are stored only once resulting in a continuous signal
as long as the tessellation is consistent.

T=2=1
vertices v: -

edge vertices e:

face vertices f: I:l

Figure 2: Separate data storage for corner, edge, and face ver-
tices in their corresponding arrays v, e, and f shown for different
tessellation factors.

We store all attribute data in a global array and store for each face
the indices to the first attribute values of the face’s corner, edges,
and face vertices. For multiresolution attributes we make sure to
store data corresponding to one vertex, edge, or face for all of its

levels one after another. This allows us to use only one index per list
and to compute the offset to the next level on-the-fly. Additionally,
we store for each vertex an error measuring the maximal signal data
error occurring at a particular level.

After a face has been tessellated using a tessellation factor for which
we have an attribute array, we can simply copy our data to the at-
tributes of the vertices generated by the tessellator, and the inter-
polation will automatically be performed by the graphics hardware.
For intermediate tessellation factors we use filtering techniques that
will be described in Section 6.

5 Fitting

In a preprocessing step, we convert all signals, e.g., normal, colors,
and displacement maps, that are attached to the base mesh into a
representation such that the signal can later be reconstructed as ver-
tex attributes of the tessellated base mesh. Thereby, we determine
for each triangle the exact tessellation factor that is necessary to
accurately reproduce the input signal. This results in a signal opti-
mal representation, as within each triangle, we only store as much
data as needed in order to reconstruct the input signal up to a given
accuracy.

First, we convert the input signal into a discrete set of sample points
that lie on the base mesh as proposed by Schiifer et al. [2012]: For
each sample s; of the original signal — this may be a texel mid-
point, a mesh color, a stroke in an interactive painting application
or a sample taken from a continuous function — we compute the
barycentric coordinates w.r.t. the triangle ¢ that contains s;. Let
«;, Bi, i be the barycentric coordinates of the sample point s; w.r.t.
the corner vertices v;,0, v;,1, v;,2 of triangle ¢ and f(s;) the signal
at s;.

Since we store the signal as per-vertex attributes of a (tessellated)
mesh, the signal value f’(s;) at s; will later be a barycentric inter-
polation of the attribute values f; o, fi,1, fi,2 at the corner vertices
V4,0, Vi,1, Vs,2 of triangle ¢:

() = afio+ Bfi1 +fiz2 ¢))

To find the signal optimal vertex attribute representation of the input
signal, we need to estimate the function values f; at the mesh’s ver-
tices v; such that the average difference between the actual signal
values f(s;) and the interpolated signal value f’(s;) is minimized.
As shown by Schifer et al. [2012], a least-squares solution to this
problem can be efficiently found by solving a sparse Laplace-like
linear system.

For most signals, it will not be sufficient to store the signal only
at the vertices of the base mesh, since sub-triangle signal cannot
be represented this way. Therefore, we compute for each trian-
gle t;, whether the signal within the triangle is reconstructed ac-
curately enough by calculating the maximum deviation €; between
a function sample f(s;) and the corresponding linear interpolation

f'(s):
ei = maxabs(f'(s;) — f(s;)) ¥V s; € ti. 2)

If ; is smaller than a user defined threshold emay, the signal within
the triangle ¢; can be adequately represented by linear interpolation
and we consider triangle ¢; to be converged.

Then, we refine all triangles that are not yet converged by increas-
ing their tessellation factor (in practice, we increase the tessellation
factor from 2° to 2°*! as this allows us to compute a mip-map rep-
resentation of the signal). This refinement produces new vertices
inside the triangles, and thus, allows us to represent the input sig-
nal more faithfully as vertex attributes. We then repeat the fitting
process for the refined mesh.

To avoid discontinuities between triangles that require different tes-
sellation factors, we set the tessellation factor of each edge to the
maximum tessellation factor of its adjacent triangles. This ensures
that the result of the tessellation is always a crack-free triangle mesh
without T-junctions, thus guaranteeing that the signal is continuous
along edges. When fitting the vertex attributes of the refined tes-
sellation mesh, we need to take care that the signal within trian-
gles that have converged at an earlier level is not changed anymore,
as this could move the approximation error within these triangles
above the threshold emax again. Therefore, we lock all vertices that
belong to a converged triangle as shown in Figure 3. Vertices on
edges of locked triangles introduced by higher tessellation factors
of adjacent triangles are locked as well and the respective attributes
are linearly interpolated along the edge. We handle locked vertices
by treating them as fixed constraints within the system of linear
equations, i.e., we remove the corresponding rows from the system
matrix. This reduces memory requirements and improves fitting
speed, as usually only a fraction of the mesh’s vertices has to be
fitted at each level.

[.
[] fitatlevel 2

[] fitatlevel 1

Figure 3: Locking converged vertices during the proposed hierar-
chical fitting process. The pink triangles have converged at level
1. Therefore, their vertices (pink) are locked when fitting subse-
quent levels. The purple vertices on the edge between the pink and
the light blue triangle have been inserted to produce a crack-free
mesh. To ensure that the signal within the converged triangle is
not changed anymore, the attribute values at the purple points are
linearly interpolated between the vertex neighbors on the edge and
the purple vertices are locked as well.

The proposed fitting scheme offers two advantages: First, the sig-
nal is represented optimally, as for each triangle, we only store the
amount of data that is required to reconstruct the signal within the
triangle. A second advantage of our hierarchical fitting scheme
is that the intermediate fitting results provide signal optimal mip-
maps. When fitting a model up to the desired accuracy, we always
increase the tessellation factor of non-converged triangles by a fac-
tor of 2. Thus, by storing the intermediate fitting results, we obtain
a power-of-two mip-map representation that also approximates the
input signal in a least-squares sense.

6 Rendering

For rendering tessellated meshes, the graphics hardware provides
two programmable stages: the first one is the hull shader which
is used to control tessellation by choosing an output primitive type
and setting edge and face tessellation factors. Then, the mesh is tes-
sellated and the newly generated vertices are processed by a domain
shader where attributes can be assigned.

In the following we describe how attributes are assigned to tessel-
lated meshes using our storage scheme. We start with the simplest
case where tessellation factors exactly match factors for which we
have data available. In the next step we show how filtering meth-
ods are applied to support intermediate tessellation factors. Finally,
we show how adaptive tessellation is combined with our multi-
resolution storage scheme to achieve watertight meshes and smooth
transitions between stored levels.

6.1 Attribute Assignment

In order to assign attributes in the domain shader, a lookup into our
data structure is required. Unfortunately, the tessellation hardware
does not provide a unique index for the generated vertices, so we
have to derive the index from the barycentric coordinates (c, 3,7)
to perform the lookup. In the following we describe the index com-
putation for the triangle tessellation pattern, although the method
can easily be extended to quads (see results).

According to the tessellation specification, triangles are first subdi-
vided into |Tinner/2] concentric triangles, where Tinner is the inner
tessellation factor set in the hull shader. Then, the outer edges are
subdivided using the edge tessellation factors, whereas the edges
belonging to inner concentric triangles are subdivided according to
the inner tessellation factor.

Figure 4: Ring (left) and edge (right) indices computed from
barycentric coordinates.

This tessellation scheme allows us to compute a unique index from
barycentric coordinates. For a given fractional barycentric coordi-
nate we determine the corresponding concentric ring R, the edge £
on the ring and vertex index V' on the edge as shown in Figure 4
with:

R = round (%T}nner . bmin>7 (3)

where bmin is the minimum of (v, 3,). The edge index E can be
directly derived with:

0,0é = bmin
E={18=bm . @
2,’)’ = bmin

For the vertex index we project the coordinate and its correspond-
ing edge onto the outermost triangle in a barycentric manner. The
final vertex index then depends on the number of vertices on that
edge. Obviously, we have to distinguish between vertices on the
inner and outer edges of a triangle. Points inside the triangle al-
ways refer to the same tessellation factor Zinner, Whereas points on
the outermost concentric triangle refer to the edge tessellation fac-
tors Tooers Tebter, Tister- Thus, a general computation of the vertex
index V is given by:

be
V=—————T-2-R 5
a+ﬂ+'}/_3bm|n()7 ()

where b’ = [8~ a]” and
Y

TEwer, R=0
T — outer» 6
{Tinner,otherwise. ©)

The resulting ring, edge, vertex (REV) indices together with the
starting indices stored in our data structure are then used to retrieve
the attribute value for the current vertex.

6.2 Filtering and Mip-Mapping

For practical applications, where arbitrary tessellation factors are
desired, it is required to assign attributes at positions in between
our sample positions. In the following we describe how nearest
neighbor and bilinear interpolation can be implemented using our
storage scheme. Let Teurent be the currently used tessellation fac-
tors and Tiarger be the factors for which we have data available. For
both interpolation schemes we use the ratio ¢ = Trarget /T current tO
find attributes in our data set.

Figure 5: Example of nearest neighbor (left) and bilinear inter-
polation (right) for attributes in the current tesselation level using
attributes available in a different level (black edges).

Nearest neighbor interpolation requires to find the nearest point
Uy to the current vertex position vp, for which we have data. First,
we compute REV (vp) for the current vertex. The nearest neigh-
bor in our data set can then directly be computed by rounding the
indices to indices regarding the target tessellation factors:

R, = round(q - Rp),
E" = EP7 (7)
Vo = round(t - V4),

where ¢ is the ratio of generated segments on the edge of the differ-
ent tessellation levels t = (Tiarget — 2Rn)/(Teurrent — 2Rp).

Bilinear filtering requires to find the four nearest neighbors to the
current vertex vp. Similar to nearest neighbor interpolation, we start
by computing the ring, edge, vertex representation of the current
vertex. But instead of rounding we compute fractional values for
the ring and vertex. Then, we use simple clamping to the closest
inner and outer ring and left and right vertex on these rings to de-
termine the four neighbor indices. The final computation is then
done easily with the fractional ring and vertex values as depicted in
Figure 6.

Figure 6: Illustration of bilinear interpolation at the green vertex
using data available in a coarser tessellation level (gray). The four
neighboring data points (red) as well as the interpolation weights
are computed by projecting the vertex to the closest inner and outer
ring in the coarser representation (blue) using the ring, edge, vertex
representation

Results of both interpolation schemes are shown in Figure 5.

Mip-Mapping: To support multiple resolutions, we store optimal
attribute values for all intermediate tessellation levels up to the max-
imum required tessellation. This is comparable to mip-mapping,

Figure 7: Our data representation for terrain rendering using distance dependent LOD (top row) and error dependent LOD (bottom row).
From left to right: standard rendering, rendering with wireframe overlay and top view for the same camera to visualize subdivision levels. The
view in the top row using standard distance dependent LOD takes 4.95 ms to render, the same view in the lower row using our error dependent
LOD metric takes 3.77 ms to render. The terrain data was extracted from ”Geospatial Reference Data 2011” (Bavarian Administration for

Surveying).

since we store attributes for primitives generated by using power-
of-two tessellation factors. But in contrast to mip-mapping, where
levels are generated fine to coarse by averaging pixel values, we
store optimal values generated coarse to fine. For arbitrary tessel-
lation factors, we interpolate the stored values from the bracketing
power-of-two tessellation factors, resulting in a trilinear interpola-
tion as known from texture mip-mapping.

6.3 Signal-Adaptive Tessellation

Our signal-adaptive fitting procedure allows us to adapt tessellation
factors according to the underlying signal(s).

To this end, we store with every vertex of the base mesh a list of
error terms describing the signal errors of the surrounding faces
using the different power-of-two tessellation levels. We set a user-
defined error threshold parameter and assume that the vertex error
scales with the reciprocal of the viewing distance. With a binary
search on the vertex error list, we search the tessellation level that
just meets the error threshold. The computed vertex levels are then
used to compute edge tessellation factors (maximum level of the
edge’s vertices) and the inner tessellation factor (maximum level of
the face’s vertices).

As described above, only power-of-two tessellation factors will be
chosen, resulting in popping when tessellation factors change. We
can achieve a smooth transition by using fractional tessellation fac-
tors. To this end, we have to compute a fractional tessellation factor
for the vertices by interpolating tessellation factors from the vertex
error list according to the error threshold.

For most signals, this fractional tessellation delivers satisfying re-
sult. In the case of displacement maps, however, sampling the sig-
nal in between the original samples leads to well perceivable swim-
ming artifacts — the resulting mesh seems to flow over the surface.
This effect is also well known for displacement mapping with tex-
tures and smoothly adapted tessellation factors.

To tackle this problem, we refrain from using fractional tessellation,
but always use the coarsest power-of-two tessellation factor that
meets our error criterion. We avoid popping by blending the dis-

placement with the bilinear interpolation of the next coarser level as
described by Lindstrom et al. [1996]. As a result, we get a smooth
transition between the two levels, but only use displacements from
their original sample position. The swimming and undersampling
artifacts can thus be avoided, as shown in the accompanying video.

7 Results

We successfully applied our method to quad and triangle meshes of
variable sizes. All timings were measured at a screen resolution of
1280x720 using an NVIDIA GTX 480 and a Core 17 940 CPU with
2.93 GHz. The optional fitting pass applied in the preprocessing
phase is currently unoptimized and takes in the order of ten minutes
for the most complex mesh (100k triangles base mesh and 16M
detail mesh).

The terrain shown in Figure 7 covers an area of 7.3 km? with a
resolution of 1m?. We applied our method to generate displace-
ment attributes for a 70x70 quad faces base mesh. In Figure 7, we
compare standard distance-dependent LOD to our error-dependent
LOD method. Choosing an error-based LOD allows us to reduce
the tesselation factors and improve rendering performance without
losing surface detail. Table 1 summarizes the results using our stor-
age scheme compared to texture-based displacement mapping.

Terrain Rendering (ms)
Nearest neighbor 2.4
Bilinear interpolation 2.7
C-LOD 3.7
Displacement from texture 3.9

Table 1: Terrain rendering times using distance dependent LOD.

As expected, rendering with bilinear interpolation is more expen-
sive than nearest neighbor filtering, since additional lookups into
our data structure are required. The C-LOD method requires bilin-
ear lookups in two different resolutions and also blending, which
also reduces performance. Surprisingly, in this example rendering

using our method performs better than displacement from texture.
We measured a drastic increase in rendering time when displace-
ment textures with resolutions greater than 40962 are used in the
domain shader, since undersampling the texture results in frequent
cache misses.

In Figure 8, we compare standard texture mapping with bilinear
filtering to our storage scheme using nearest neighbor and bilinear
interpolation. As shown in the close-up images, our method is able
to reproduce the surface signal similar to standard texture filtering.
Other methods that do not require an explicit parametrization could
be used for such signals as well. However, a pure vertex based
approach as in [Kavan et al. 2011] would not be able to represent the
signal on such a coarse mesh and rendering as [Yuksel et al. 2010]
requires lookups into the data buffer for each fragment, whereas our
method only requires lookups at the generated vertices.

i
) /‘

Figure 8: Quality comparison for a lion model with color signal
(from left): reference using bilinear texture lookups with wireframe
overlay showing base geometry, closeup of the eye, our method with
bilinear, and nearest neighbor interpolation.

We also applied our method to the well-known Monster Frog
model. Rendering displacement from texture requires 3.4 ms com-
pared to 6.4 ms (7.2 ms for bilinear filtering) using our method. If
we also store normals and color values, rendering time increases to
8.9 ms (11.4 ms). As expected, bilinear filtering reduces the per-
formance, since additional texture lookups are necessary. Further,
the performance is also influenced by our index retrieval method,
which is more expensive than a simple interpolation of texture co-
ordinates. For multi-signal rendering, a distinct index must be
computed for each optimized signal separately, which explains the
achieved rendering times for the Monster Frog example. Yet, if
hardware would provide a unique index for generated vertices, the
rendering time of our method would improve. The qualitative com-
parison of the Monster Frog model in Figure 9 between displace-
ment from texture in the left image to our method on the right shows
that visible artifacts may appear at chart boundaries for the dis-
placement from texture rendering. With our method we have no
such difficulties, since our edge data is always consistent, resulting
in watertight meshes.

Figure 9: Example for multi-signal: the left image shows the origi-
nal Monster Frog model displaced and colored by textures, the right
image shows our rendering, where displacement, normal, and color
were stored as tessellator attributes. The left close-up shows the
cracks that are common along chart boundaries when using dis-
placement textures. Our representation (right) does not suffer from
such artifacts.

The Augustus model in Figure 1 is a scanned 3D model with 16.7M
triangle faces, which was reduced to 100k faces for the base mesh.
The displacement values were generated in the preprocessing step
by ray casting from the base to the detail mesh. In Table 2, we com-
pare our fitted models with different fitting errors to the reference
detail mesh in terms of rendering speed and memory requirements.
We clearly see that by increasing the fitting error, we can signifi-
cantly reduce the amount of memory that is necessary to store data
using our storage scheme. This automatically leads to better ren-
dering performance. Note, that the memory requirement in Table 2
also includes mip-map levels.

Augustus Rendering Rendering GPU Memory
default (ms) mip-map (ms) (MB)

Reference 19.3 - 366

€max = 0.0 49.0 85.9 307

€max = 0.05 24.0 41.6 192

€max = 0.1 11.9 20.9 90

€max = 0.5 3.7 6.1 28

Table 2: Memory requirements and comparison of rendering times
with and without mip-mapping using different fitting errors for the
Augustus model shown in Figure 1.

8 Limitations and Future Work

Current hardware supports tessellation factors only up to 64, which
limits the signal frequency that can be reproduced by our approach.
This is especially the case for models with a coarse base mesh and
high-frequency signal. However, performing a CPU subdivision on
the mesh before our preprocessing step would solve this problem.
Further, hardware support providing a unique index for each vertex
generated by the tessellator would solve the costly index retrieval
in the hull shader, allowing for better overall performance of our
approach. At last, our data layout stores face, edge, and vertex
attributes separately. This leads to incoherent memory data access
and lower performance compared to the spatial locality preserved in
textures. One possibility to improve the performance of our method
would be to implement a more cache friendly data layout by reorga-
nizing the storage of vertex, edge, and triangle attributes. In future
we also plan to combine our displacement mapping with smooth
Catmull-Clark subdivision.

9 Conclusion

We proposed a novel scheme for representing sub-triangle signals,
which is optimized for meshes tessellated by graphics hardware.
Storing the signal as vertex attributes of tessellated meshes offers
two substantial advantages over classic textures: First, we do not
require a texture atlas, which is generally difficult to compute au-
tomatically and introduces artifacts such as discontinuities between
charts or problems when generating mip-maps. Second, our ap-
proach is fully signal adaptive: for each triangle we store exactly
the amount of samples that is necessary to accurately reconstruct
the original signal. Therefore, for a wide range of signals, our ap-
proach is also much more memory efficient than standard textures.

We proposed a fitting scheme that allows us to convert existing sig-
nals in a signal-optimal manner and showed that typical texture op-
erations such as bilinear interpolation or mip-mapping can be per-
formed directly on our data structure.

Finally, we showed that the proposed technique has a wide range
of interesting applications, for example, level-of-detail-rendering,
terrain rendering, or crack-free displacement mapping.

Acknowledgements

‘We would like to thank Bay Raitt of Valve Software for the Monster
Frog model and the Bavarian Administration for Surveying for the
terrain data. The Augustus dataset is curtesy of the Collection of
Classical Antiquities (University of Erlangen-Nuremberg).

References

BURLEY, B., AND LACEWELL, D. 2008. Ptex: Per-Face Texture
Mapping for Production Rendering. Computer Graphics Forum
(Proc. EGSR’08) 27, 4, 1155-1164.

CASTANO, I. 2008. Next-Generation Rendering of Subdivision
Surfaces. Talk at SIGGRAPH 2008.

GONZALEZ, F., AND PATOW, G. 2009. Continuity Mapping for
Multi-Chart Textures. ACM Trans. Graph. 28, 109:1-109:8.

KAVAN, L., BARGTEIL, A., AND SLOAN, P.-P. 2011. Least
Squares Vertex Baking. Computer Graphics Forum (Proc.
EGSR’11) 30, 4, 1319-1326.

LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L. F.,
FAUST, N., AND TURNER, G. A. 1996. Real-Time Continuous
Level of Detail Rendering of Height Fields. In Proceedings of
SIGGRAPH’96, 109-118.

Loor, C., AND SCHAEFER, S. 2008. Approximating Catmull-
Clark Subdivision Surfaces with Bicubic Patches. ACM Trans.
Graph. 27,1, 8:1-8:11.

Loop, C., SCHAEFER, S., N1, T., AND CASTANO, I. 2009.
Approximating Subdivision Surfaces with Gregory Patches for
Hardware Tessellation. ACM Trans. Graph. 28, 151:1-151:9.

N1, T., CASTANO, 1., PETERS, J., MITCHELL, J., SCHNEIDER,
P., AND VERMA, V. 2009. Efficient Substitutes for Subdivision
Surfaces. In ACM SIGGRAPH 2009 Courses, 13:1-13:107.

NIESSNER, M., Loopr, C., MEYER, M., AND ROSE, T. 2012.
Feature Adaptive GPU Rendering of Catmull-Clark Subdivision
Surfaces. ACM Trans. Graph. 30, X, accepted.

PAKDEL, H. R., AND SAMAVATI, F. 2004. Incremental Adaptive
Loop Subdivision. Computational Science and Its Applications
ICCSA 2004, 237-246.

RAY, N., NIVOLIERS, V., LEFEBVRE, S., AND LEVY, B. 2011.
Invisible Seams. Computer Graphics Forum (Proc. EGSR’10)
29, 4, 1489-1496.

SANDER, P. V., WOOD, Z., GORTLER, S. J., SNYDER, J., AND
HoprpE, H. 2003. Multi-Chart Geometry Images. In Proceed-
ings of SGP’07, 146-155.

SCHAFER, H., SUSSMUTH, J., DENK, C., AND STAMMINGER,
M. 2012. Memory Efficient Light Baking. Computer & Graph-
ics 36, X.

SCHWARZ, M., STAGINSKI, M., AND STAMMINGER, M. 2006.
GPU-Based Rendering of PN Triangle Meshes with Adaptive
Tessellation. In Proceedings of VMV’06, 161-168.

TATARCHUK, N., BARCZAK, J., AND BILODEAU, B. 2010. Pro-
gramming for Real-Time Tessellation on GPU.

VALDETARO, A., NUNES, G., RAP0SO, A., FElJOo, B., AND
DE TOLEDO, R. 2010. LOD Terrain Rendering by Local Parallel
Processing on GPU. In Proceedings of the Brazilian Symposium
on Games and Digital Entertainment 2010, 181-188.

YUKSEL, C., KEYSER, J., AND HOUSE, D. H. 2010. Mesh Col-
ors. ACM Trans. Graph. 29, 2, 15:1-15:11.

