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Abstract

Real-Time Computer Graphics focuses on generating images fast enough to
cause the illusion of a continuous motion. It is used in science, engineering,
computer games, image processing, and design. Special purpose graphics
hardware, a so-called graphics processing unit (GPU), accelerates the image
generation process substantially. erefore, GPUs have become indispens-
able tools for Real-Time Computer Graphics.

e purpose of GPUs is to create two-dimensional (2D) images from three-
dimensional (3D) geometry. ereby, 3D geometry resides in GPU mem-
ory. However, the ever increasing demand for more realistic images con-
stantly pushes geometry memory consumption. is makes GPU memory
a limiting resource inmany Real-Time Computer Graphics applications. An
effective way of ĕtting more geometry into GPU memory is to compress ge-
ometry.

In this thesis, we introduce novel algorithms for compressing and decom-
pressing geometry. We propose methods to compress and decompress 3D
positions, 3D unit vectors, and topology of triangle meshes. ereby, we
obtain compression ratios from 2:1 to 26:1. We focus on exploiting the high
degree of parallelism available on GPUs for decompression. is allows our
decompression techniques to run in real-time and impact rendering speed
only little. At the same time, our techniques achieve high image quality:
images, generated from compressed geometry, are visually indistinguish-
able from images generated from non-compressed geometry. Moreover, our
methods are easy to combine with existing rendering techniques. ereby,
a wide range of applications may beneĕt from our results.
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Zusammenfassung

Die Echtzeit-Computergraphik beschäigt sich mit der Bilderzeugung,
die schnell genug ist, um die Illusion einer kontinuierlichen Bewegung
hervorzurufen. Sie ĕndet Anwendung in den Natur- und Ingenieurswis-
senschaen, bei Computerspielen, in der Bildverarbeitung, und in gestal-
terischen Disziplinen. Spezielle Graphikhardware, die man als Graph-
ics Processing Unit (GPU) bezeichnet, beschleunigt dabei den Bilderzeu-
gungsprozess erheblich. Aus diesem Grund sind GPUs zu unersetzlichen
Werkzeugen der Echtzeit-Computergraphik geworden.

GPUs dienen dazu, zweidimensionale Bilder (2D) aus dreidimensionaler
(3D) Geometrie zu erzeugen. Dabei beĕndet sich die 3D Geometrie im
GPU-Speicher. Jedoch lässt der stetig steigende Bedarf an noch realität-
streueren Bildern auch den Geometriespeicherverbrauch wachsen. GPU-
Speicher wird folglich zu einer knappen Ressource in vielen Echtzeit-
Computergraphik-Anwendungen. Ein effektives Mittel, um mehr Geome-
trie in den GPU-Speicher zu bekommen, ist, die Geometrie in komprim-
ierter Form dort abzulegen.

In dieser Arbeit werden neuartige Geometriekompressions- und Geome-
triedekompressionsalgorithmen vorgestellt. Die hier vorgeschlagenenMeth-
oden dienen zur Komprimierung und Dekomprimierung von 3D Positio-
nen, 3D Einheitsvektoren, und der Topologie von Dreiecksnetzen. Dabei
werden Kompressionsverhältnisse von 2:1 bis 26:1 erzielt. Den Schwerpunkt
der Arbeit bildet die Ausnutzung des auf GPUs verfügbaren hohen Par-
allelitätsgrades bei der Dekompression. Dadurch laufen die Dekompres-
sionsverfahren in Echtzeit und beeinĘussen die Rendering-Geschwindigkeit
nur geringfügig. Gleichzeitig sind die erzeugten Bilder von hoher Qual-
ität. Die aus komprimierter Geometrie erzeugten Bilder sind visuell nicht
von Bildern zu unterscheiden, welchen nicht-komprimierte Geometrie zu
Grunde liegt. Darüber hinaus sind die hier vorgeschlagenen Verfahren le-
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ichtmit existierendenMethoden der Echtzeit-Computergraphik kombinier-
bar. Dadurch wird es einer Vielzahl von Anwendungen ermöglicht, von den
Ergebnissen der vorliegenden Arbeit zu proĕtieren.
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CHAPTER 1

Introduction

In real-time rendering, image sequences are created quickly enough to evoke
the illusion of a continuousmotion, and the image generation process can in-
stantaneously respond to external inĘuences. e research domain concern-
ing with this task is Real-Time Computer Graphics. It has become an irre-
placeable part in many application ĕelds, as for example in computer games,
image processing, scientiĕc visualization, design, and engineering. Almost
inseparably linked with Real-Time Computer Graphics is special purpose
hardware, so called GPUs: GPUs signiĕcantly speed the image generation
process and oentimes make real-time image generation possible in the ĕrst
place.

GPUs are almost as ubiquitous as Real-Time Computer Graphics. Wherever
there is Real-TimeComputerGraphics, there is virtually always aGPU. ey
are an integral part of a wide range of devices, such as smart-phones, tablets,
laptops, workstations, clusters, and super computers. A GPU may be very
powerful for speciĕc tasks and surpass the performance of traditional central
processing units (CPUs) by orders of magnitude.

Despite the impressive power of GPUs, their resources are limited. Depend-
ing on the application, the computational speedmay be too low, thememory
bandwidth too little, or GPU memory does not suffice to ĕt the necessary
data. e reason for the shortage is that the expectations in GPUs are con-
stantly pushed. With faster and more accurate sensors and simulations, the
amount of data medical and scientiĕc visualization applications need to pro-
cess skyrockets. Designers and engineers are steadily increasing their expec-
tations towards detail and precision. e ever growing demand for realism
raises the necessity formore ĕnely resolved data. All of this results in a steady
growth of GPU memory requirements. Data compression is an appropriate
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CHAPTER 1 Introduction

and effective mean for counteracting memory space shortage.

In GPU memory, we place all necessary information that are required for
rendering an image, such as geometric data and textures, amongst other
less space consuming data. Driven by their importance in computer games,
compressed textures are supported by modern GPUs. Textures are com-
pressed lossy, that means the original data is not equal to the data extracted
from the compressed data. e ratio of uncompressed over the compressed
data size ranges from 2:1 to 6:1. Further, random access to compressed tex-
tures comes at no extra performance cost over uncompressed textures.

While in computer games the major cause for memory shortage is due to
textures, visualization and engineering applications need to process large
amounts of geometric data in the form of triangle meshes. ese triangle
meshes originate from highly detailed construction, sensor, or simulation
data that can easily contain several millions of triangles and vertices. As a
result, GPUmemory consumed by trianglemeshes becomes the limiting fac-
tor. erefore, it is necessary to come up with solutions that reduce the size
of geometric data.

1.1 Challenges and Beneöts

In contrast to on-the-Ęy texture decompression, built-in GPU triangle-mesh
decompression does not exist. In this thesis, we ĕll this gap and propose sev-
eral decompression methods targeting different subsets of geometric data.
ere are three major challenges:

• Parallelization: Although geometry compression and decompression
is a well-researched subject, the available algorithms are not suited for
GPUs. is is because GPUs achieve their high performance rates
through parallelization of the deployed rendering algorithms. How-
ever, geometry decompression algorithms are inherently sequential.
As a consequence, they would perform poorly on GPUs and real-time
rendering would no longer be possible. erefore, we need to design
new decompression methods that run in parallel on a GPU.
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• Real-Time: Besides reducing memory consumption, the proposed
methods may only have little impact on the rendering performance.
is impedes methods with poor decompression speed, even if they
achieve high compression ratios.

• Rendering Quality: For the application scenarios we target, lossy
compression is only tolerated, unless it does not degrade image qual-
ity. at means for the attributes associated with each vertex, such as
position or normal vectors, that lossy compression is acceptable only
up to a certain degree. Most importantly, topology, i.e., the way tri-
angles are connected, may not change. at rules out solutions that
reduce the number of triangles or vertices in a pre-process.

Parallel geometry decompression allows placing more data in GPU mem-
ory. Moreover, it speeds chronically low CPU-to-GPU memory transfers
or makes them even dispensable entirely. It further accommodates for two
ongoing developments in computer design:

• e computational power increases while data bandwidth cannot
keep pace. Processors can only perform instructions as long as they
have the necessary data at hand. Otherwise they run idle. Transmit-
ting compressed data effectively increases the bandwidth and helps
keeping the processor busy.

• e computational power increases because more and more proces-
sors are assembled onto a single chip. However, their individual speed
increases only little. Sequential algorithms, as used in traditional ge-
ometry decompression, are not able to prosper from this develop-
ment.

erefore, parallel decompression algorithms are needed to account for
these two trends.

3



CHAPTER 1 Introduction

1.2 Contributions and Overview

Triangle meshes have been the workhorse in Real-Time Computer Graphics
for several decades. ey consist of topological information that connects
vertices to form triangles. With each vertex, we associate a 3D position. e
majority of triangle meshes additionally store one 3D unit vector with each
vertex that represents the surface normal vector at the vertex.

We contribute methods that compress positions, unit normal vectors, and
topology independently from each other. e methods can be combined
with each other and are simple to integrate in existing rendering algorithms.
erefore, ourmethods help awide range of real-time rendering applications
to reduce their greed for memory.

In Chapter 3, we introduce level-of-precision (LOP), a novel approach for
compactly representing vertex positions inGPUmemory. ereby, we adapt
the precision of vertex positions based on a view-dependent criterion. GPU
memory for vertex positions is reduced by only storing the currently nec-
essary precision. Our compact representations enable fast random access
from within a vertex program. Once the view-point changes, we adapt a
model’s vertex precision. anks to our new data-parallel algorithms that
run entirely on the GPU, precision is adapted faster than the model is ren-
dered. Furthermore, we allow locally reĕning vertex position precision to
avoid artifacts that would otherwise occur when using reduced precision.
e algorithms have been published in [MSGS11].

In Chapter 4, we analyze unit vector representations that are used to encode
per-vertex normal vectors. e most common one is to use three Ęoating-
point numbers. To our knowledge, we are the ĕrst to derive the error of this
representation. Based on our error analysis, we compare existing unit vec-
tor compression methods and study their ability to match this error using
less memory. We ĕnd out that a parameterization based on projecting unit
vectors onto the surface of an octahedron performs best. Unit vectors repre-
sented with 52 bits in this representation are more than sufficient to achieve
the accuracy of three Ęoating-point numbers using 96 bits. We further show
that any other unit vector representation saves at most 1.14 bits upon the
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octahedron projection. Our compact unit vector representation is decom-
pressed on the GPU at no extra cost. Some of the ĕndings have also been
published in [MSS∗10].

In Chapter 5, we present a lossless triangle mesh topology compression
scheme. It is designed to leverage GPU data parallelism during decompres-
sion. We order triangles coherently to form generalized triangle strips. We
unpack generalized triangle strips efficiently, using a novel data-parallel al-
gorithm. Additional compression beneĕts come from a variable bit-length
code, for which we propose a data-parallel decompression algorithm. While
uncompressed triangles require 96 bits per triangle, we obtain 3.7 to 7.6 bits
per triangle. anks to the high degree of parallelism, our decompression
algorithm is extremely fast and achieves up to 1.7 billion triangles per sec-
ond. At the time of ĕnishing this thesis, a paper describing the algorithm
has been submitted to a journal [MKSS12].

We provide background information required for this thesis in Chapter 2.
In Chapters 3 – 5, we thoroughly describe our contributions. Finally, we
conclude the thesis with an outlook on future work (cf. Chapter 6).
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CHAPTER 2

Background

Our goal is to combine geometry decompression with real-time rendering.
Both ĕelds are well-established education and research domains which draw
upon a vast body of literature. In this chapter, we single out fundamental
topics that are most important for this thesis. We provide a concise back-
ground and explain concepts that reoccur constantly throughout the main
chapters.

In Section 2.2, we summarize elementary concepts of real-time rendering.
is includes triangle mesh representation and its memory consumption,
lighting models, graphics pipeline, and its hardware implementation. Large
parts of geometry are deĕned by real numbers. To efficiently compress real
numbers, a solid understanding of formats approximating real numbers on
a computer is given in Section 2.3. But ĕrst, we establish some notation.

2.1 Notation

We comprehensively adhere to the following conventions:

• Scalar numbers are written in italics, e.g., x, ΔQ, and so forth.

• Matrices and vectors arewritten in bold case, e.g., v. To refer to the com-
ponents of a vector, we use the notation common in C-style program-
ming languages for structure record types (i.e., struct): For example,
to access the x component of a vector v, we use v.x. roughout the
thesis, we mostly deal with column vectors, e.g., v = (v.x, v.y, v.z)T.

• e inner products of two vectors a and b is denoted by angle brackets,
i.e., 〈a, b〉.
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Symbol Ki Mi Gi Ti Pi
Factor exp  exp  exp  exp  exp .

Table 2.1: Binary Powers. The abbreviations shown above represent high powers of two.

• Vertical bars ‖·‖p indicate vector andmatrix norms. e index p spec-
iĕes the particular norm, e.g., p =  for the Euclidean vector norm.

• Elements of ĕnite sets and arrays are indexed using the array nota-
tion of C-style programming languages. For a set we write S =

{S[], S[], S[], . . . } and for an arrayA = (A[],A[],A[], . . . ). Note
that indexes start with 0. Sets or arrays with scalar elements are writ-
ten in italics. Matrix and vector element types are written bold-faced.

• Intervals are denoted by brackets and parenthesis depending on
whether they are open or closed. For example, [a, b] is a closed in-
terval from a through b, and [a, b) is an interval that is closed at the
a-end and open at b.

We oen use powers of two, which are usually represented by superscripts,
i.e., N. is may, however, become cumbersome to read, particularly in
the presence of multiple levels of superscripts, as for example N

M
. It gets

even more complicated, once superscripts themselves contain subscripts,
e.g., N

Mu . In other disciplines, such as mathematics or physics, the same
problem occurs when dealing with the natural exponential function ex. It is
oentimes replaced by exp(x) := ex. We adopt this convention and deĕne
power-of-two as a function

exp : x 7→ x.

Its inverse function is the base-two logarithm log y.

When dealing with compression and decompression techniques, it is in-
evitable to provide data size information. e unit for bytes is abbreviated
using the letter B. We abbreviate large sizes with binary preĕxes. ey are de-
rived from powers of two. For example,  B = exp () =  KiB, where
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Figure 2.1: Explicit Representation of a Triangle Mesh. The explicit representation is an
arrayT. Each elementT[i] consists of three indices.

Ki abbreviates kilobinary. But see Table 2.1 for a list of binary powers. For
powers of , we use the SI preĕxes, e.g., M for , G for , and so forth.

We use compression ratios (e.g., 3:1, or 5.5:1) to relate the size of compressed
data to uncompressed data. e higher a compression ratio the smaller the
compressed data. We make also use compression rates (e.g., bits per triangle
(bpt), bits per unit vector) to break down the beneĕt of compression to in-
dividual elements. e lower the compression rate the better. To measure
decompression speed we use decompression rate (e.g., triangles per second,
unit vectors per second). e smaller the decompression rate the better.

2.2 Real-Time Rendering

In real-time rendering, the time for generating an image (also called frame)
may not surpass 67ms [AMHH08]. e image is generated from a 3D de-
scription of geometry, which is typically represented by triangle meshes
(cf. Section 2.2.1). To produce appealing images, the geometry is exposed
to physically motivated lighting simulations (cf. Section 2.2.2). Real-time
rendering is possible with an optimized graphics pipeline implemented on
graphics hardware (cf. Section 2.2.3).

2.2.1 Triangle Meshes

In real-time rendering, triangle meshes are the most common form of rep-
resenting geometry. A triangle mesh is a set of triangles. A triangle itself
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consists of three different vertices. e vertices of a triangle are connected
through edges. Triangles are connected by sharing common vertices.

Each vertex has one or more vertex attributes, or shortly referred to as at-
tributes. Common types of attributes include the position of the vertex in
3D space, a 3D unit normal vector, 2D texture coordinates, 3D tangent and
bi-tangent vectors, and color values. is list is, of course, incomplete. Any
kind of attribute imaginable can be associated with a vertex.

Triangle meshes are oen represented in what we refer to as explicit repre-
sentation. is representation is also called to as triangle-vertex representa-
tion or indexed triangle-set. In the explicit representation, we store the vertex
attributes in so-called vertex arrays. Vertex arrays that belong to the same
triangle mesh all have NV elements, where NV is the number of vertices.

In the array of triangles T, we store for each triangle T[i] three vertex indices
T[i].v, T[i].v, and T[i].v. ereby, T[i].v, T[i].v, and T[i].v reference el-
ements of the vertex arrays. e array consists of NT elements, where NT is
the number of triangles of the mesh. An example of an array of triangles and
the associated topology is shown in Figure 2.1.

Note that the order of the triangles in the array T is not important for the
ĕnal appearance of the model. We can therefore order the triangles in any
order we want. e order of the vertices of one triangle can also be inter-
changed, but there is one restriction: the orientation must remain, as many
algorithms rely on a distinct order. A triangle, represented by a row vector of
three vertex indices (v, v, v), does not change its orientation if we use the
permutations (v, v, v) and (v, v, v), i.e., we “rotate” the vertex indices.
Other permutations change the orientation and are therefore not allowed.

e order of the elements in the attribute arrays does not affect the appear-
ance of the model, either. When reordering the elements in the attribute ar-
rays, we have to adjust the vertex indices of T to point to the right attributes.
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Memory Consumption

e types of models that we use in this thesis consist of a triangle array, an
array of vertex positions, and an array of vertex unit normal vectors. Typi-
cally, three integers are used to store a triangle, i.e., 12 B. A vertex position
and a unit normal vector use three single precision Ęoating-point numbers,
i.e., 12 B, each. e memory consumption of an uncompressed mesh is

K = NT · B + NV ·  · B.

For large meshes, NT ≈  · NV, therefore,

K ≈  · NT · B.

Hence, vertex positions and unit normal vector compromise about 25% of
the size of the triangle mesh, each. e triangle array consumes the remain-
ing portion of about 50%

2.2.2 Lighting Models

In order to produce realistic images, we compute the amount of out-going
color intensity at a point on the surface of a triangle mesh using lighting mod-
els. Lighting models are expressed in terms of shading equations. For each
color channel (typically red, green, and blue), we compute the intensity val-
ues independently.

One common lightingmodel is the diffuse lighting model. It is also referred to
as Lambertian reĘectance or Lambert’s cosine law. It reoccurs in many other
lightingmodels as part of their diffuse term. e amount of outgoing diffuse
light at a point p on a surface is

fDiffuse = ID · max (〈n, l 〉 , ) . (2.1)

e vectors n and l have unit length, i.e., ‖n‖ = ‖l‖ = . l directs towards
the light source and n is the unit normal vector at p. ID combines the diffuse
reĘectance characteristics of the material at the point p and the amount of
light emanating from the light source for one color channel.
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e Blinn-Phong lighting model [Bli77] builds upon diffuse reĘection. It
adds specular highlights to the surface, i.e.,

fBlinn = fDiffuse + IS · 〈n, h〉s , (2.2)

where s is the specular exponent. e halfway-vector h is halfway between
the l and the unit vector v pointing towards the camera, i.e.,

h =
v+ l

‖v+ l‖
.

Similar to ID, IS is the specular color that emanates from the surface. It com-
bines parameters from the light source with material properties.

ese two lighting models are commonly used in real-time rendering and
are used to generate plausible images in numerous rendering applications.
For more lighting models, we refer to relevant literature for more de-
tails [SAG∗05, AMHH08, PH10].

2.2.3 Real-Time Rendering on Graphics Hardware

rough the course of the previous decades, an algorithm called rasteriza-
tion has very successfully been deployed in the ĕeld of real-time render-
ing. ereby, 3D geometry, typically represented as triangle meshes, is pro-
jected triangle aer triangle onto a 2D image plane and then converted to a
raster image. e success of rasterization in the ĕeld of real-time render-
ing over other image generation algorithms, such as ray tracing [Whi80]
or micro-polygon pipelines [CCC87], is that special purpose hardware, so
called GPUs, dramatically speed the image generation process.

As the methods presented in this thesis are in the domain of real-time ren-
dering on graphics hardware, we summarize how the image generation pro-
cess applied for rasterization is decomposed into several steps, the so-called
graphics pipeline. We brieĘy explain how contemporary graphics hardware
used for real-time rendering works and how it can be used for more general
purpose tasks.
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Primitive Assembly

Rasterizer Stream Output

Per-Fragment Operation

Fragment Shader

Vertex Shader

Processed Vertices

Primitives

Fragments

Color, Depth-Value

Vertex Buffers

Index Buffers

Vertex Buffers

Frame Buffer

Figure 2.2: OpenGL Graphics Pipeline. The graphics pipeline is decomposed into pro-
grammable stages (green boxes) and öxed-function stages (red boxes). It uses inputs and
output buffers located in GPUmemory (orange boxes).

Graphics Pipeline

Rasterization is decomposed into several steps, forming the so-called graph-
ics pipeline. Common inputs to the pipeline are 3D geometry, lighting mod-
els, and materials. e pipeline’s output is a 2D image.

e pipeline steps are standardized and they are accessed by the pro-
grammer through application programming interfaces (APIs), such as
OpenGL [SA11] and Direct3D [Mic10]. e implementations developed
during the course of this thesis make use of OpenGL 4.0 – 4.2. An overview
of the pipeline stages that are important for this thesis is shown in Figure 2.2.
e pipeline has programmable stages, shown as green boxes, and ĕxed-
function stages, shown by red boxes. Input and output data is stored in GPU
memory drawn with orange boxes.
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In this thesis, wemake use of the vertex and fragment shader stage. eother
programmable stages, i.e., geometry shader, tessellation control shader, and
tessellation evaluation shader stage, are not used in this thesis and therefore
not shown in Figure 2.2. However, algorithms using these stages can also in-
corporatemethods developed in this thesis. Programs for the programmable
stages are implemented using shading languages. We use OpenGL shading
language (GLSL) [Kes11] to specify vertex and fragment programs.

We specify geometry using the explicit representation. We upload the tri-
angle array T into an index buffer and the attribute arrays to vertex buffers.
Beside triangles, other primitives such as points or lines are supported, too.

e set of attributes associated with each vertex serves as input to the ver-
tex shader stage. ere, a vertex program is executed independently for each
vertex. A vertex program outputs an arbitrary set of per-vertex attributes.
e vertex shader stage is fully programmable using GLSL. Most vertex pro-
grams transform per-vertex positions and unit normal vectors speciĕed in
local object space coordinates to world space or camera space. Moreover,
each vertex position is transformed to clip space. Clip space is a vector space
that graphics hardware uses to determine the 2D fragment location and its
depth value in screen-space.

e vertex attributes outputted by the vertex shader stage are assembled to
primitives, e.g., triangles in our case, by the primitive assembly stage. epro-
grammer can optionally write the transformed primitives to a vertex buffer
using the stream output stage. In most cases, the primitives are handed over
to the rasterizer stage. ere, each primitive is rasterized, i.e., it is converted
to a set of fragments in screen space. For each fragment, the rasterizer inter-
polates the attributes outputted from the vertex shader stage. When activat-
ing stream output, the program may prevent the pipeline from executing the
rasterizer and all subsequent stages. is is useful when streamed-out vertex
buffers are used as input for subsequent rendering passes.

e interpolated attributes are used as input to the fragment shader stage.
Like the vertex shader stage, the fragment shader stage is fully programmable
with GLSL using fragment programs. A fragment program is executed for
each fragment individually and it outputs the fragment’s ĕnal color and
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depth value (i.e., the distance from the fragment to the camera).

Most of our rendering algorithms use vertex programs to compute camera-
space coordinates for unit normal vectors and positions as per-vertex at-
tributes. e interpolated attributes are used in a fragment program to eval-
uate shading equations.

e fragments computed in the fragment shader stage are combined with
results that are already in the frame buffer. e most important operation
is depth testing. For each pixel in the frame buffer, the depth value of the
fragment closest to the camera is stored in the depth buffer (or z-buffer). If
a new fragment’s depth value is closer to the camera than the existing depth
value, the old pixel color and depth value are updated.

Graphics Hardware and Compute APIs

Both ĕxed function stages and programmable stages of the graphics pipeline
are implemented efficiently onGPUs. OnmodernGPUs, the programmable
stages operate in a data-parallelway: A single instruction is executed onmul-
tiple data elements simultaneously. is is also referred to as the single in-
struction, multiple data (SIMD) paradigm.

For example, as the vertex shader stage transforms vertices independently
from each other, all vertices can be transformed in parallel. e same ver-
tex program is executed on different vertices. Likewise, the fragment shader
stage processes all fragments in parallel. Each incarnation of a vertex or frag-
ment program that operates on different data is called a thread. Shading lan-
guage program threads are mapped to the computational cores of a GPU
transparently to the programmer.

A GPU has signiĕcantly more computational cores than a CPU. For exam-
ple, an Nvidia GeForce 580 GTX consists of 512 cores, whereas CPUs typi-
cally have two to eight cores. at is why GPUs are referred to as many-core
architectures and CPUs to as multi-core architectures.

For data located on the GPU, very high memory throughput-rates are pos-
sible (up to 192.4 GB per second), and the computational cores can reach a
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theoretical peak performance of 1581 billion single-precision Ęoating-point
operations per second. In contrast, current 2nd generation Intel Core i7
CPUs with six cores running at 2.8GHz obtain a bandwidth of 32 GB per
second and a theoretical peak performance of 134.4 billion single-precision
Ęoating-point operations per second. At ĕrst sight, this seems a tremen-
dous performance advantage for GPUs. It should be noted, that GPUs only
achieve high performance rates for data-parallel algorithms. Not every prob-
lem can be recast in a data-parallel fashion. In general, sequential tasks per-
form much better on CPUs.

ere are algorithms other than those realized with the rendering pipeline
that can be expressed in a data-parallel fashion. ese algorithms can also
beneĕt from the computational power of GPUs. at is why the function-
ally of GPUs is also exposed through more general purpose data-parallel
compute APIs, such as OpenCL [Mun11] or Nvidia’s compute uniĕed device
architecture (CUDA) [Nvi11b]. We use CUDA for this thesis (cf. Chapter 5).

Instead of vertex or fragment programs, we specify programs called kernels.
e kernel instructions are executed by spawning threads. From a program-
mer’s perspective, each thread maps onto one computational core of a GPU
and the threads are executed in parallel.

2.3 Number Formats for Real Numbers

In this section, we provide a brief overview of Ęoating-point numbers de-
ĕned in the IEEE 754-2008 standard [IEE08]. We focus on how Ęoats are
stored andwhat real numbers they are able to represent. Based on the deeper
understanding of Ęoating point numbers provided in Section 2.3.1, it will
turn out during the course of this thesis that uniformly quantized numbers (cf.
Section 2.3.2) are more appropriate for transmitting vertex attributes. How-
ever, we use Ęoating-point numbers for computations, as they are widely
supported by both GPUs and CPUs.
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2.3.1 Floating-Point Numbers

e IEEE 754-2008 standard speciĕes several Ęoating-point formats which
are widely supported on today’s computer architectures. We limit the expla-
nation to the normalized binary Ęoating-point format, as it is predominantly
used on GPUs [Bly06, SA11]. Further, we exclude topics, such as converting
real values to Ęoats, rounding-modes, and arithmetic precision of Ęoating-
point operations, and refer the reader to advanced literature on Ęoating point
number systems [Gol91, Knu97, MBdD∗10].

A normalized binary Ęoating-point number is a triple (s, e,m) with

• a sign bit s ∈ {, }. If s = , the number is positive;

• an exponent e with Ne bits, where
e ∈ [− exp (Ne − ) + , . . . , exp (Ne − )];

• a mantissa m with Nm bits, where m ∈ [, . . . , exp (Nm)− ].

We convert a normalized binary Ęoating-point number to a real number
with the following mapping:

(s, e,m) 7→ (−)s · exp (e) ·
(
 +

m
exp (Nm)

)
,

for − exp (Ne − ) +  < e < exp (Ne − ) .

We want to clarify the term normalized binary Ęoating-point. e binary is
due to the radix 2 as the base of the exponent. e word normalized is
because of the term + located le of the fraction. Normalization makes
Ęoating-point numbers unique, i.e., a real-number that is representable by a
normalized binary Ęoating-point number maps to exactly one unique triple
(s, e,m). From now on, the term Ęoat abbreviates normalized binary Ęoating-
point number.

A zero is encoded by a special triple (s,− exp (Ne − ) + , ). A triple
(s,− exp (Ne − )+ ,m)withm 6=  is a so-called subnormal number. e
standard deĕnes a special mapping for them, however, subnormal numbers
play no role in this thesis, as GLSL Ęushes them to zero [Kes11].
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Format Ne Nm Total fmin fmax

Mini    = .·− = .·

Half    ≈ . ·− ≈ .·

Single    ≈ . ·− ≈ .·

Double    ≈ . ·− ≈ .·

Table 2.2: Floating-Point Number Formats. Three formats — Half, Single, and Double—
are supported by current graphics hardware. The format named mini is introduce for ex-
planatory purposes. Ne andNm are the number of bits for the exponent and themantissa,
respectively. Total is the total number of bits including the sign bit. The values fmin and
fmax are the smallest and largest önite positive value the format can represent.

 



  − 

− 
−−

Figure 2.3: Distribution of Mini-Floats. The horizontal line is the real line. All possible
mini-øoats in the range of− to  aremarkedby vertical lines. The thick lines highlight the
boundaries of intervalswith common sample densities. Note thenon-uniformdistribution
of the øoating point numbers.

Accuracy and range of Ęoats depend on the number of bits spent formantissa
and exponent. From the deĕnition, we directly derive the smallest Ęoat

fmin = exp (− exp (Ne − ) + ) ,

and the largest ĕnite Ęoat, respectively,

fmax = ( − exp (−Nm)) · exp (exp (Ne − )− ) .

e smallest ĕnite Ęoat is −fmax and the largest negative normalized Ęoat is
−fmin. Table 2.2 lists the formats half, single, and double, that are currently
supported by GPUs [SA11].

e table further contains the mini Ęoat format that we use for explanation
purposes, but it has no practical relevance. It has a sign bit, three bits for the
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mantissa, and three bits for the exponent. Figure 2.3 shows the distribution
of the mini-Ęoats in the range from − to . e distribution is similar for
other normalized binary Ęoating-point formats. Every vertical line corre-
sponds to a Ęoat. In between of two Ęoats there are an inĕnite number of
real values. e most important feature that can be seen from the ĕgure is
that Ęoats are distributed non-uniformly across the real line: In the inter-
val from [exp (i) , exp (i+ )) there are as many Ęoats as in the interval
[exp (i+ ) , exp (i+ )) which covers a segment of twice the length. For
example, the interval [/, ) contains eight Ęoats along a range of /. e
same number of Ęoats is also in the interval from [, ), which is twice as
long. In general, in the interval [exp (i) , exp (i+ )] the space between
two Ęoats is constant, i.e.,

εfloat,i = exp (i− Nm) . (2.3)

Hence, the closer we approach zero the higher the sample density becomes.
Likewise the resolution of Ęoats coarsens towards |fmax|.

Also note the gap between − 
 and 

 in the mini-Ęoat format of Figure 2.3
with only one sample in between, i.e., 0. e sampling rate increases the
closer we approach zero, but aer reaching |fmin|, it drops abruptly by a factor
of exp (Nm) and leaves a large gap. A similar gap exists for all other Ęoating-
point formats. is gapmay be ĕlled with subnormal numbers, however, not
by GLSL, which does not support subnormal numbers.

For most rendering tasks, single precision is considered to be sufficient.
With the advent of Direct3D 10 [Bly06] GPUs adhere to the IEEE 758 stan-
dard. GLSL uses the standard [Kes11], too. Double precision is avail-
able, however, single precision performance is typically two [Nvi11b] to ĕve
times [AMD11] faster on current hardware. In GLSL, half-precision is not
natively supported as data type. Input attributes to vertex programs and tex-
ture formatsmay however use half precision to save bandwidth. For carrying
out computations they are converted to single precision [SA11].

19



CHAPTER 2 Background

2.3.2 Uniformly Quantized Numbers

In contrast to Ęoats, uniformly quantized numbers are spaced uniformly. We
store a uniformly quantized number using an unsigned integer i containing
Nu bits. A uniformly quantized number maps to a real value that is between
a lower bound umin and an upper bound umax, i.e.,

unpack : i 7→ umax − umin

exp (Nu)− 
· i+ umin, (2.4)

where i ∈ [ . . . , exp (N)− ]. Obviously, the distance between two real
numbers is always

ε =
umax − umin

exp (Nu)− 
. (2.5)

To convert a real number r into a uniformly quantized number, we use the
following mapping:

pack : r 7→
⌊

r− umin

umax − umin
· (exp (Nu)− ) +



σ(r)

⌋
. (2.6)

ereby, σ(r) is the sign-function, i.e.,

σ(r) : r 7→

{
 r ≥ 
− r < .

(2.7)

e plus sign splits Equation (2.6) into a term that inverts Equation (2.4) and
a rounding term, i.e., / σ(r). By the rounding term we make sure that we
map to the one uniformly quantized number that is closest to r, aer applying
the Ęoor function b·c. Note that (2.6) can also be used if r is a Ęoat.

When converting a real number r into a uniformly quantized number i =
pack(r), i is mapped to another real number q = unpack(i). We say that q
is the number to which r gets quantized. is can be expressed as a function

quantize : r 7→ unpack (pack (r)) . (2.8)

Note that r and q differ at most by the quantization error of ε/.
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As opposed to Ęoats, GPUs do not offer hardware instructions for opera-
tions on uniformly quantized numbers. erefore, we convert uniformly
quantized numbers to Ęoats of sufficient precision and perform arithmetic
calculations with Ęoats. is is convenient as GPUs provide a rich optimized
instruction set for Ęoats. Alternatively, we could implement arithmetic func-
tions directly on uniformly quantized numbers in soware with integer op-
erations. However, this is rather complex from a programmer’s perspective,
and the resulting code is executed more slowly than the equivalent code that
uses Ęoating-point instructions.
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CHAPTER 3

Adaptive Level-of-Precision

e vertices of a triangle mesh can have all kinds of attributes: unit normal
vectors, tangent vectors, colors, texture coordinates, etc., but there is one
attribute that is used for sure: vertex positions. Hence, all triangle meshes
beneĕt in terms of memory consumption when compressing positions.

Compressed positions are not exclusively useful for triangle meshes or
other polyhedral representations. In point-based graphics [GP07], geom-
etry is deĕned by a set of non-connected positions. Surfaces, such as
Bézier patches, B-Spline surfaces [Far02], non-uniform rational B-splines
(NURBS) [PT97], T-splines [SZBN03], subdivision surfaces [PR08], and al-
gebraic surfaces [Sed85], use positions to represent control points.

e memory consumption of the positional data of the meshes used in this
thesis amounts for one fourth of the total data. erefore, a signiĕcantmem-
ory reduction of the positions immediately results in a considerable data re-
duction for the entire mesh.

In this chapter, we provide simple and efficient ways of reducing thememory
consumption of vertex positions. e main idea is to quantize vertex posi-
tions according to their distance to the camera: the more distant the vertex
positions are to the camera, the less precision and therefore lessmemory they
require. We adapt precision by adding or removing bits from vertex posi-
tions. To allow precision adaption in real-time, we present fast data-parallel
algorithms. Moreover, our data structures for storing vertex positions allow
random access, despite being compressed. However, a reduced precision
may result in image errors. We analyze these visual artifacts and avoid them
by constraining the quantization of critical vertices.
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We achieve compression ratios for vertex positions from 2.5:1 up to 5:1. e
reduced complexity inĘuences rendering quality and speed only little. More-
over, our techniques are easy to integrate in existing rendering algorithms.

3.1 Introduction

A common way of saving memory for triangle meshes is to use level-of-
detail (LOD) methods. Mesh complexity is adapted by varying the number of
vertices, edges, and triangles. Starting from a base-mesh, a series of meshes
is created, each of which represents a different level of detail. A mesh from
that series is called a level of detail or, more brieĘy, a level. A level is either
coarsened or reĕned by removing or adding vertices, edges, and triangles.
We say that a level is low (high) if it has few (many) vertices and therefore
edges and triangles. For rendering, one level is selected. e advantage of
using a lower level is not only reduced memory consumption. e reduced
complexity results in faster rendering, too. However, a low level also has less
detail which degrades the ĕnal image quality.

e decision which level to choose must be made carefully and constitutes
a crucial part of an LOD-method. It is a tradeoff between ĕdelity and per-
formance. Mostly, the level is selected such that an observer is not able to
distinguish the ĕnest level from the lower level that is chosen for rendering.
A typical criterion is the distance from the mesh to the camera: the further
the mesh is away from the camera the coarser the level can be.

One important aspect of LODmethods is the transition from one level to the
other. For example, when the mesh comes closer to the camera, the current
level is no longer sufficient for the desired image quality. en, we switch to
the next ĕner level. However, this is an abrupt change of levels between two
frames. is may result in so-called popping artifacts. e human eye is par-
ticularly sensitive to popping artifacts, which should therefore be avoided.

LOD-methods are classiĕed into discrete and continuous methods. Discrete
LOD-methods have a small, ĕnite set of precomputed levels. Two succes-
sive LODs differ by a large amount of vertices, edges, and triangles. In con-
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Figure 3.1: Difference Between LOP- and LOD-Methods. The gray box shows the set of
potential vertices. (a) The green boxes show the subset of vertices used for a particular
LOD. LOD-methods vary the number of vertices. (b) The blue boxes show the subset of
vertices of a particular LOP. LOP-methods vary the numerical precision of the vertices.

trast, the difference between two continuous LODs is as low as a single ver-
tex. While the former ones are usually simpler to implement, the later ones
suffer less from popping artifacts. An overview of various LOD methods is
provided in the book by Luebke and co-authors [LRC∗03].

Figure 3.1a recaps the idea of LOD-methods: e gray box in Figure 3.1a
shows the set of potential vertices that is used for all LODs of themesh. From
that set of potential vertices, each level singles out a sub-set, shown as green
boxes in the ĕgure. e width of the boxes correlates with the number of
vertices. e abscissa represents the number of vertices used for amodel, and
the ordinate represents the precision of the vertex attributes. eir product
is the memory usage. So far, LOD-methods do not change the numerical
precision of the vertex attributes and alter the number of vertices only.
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3.1.1 Contributions

We leverage the unexploited degree of freedom and vary the numerical pre-
cision of vertex positions to save memory. We adapt the level-of-precision
(LOP). Less precision results in lowermemory consumption. e blue boxes
in Figure 3.1b indicate the different LOPs. eir height reĘects the numeri-
cal precision of the vertex attributes. A coarse LOP uses fewer bits than a ĕne
LOP for the vertex attributes. We refer to the level of precision as bit-level.

Note that LOP is not an LOD-method. We study LOP-methods with a con-
stant number of vertices. LOP-methods can, however, be combined with
LOD methods to achieve additional memory savings.

LOP can be used for all vertex attributes, but we consider LOP for vertex
positions only. While a lower precision uses less memory, rendering qual-
ity can suffer. We trade memory usage and rendering quality by adapting
the bit-level interactively: we keep only those bits in GPU memory that are
required for the currently used precision.

We introduce two approaches building upon the LOP idea:

• adaptive precision (AP) and

• constrained adaptive precision (CAP).

Bothmethods represent positions as uniformly quantized numbers (cf. Sec-
tion 2.3.2). During rendering, we choose the bit-level such that it is as low as
possible in order to reduce memory while maintaining a high image quality.

Our AP-method strives for perfect coverage. atmeans pixels covered in the
baseline image are not the same as in the LOP-image. With baseline image, we
refer to the image generated with positions represented as single-precision
Ęoating-point numbers. LOP-image is an image generated with a lower bit-
level using AP or CAP. Perfect coverage is not generally obtainable and, in
most cases, we get a coverage error. However, we can choose the bit-level such
that the coverage error is below a fraction of a pixel.

Yet, AP can be prone to artifacts other than coverage errors, especially for low
bit-levels. We observe that errors in the pixel color can occur. We analyze
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Figure 3.2: Difference Between AP and CAP. While AP uses one common bit-level for all
vertex positions, CAP restricts the bit-level of some vertices to a minimum bit-level.

these artifacts and ĕnd out that they are caused by wrong shading compu-
tations and erroneous depth values. We show that they can be removed if
some vertices use a higher bit-level than others.

For triangle meshes that are prone to these artifacts, we propose to use con-
strained adaptive precision (CAP). ereby, we constrain the bit-level of
each vertex to aminimum bit-level. We present preprocessing algorithms for
determining the minimum bit-level for the positions of a mesh.

To realize AP and CAP, we further make the following contributions:

• Changing the LOP is conducted by successively removing and adding
low-order bits of positions. It is carried out directly on theGPUby fast
data-parallel algorithms. erefore, only little CPU-to-GPU commu-
nication is required.

• Positions are stored in a compact form, which allows for fast random
access in a vertex program.

edifference between the two approaches is shown in Figure 3.2. AP adapts
the LOP of all positions simultaneously. All positions use the same level of
precision. CAP adapts the precision of all vertices, too. However, it accounts
for the minimum bit-levels of the vertices.

During rendering, both of our approaches choose the bit-level based on a
view-dependent criterion. at makes memory usage also view-dependent.
In typical application scenarios, we observe compression ratios from 2.5:1
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(a) Float (c) CAP(b) AP

Figure 3.3: Positions Stored as Floats, AP, and CAP. The bottom row shows a close-up of
the radiator grill of the Car model. (a) With positions stored with øoating-point precision,
the image is rendered in 14.5ms. (b) AP renders the Car in 9.8ms and consumes 28%
of the memory of øoating-point positions. AP is, however, prone to shading artifacts (see
bottom row). (c) CAP does not suffer from the artifacts and only needs 38%of thememory
of øoating-point positions. The image is rendered in 14.8ms.

up to 5:1 over positions stored with single-precision Ęoating-point numbers.
Moreover, positions compressed in our format deliver competitive real-time
frame-rates that are oentimes higher than those achieved with Ęoating-
point positions. LOP-methods are powerful and effective. At the same time,
they are easy to implement.

Figure 3.3 shows a result of our AP- and CAP-method compared against po-
sitions stored as single-precision Ęoating-point numbers. While AP delivers
a coverage error less than half a pixel and substantially compresses vertex
positions, it is prone to shading artifacts, particularly for models with ĕne
detail (b). We remove these artifacts using CAP (c) and obtain images that
are visually indistinguishable from images generated with Ęoating-point po-
sitions (a). At the same time we still achieve signiĕcant memory savings.
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3.1.2 Overview

is chapter is organized as follows: aer reviewing prior art in Section 3.2,
we introduce the concept of LOP in Section 3.3. en, we present the LOP
methods that handle coverage, shading, and depth errors in Sections 3.4
and 3.5. In Section 3.6, we introduce data-parallel algorithms for precision
adaption and show how our data-structures integrate into an OpenGL ren-
dering pipeline. Aer presenting and discussing results (Section 3.7), we
conclude with an outlook on further applications of LOP in Section 3.8.

3.2 Previous Work

We provide a brief overview of existing approaches that focus on compres-
sion of positional data. We limit the discussion to GPUmethods as well as to
contributions dealing with precision issues. Moreover, we discuss methods
that take shading error considerations into account.

Vertex Clustering

Multi-resolution techniques are frequently applied to reduce the geometric
complexity. At vertex level, vertex cluster algorithms [RB93] partition the
object’s bounding geometry into uniform cells. Vertices contained in one
cell are replaced by a single vertex representative whose position is subject to
optimizations [Lin00]. An efficient GPU implementation for this clustering
exists [DT07], but it is merely used to speed-up the generation of discrete
LODs and it is not used to reduce the memory footprint during rendering.

Progressive Meshes

A widespread multi-resolution approach is the progressive meshs (PMs)
technique by Hoppe [Hop96]. Starting from a base-mesh, successive edge
collapses reduce the number of vertices and triangles. is ĕne grain control
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over the complexity allows for continuous view-dependent LOD, as demon-
strated by Hoppe [Hop97].

It is also used to create discrete LODs: Sander and Mitchel [SM05] use PM
to create a ĕnite set of meshes in a pre-process. In their GPU approach,
Grund and co-workers dramatically speed this process [GDG11]. During
runtime, vertex buffers of successive LODs are blended through geomorphs.
is reduces popping artifacts, but vertex and index buffers for both levels
have to reside on the GPU, which increases memory consumption.

Recently, parallel implementations have been developed that leverage GPUs
for continuous LOD-methods: Hu et al. [HSH09] present a parallel real-time
algorithm running entirely on the GPU. ey deploy vertex and geometry
programs. However, their algorithm requires additional dependency data
structures resulting in 57% higher memory utilization as opposed to the or-
dinary explicit representation.

Derzapf et al. [DMG10b] present an efficient CUDA implementation of
Hoppe’s original algorithm [Hop96]. ey reduce memory requirements to
less than 50% of the explicit representation and allow out-of-core applica-
tions [DMG10a].

Vertex Quantization

All multi-resolution techniques described above reduce the geometric com-
plexity primarily by reducing the number of faces and vertices. However, the
precision of the positions remains unchanged. In contrast, vertex quantiza-
tion re-samples the positions to a newuniform3Dgrid. Early approaches de-
termine the sample spacing empirically [Dee95]. Later, Chow [Cho97] pro-
poses an iterative algorithm that returns individual quantization levels for
each position. Unlike our approach, Chow does not study shading error and
only uses geometric criteria. Similarly to Chow, King and Rossignac [KR99]
develop a shape complexity measure. Targeting a user-deĕned error thresh-
old or ĕle size, they use their shape complexitymeasure to compute the num-
ber of bits for each position.
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Calver [Cal02]was the ĕrst to consider decompression vertex data on aGPU.
Hismethod quantizes vertices to a ĕxed precision. e compressed positions
are decompressed in a vertex program. Another GPU approach for vertex
quantization was proposed by Purnomo et al. [PBCK05]. ey quantize all
attributes such that they ĕt in a pre-deĕned bit-budget. e number of bits
for each attribute is determined by a greedy preprocessing algorithm that
minimizes screen-space error. ey decompress the attributes in a vertex
program. However, precision may not be adapted dynamically as opposed
to our approaches.

For real-time decompression onmobile devices, Lee and colleagues [LCL10]
propose quantizing vertex positions with 8 bits in each component. To
achieve higher precision for larger meshes, they segment the mesh into mul-
tiple sub-meshes using an adaption of Llyod’s algorithm [Llo82]. en, each
sub-mesh is quantized individually.

Different quantization levels are also exposed by OpenGL and Direct3D, in-
cluding half, single, and double precision Ęoating-point numbers. Fixed-
point formats, e.g., 16 bits for each fractional and integer part, or 4D vec-
tors whose components use 10, 10, 10, and, 2 bits, respectively, are also sup-
ported. However, precision cannot be selected in such a ĕne-grained man-
ner as opposed to the methods described in this chapter.

Vertex quantization is also used for off-line compression. e overview
report by Alliez and Gotsman [AG03] as well as by Peng and his col-
leagues [PKJK05] list several examples. Typically, a ĕxed quantization of
8 to 12 bits in each component is used. Variable bit-length codes are added
to achieve further compression. However, as decompressing variable bit-
length codes is difficult to implement in parallel, GPU implementations are
rarely found. ey are only used in special cases such as terrain render-
ing [LC10].

e idea of progressively transmitting bits of vertex positions has previously
been deployed for off-line storage and network transmissions [LK98]. How-
ever, we are not aware of real-time GPU implementations.
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Hao et al. [HV01] determine the precision in bits at which vertex transform
operations need to be conducted in order to produce little or no artifacts
during rendering. ey carefully analyze the numerical error inherent to
vertex transformations. ey incorporate a view-dependent criterion, but
do not leverage their result for reducing the memory footprint.

Shading Errors

e simpliĕcation process of LOD-methods is guided by the minimization
of the geometric error. ereby, it is assumed that the geometric error corre-
lateswith the rendering error [GH97]. Garland andHeckbert [GH98] aswell
as Klein and co-workers [KSS98] were among the ĕrst to minimize render-
ing errors. e higher the curvature of the mesh the more detail is required
to keep the rendering error low [Cho97, Lin03]. erefore, a triangle mesh
should be simpliĕed in Ęat areas.

Recently, Willmott [Wil11] enhanced vertex clustering in order to quickly
simplify meshes with different types of attributes, such as normal vectors,
tangent vectors, texture coordinates, and even attributes used for animating
meshes. His simpliĕcation algorithm is geared towards speed and creates
three to four discrete LODs of an input mesh with about 100,000 triangles
within 40ms.

3.3 Level-of-Precision

In this section, we lay the basis for LOP. To represent positions, we use uni-
formly quantized numbers. In Section 3.3.1, we determine how many bits
they require to be as accurate as Ęoats. We describe bit-level adaption in
Section 3.3.2 and explain how we store positions compactly (Section 3.3.3).
Finally, in Section 3.3.4, we raise the awareness of the types of artifacts LOP-
methods are prone to.
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3.3.1 Representing Positions

Positions are usually stored as Ęoating-point numbers, as the intuitive format
for this type of data. As outlined in Section 2.3.1, this is mostly due to hard-
ware support on both CPUs and GPUs. While the Ęoating-point format is
the preferred format for computations, it has weaknesses when representing
positions. Remember that the Ęoating-point sample spacing gets smaller,
the smaller a number is. us, 2D or 3D Ęoats are more ĕnely resolved the
closer they are to the origin. However, an artist, for example, is not likely
to align an object such that a region with more detail is closer to the origin.
is course of action becomes infeasible for objects with at least two ĕnely
resolved regions that are located at opposite ends.

ere is another issue that destroys the extra precision during rendering: e
object-space coordinate system is typically close to the origin. But ultimately,
the object is transformed from object space into world space. In many cases,
these transformations destroy precision. Consider the following example:
in object space, the vertex positions are inside the interval

[ 
 , 

]. ere,
we have a sample spacing of εfloat,− (cf. Equation (2.3)). For rendering,
we translate the positions to

[
, 


]. By this, we double the sample spacing

to εfloat,, which decreases precision. We can, therefore, consider the extra
precision around the origin as superĘuous.

Instead, we store position components as uniformly quantized numbers. We
have to make sure that the precision of uniformly quantized numbers is the
same as those of Ęoats. is is the case when uniformly quantized numbers
have the same maximum sample spacing as Ęoats. We achieve this by us-
ing Nm +  bits for a uniformly quantized number [ILS05], where Nm is the
number of bits of the mantissa.

To prove this, consider a set of numbers a = {a[], a[], . . . }. e idea
is easily generalized to multi-dimensional vectors. We pick the number
of the largest magnitude amax. Assume, without loss of generality, that
this number is positive. e number has a Ęoating-point exponent emax.
us, the interval where the sample spacing of amax is constant is I =

[exp (emax) . . . exp (emax + )). If all numbers of a were in I, the corre-
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sponding uniformly quantized numbers would require Nm bits. If there are
positive numbers in a outside of I, they must be in I = [, exp (emax)). As
the length of I equals the length of I, we only need one extra bit to store
numbers that are in I ∪ I. With the same considerations, it is easy to see
that one more bit is required for encoding the negative range. In total, we
need Nm +  bits for uniformly quantized numbers, such that their sample
spacing corresponds to the maximum sample spacing of Ęoats.

As GPUs support single-precision Ęoats where Nm = , we need at most
25 bits for uniformly quantized numbers. ey are stored in a 32-bit data-
word. To convert a set of positions stored as Ęoats to uniformly quantized
numbers, we re-sample the positions using the coarsest sample spacing in
each direction.

3.3.2 Bit-Level Adaption

Each bit of a data-word has an associated bit-index: e bit-index starts at
0 for the most signiĕcant bit and ends at B −  for the least signiĕcant bit.
e expression “bit b” refers to the bit and/or its value at bit-index b. In an
array of data-words, the bth bit-plane is the array of bits that have the same
bit index b.

Changing the bit-level of a data-word is embarrassingly easy: We implicitly
assume that bits above a certain bit-index are set to zero. A data-word that
uses all of its B bits is at bit-level B. If the least signiĕcant bit is not used, i.e.,
implicitly assumed to be zero, the data-word is at bit-level B − . If the two
least signiĕcant bits are not used, it is of bit-level B − . We may continue
removing bits until we reach the lowest bit-level 1. Deĕning a bit-level 0
would make no sense as this would imply that all bits are zero.

For a data-word that is at bit-level b, we deĕne two operations to adapt its
bit-level. We call restoring bit b+  add-bit operation. e inverse operation
that implicitly sets bit b to zero is called remove-bit operation.
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3.3.3 Packed Buffers

In our application of rendering triangle meshes, we have an array of ver-
tex positions stored on the GPU. Each position consists of three uniformly
quantized numbers. erefore, we consider the array of positions simply as
an array of uniformly quantized numbers.

e goal of this chapter is to keep the memory size of the array of vertex
positions as small as possible. erefore, we assign a bit-level b to each uni-
formly quantized numbers. Of course we do not store the bit-level individu-
ally for each uniformly quantized numbers. We will describe very compact
representations that keep that information negligibly small. ese compact
representations are called packed buffer.

A packed buffer requires the following features:

• e elements of a packed buffer only use the number of bits that cor-
responds to their bit-level. If an element’s bit-level is b, it only stores
the b most signiĕcant bits. is keeps memory consumption low.

• Precision of the elements in a packed buffer can be adapted interac-
tively by adding or removing bits. is allows reĕning and coarsening
the precision of the positions. By this, we adjust memory consump-
tion and rendering quality.

A packed buffer needs two operations: A pack operation stores only those bits
of each uniformly quantized number that are required for its associated bit-
level in a packed word. Moreover, between adjacent packed words, there are
no unused bits such as padding bits. Hence, the packed buffer has no internal
fragmentation. e pack operation is crucial for obtaining high compression
ratios.

e inverse of the pack operation is the unpack operation: the packed buffer
is converted back to an array of uniformly quantized numbers. Bits that are
less signiĕcant than the current bit-level are set to zero. Figure 3.4 shows an
example of packed and unpacked buffers as well as the add and remove bit
operations.
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Figure 3.4: Packed and Unpacked Buffers. In the image, compact data words use 4-bit
rather than 32-bit words for explanatory purposes. Different words are shown in different
colors. The different shades indicate the different bits. Low order bits that are not used
for the depicted bit-levels b are marked gray and are implicitly assumed to be zero. The
operations are shown by the white arrows.

3.3.4 Rendering Quality

A simple example of a single triangle stored using packed buffers is shown
in Figure 3.5. By reducing the bit-level of all positions, we alter the shape of
the triangle. By this, we also inĘuence the image quality.

It turns out that an LOP image showsmeasurable and visible deviations from
the baseline image. ese errors can be tracked down to pixel-level, or, when
a pixel has more samples, to sample-level. We identify three types of errors:

• Coverage errors: A sample is wrongfully considered to be covered or
not covered. at is the case whenever a sample is hit by a triangle in
the baseline image, but it is not hit by the same triangle in the LOP-
image. Of course, the inverse event may occur, too. is type of error
causes visible errors along the silhouette.
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Figure 3.5: Adaptive Precision Example. Each sub-ögure shows the effect of the different
bit-levels on the unpacked buffer (top row) and the geometry of a triangle (bottom row).
The position components of a 2D triangle in the unpacked buffer are color-coded as in
Figure 3.4. For convenience, the binary digits in the colored-boxes are converted to the
decimal numbers indicated by the subscript 10.

• Shading errors: Due to themodiĕed positions, the rasterizer interpo-
lates other vertex attributes (e.g., unit normal vectors or texture coor-
dinates) differently for LOP. us, wrong attributes are used for shad-
ing computations in the fragment program. A highlight can wrong-
fully appear or disappear at that sample when rasterizing a triangle
whose per-vertex unit vectors differ a lot. A wrong texture coordinate
results in erroneous sampling of the texture, which ultimately yields
in a wrong color.

• Depth errors: e order of objects changes in camera-space. For ex-
ample, nearby objects that do not penetrate each other using positions
at full precision intersect each other at a lower level of precision.

A key issue to determine an appropriate bit-level to avoid these artifacts. Our
goal is to achieve an image quality that is indistinguishable from the baseline
image.

To avoid coverage error artifacts, we introduce AP in Section 3.4: We com-
pute one common bit-level for the positions of a mesh each time the mesh is
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rendered. at common bit-level is chosen such that the screen-space error
is less than a fraction of a pixel when using reduced precision positions. If
the mesh moves, we interactively adapt the precision by adding or remov-
ing bits to or from the components of the positions. By this, we efficiently
balance coverage errors and memory consumption.

Especially highly detailed models suffer from shading and depth errors for
low bit-levels as seen in Figure 3.3. We tackle these problems by introducing
constrained adaptive precision (CAP) in Section 3.5. AswithAP, we set the bit-
level of the positions such that a predeĕned screen-space error ismaintained.
However, for some so-called critical vertices, that bit-level is not sufficient
to avoid shading or depth errors. CAP enables us to constrain the bit-level
of each position individually. e bit-level of a vertex position may not be
lower than a certain predeĕned minimum bit-level. e minimum bit-level
for each position is determined in a pre-process.

3.4 Adaptive Precision

We choose the LOP of the positions such that wemaintain a certain coverage
error. Consider, for instance, a rendering of a triangle mesh that entirely
covers a 1024 by 1024 pixel display. When using full LOP, vertex positions
are projected to the correct pixels in the baseline image. e question is how
much precision is required for positions at a reduced LOP in order to obtain
acceptable results.

For the answer, consider the spatial extension of the display in pixels. e
width and the height of the display is 1024 pixels, respectively. To uniquely
address a single pixel we need two numbers. Each needs log  bits =

 bits. Likewise, positions at a reduced LOP of 10 bits per component are at
most projected one pixel away from their counterparts in the baseline image.
At 11 bits, the coverage-error is half a pixel. is amounts for amemory gain
of about one third as opposed to single-precision Ęoats at an error that is
sufficient formany applications. If the objectmoves away from the camera, it
covers a smaller portion of the screen. at allows us to reduce the precision
even further and to achieve even higher memory savings.
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Figure 3.6: Object Space Error to Camera Space Error. z is the distance of the camera to
the object’s bounding box, n the distance of the camera to the near plane. Δw in object
space correspondsΔc in camera space. The maximum bounding box extension is d.

In Section 3.4.1, we show how to compute the LOP based on the bounding-
box of a mesh and its distance to the camera. us, all vertices use the same
bit-level at the same time. is is also reĘected in the data structure that we
use to store packed vertices in GPU memory (cf. Section 3.4.2). We have
to take special care to avoid cracks between adjacent meshes as detailed in
Section 3.4.3.

3.4.1 LOP Selection

We select the appropriate LOP with respect to a predeĕned screen-space er-
ror Δp measured in pixels. e positions at reduced precision are projected
onto the near plane of the camera. ereby, they should not be off by more
than Δp pixels from the corresponding pixel in the baseline image. We call
Δp the screen-space error. We typically choose Δp = 

 , i.e., half a pixel.

Our goal is to ĕnd outwhat the object space-error Δo amounts for in pixels in
screen-space. erefore, we convert the screen-space error Δp into a camera-
space error Δc ĕrst. e visible portion of the near plane has a length of h
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along the horizontal direction in camera space, as shown in Figure 3.6. e
segment h covers p pixels on the display. us, the screen-space error Δp
measured in camera-space amounts for

Δc =
Δp
p

· h.

We project the line segment Δc onto the closest location from the camera to
the triangle mesh. e length of the projected segment Δw can be computed
from Δc using the eorem of Intersecting Lines, as shown in Figure 3.6:

Δw =
z
n
· Δc,

where n is the distance of the near plane to the camera and z is the orthogonal
distance of the object to the camera. To quickly approximate z, we use the
axis-aligned bounding box of the mesh.

us, Δw (i.e., the distance measured in world space) tells us how much a
position may change such that its projected pixel location alters by Δp. Fi-
nally, we transform Δw from world space to object space. is is done by
relating Δw to the maximum bounding-box extension d:

Δo =
Δw
d

.

Weuse object-space error Δo to determine the bit-level. At bit-levelB (i.e., all
available bits are used), the components of a position have a sample spacing
of δ along each main direction. e sample spacing at bit-level B−  doubles
to exp () · δ. At B−  it is exp () · δ. In general, at bit-level b, the sample
spacing is

δb = δ · exp (B− b) .

To compute the bit-level, we have to make sure that the sample spacing at
bit-level b is smaller than the object-space error:

Δo ≥ δb = δ · exp (B− b) . (3.1)
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Solving for b gives us an equation for the bit-level that is required tomaintain
the desired object-space error Δo:

b ≥ B− log
Δo
δ
. (3.2)

We separate this expression into a term λ that depends only on camera pa-
rameters, a term μ that depends on object parameters, and the distance of
the object to the camera z:

b ≥ μ − λ − log z, (3.3)

where

λ = log (Δp · h)− log (p · n) (3.4)
μ =B+ log (d) · δ. (3.5)

is separation will come in handy in Section 3.4.3. For convenience, we
provide a concise summary of the symbols used in the aforementioned equa-
tions:

• z is the distance of the object to the camera,

• Δp is the screen-space error in pixels,

• h is the length of the near plane in camera space,

• p is the length of the near plane in pixels in screen space,

• n is the distance of the camera to the near plane,

• B is the maximum bit-level,

• d is the maximum extension of the bounding box, and

• δ is the sample spacing in object space.

41



CHAPTER 3 Adaptive Level-of-Precision

p[].x p[].xp[].y p[].x p[].xp[].y p[].x p[].xp[].yAdaptive
Precision
Buffer

Mesh

zDistance to
Camera

Bit-Level b =  b =  b = 

Figure 3.7: Adaptive Precision Summary. For AP, the per-buffer bit-level b depends on
the distance to the camera z. The grid overlaying the mesh shows the set of possible ver-
tex positions for the respective bit-level. To save GPU memory, only the bits required for
the current bit-level are tightly stored in an adaptive precision buffer. For AP, all position
components use the same bit-level.

3.4.2 Adaptive Precision Buffer

During rendering, we compute one common bit-level b for all positions of
the packed buffer according to Equation (3.3). As we assign the same bit-
level to all positions of a buffer, we call it per-buffer bit-level. We only store
those bits that are required for the per-buffer bit-level in an adaptive pre-
cision buffer. It is a specialization of the packed buffer introduced in Sec-
tion 3.3.3. Like the packed buffer, its major property is that it compactly
stores bits (without fragmentation) that are only necessary for the current
bit-level.

Next, we specify how we keep track of the bit-levels in an adaptive precision
buffer. Obviously, this is very simple and also very memory efficient: As
there is one common bit-level for all positions, we only need to store a single
bit-level for the entire buffer. is allows for efficient random access, for
example in a vertex program (cf. Section 3.6): to access the ith vertex, we
read  · b bits from bit index  · i · b. e resulting three uniformly quantized
numbers are ĕnally converted to single-precision Ęoat.
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eadaptive precision buffer resides in GPUmemory. If the positionsmove,
the per-buffer bit-level is subject to change. In that case, we need to adapt
the precision by adding or removing bits. When adding bits, we upload the
missing bits from the CPU to GPU. Adding and removing bits is carried
out directly on the GPU through efficient data-parallel algorithms (cf. Sec-
tion 3.6). Figure 3.7 summarizes the principle of adaptive precision.

When adding or removing bits, we temporarily unpack the vertex compo-
nents to an unpacked buffer, add or remove the respective bits, and ĕnally
pack themwithout fragmentation. Temporary unpacking of the vertex com-
ponents makes our data-parallel algorithms run very efficiently. However,
we have to provide extra video memory space for the temporary buffer. If
a model is too big to ĕt in the temporary buffer, we have to partition it into
smaller sub-meshes. ere aremany algorithms that segmentmeshes in sub-
meshes. For an overview, see the survey by Shamir [Sha08]. We use a ready-
made package called “METIS” [KK11]: it is simple to use, sufficiently fast
for our models, and delivers satisfying segmentation results.

3.4.3 Crack Removal

When multiple triangle meshes or sub-meshes are used, we have multiple
packed buffers. For each buffer, we assign an independent per-buffer bit-
level. is can, however, lead to unwanted cracks: If each buffer has a dif-
ferent per-buffer bit level, positions that are identical at full precision may
be quantized to different positions. is results in holes, as shown in Fig-
ure 3.8a.

To avoid this, we compute a bit-level on a per-vertex basis. is can be done
very efficiently by using the position’s distance to the camera z and the con-
stants λ and μ from Equations (3.3), (3.4), and (3.5). e per-vertex bit-level
is guaranteed to be no larger than the per-buffer bit-level. is is because the
per-buffer bit-level is computed using the bounding box vertex that is closest
to the camera.

Aer unpacking the position at the per-buffer bit-level, we compute its dis-
tance to the camera z. We use z to compute its per-vertex bit-level. en,
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(a) (b)

Figure3.8: CrackRemoval. (a)Whenpackedbuffers of differentmesheshavedifferentper-
buffer bit-levels, unwanted cracks can occur. (b) We close cracks by computing a common
per-vertex bit-level after unpacking the positions.

we zero-out all bits which are not necessary for the current per-vertex bit-
level. Vertices from different vertex buffers with identical distances to the
camera are therefore assigned to the same per-vertex bit-level. us cracks
are closed, as shown in Figure 3.8b. Note that at the highest bit-level, all po-
sitions have to be aligned to the same global grid as proposed, for example,
by Segovia and Ernst [SE10] or Lee and co-workers [LCL10].

3.5 Constrained Adaptive Precision

When using AP, we obtain an image quality that is indistinguishable from
Ęoating-point positions, particularly when the model is close to the cam-
era. However, at large viewing distances, highly detailed models are prone
to shading and depth-order artifacts. ese types of artifacts occur for low
per-buffer bit-levels, as shown in Figure 3.3b. A remedy would be to deĕne a
minimum bit-level for all vertex positions. But at the same time, this would
strongly impact memory gains. Instead, we propose to analyze each vertex

44



3.5 Constrained Adaptive Precision

Figure 3.9: Shading Artifacts Caused by Altering Positions. A önely tessellated surface
with two sharp creases is rasterized to a pixel grid (gray lines). When altering a vertex posi-
tion, the pixel color of the pixel framed in blue changes signiöcantly. The önal color of the
pixel is shown in the bottom row.

position individually and assign a per-vertex minimum bit-level. We deter-
mine the per-vertex minimum bit-level to avoid shading (cf. Section 3.5.1)
and depth errors (cf. Section 3.5.2). en, we show how to incorporate cov-
erage error control in Section 3.5.3. Finally, we present a compact data struc-
ture that tracks the vertex positions’ bit-levels (cf. Section 3.5.4).

3.5.1 Shading Error

When we alter the bit-level, we move the positions as shown in Figure 3.5.
is does not only affect the pixel location, it also affects shading. In the le
part of Figure 3.9, there is a surface with two sharp creases. A Blinn-Phong
lightingmodel exhibits strong highlights along the creases. e overlaid gray
lines represent the pixel grid. e underlying geometry of the surface is very
ĕnely tessellated. We single out the pixel highlighted by the blue frame. e
box in the bottom row of the Figure 3.9 shows the ĕnal color of that pixel.
In the right of Figure 3.9, we simulate what happens when a positions’ bit-
level is altered: e positionmoves to the right, which causes the highlight to
become signiĕcantly larger. As a result, the ĕnal pixel color is much brighter.
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Figure 3.10: Shading Error due toWrongNormal Vectors. (a) When altering the vertex of
a low curvature surface, the interpolated normal vector sampled at pixel center differs only
little from the original surface. (b) The difference is a lot larger for high curvature meshes.

For a deeper understanding, consider the 2D example of Figure 3.10. e
mesh in the top rowhas a low curvature, whereas themesh in the bottom row
has a high curvature. e pixels are indicated by the blue segments above the
meshes. In the le column, the green mesh uses full precision for its posi-
tion. Additionally, each vertex has an associated per-vertex normal vector
that is used for lighting. In the middle column, we alter the bit-levels of the
positions and get a reduced precision surface. Assume that only the position
of the middle vertex of each mesh moves. e length of this movement is
less than a pixel. Note that only the positions change, but the normal vectors
remain. Finally, the rasterizer samples the geometry at the center of the pix-
els. ereby, it interpolates the unit normal vectors at the sample location.
e interpolation result is used as a parameter for the fragment program that
carries out the per-pixel lighting computations. In the rightmost row of Fig-
ure 3.10, we study the difference of the normal vectors between the interpo-
lation result of the original (green normal vector) and the altered mesh (red
normal vector). For the low curvature mesh in the top row, the difference
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is only subtle. Hence, lighting computations yield a similar result for both
meshes. However, the difference is rather signiĕcant for the high curvature
mesh in the bottom row. is can lead to signiĕcant shading errors.

ere are, of course, other changes to a mesh such as fold-overs or T-vertex
generations that can occur when decreasing the bit-level of a vertex position.
However, they do not affect the result of the lighting computations. Normal
vectors and other attributes that are used for lighting remain at full preci-
sion. at means that a normal vector never Ęips or gets undeĕned. Hence,
fold-overs are no problem in our application. Surfaces rendered with alpha-
blending are an exception as fold overs may undesirably alter opacity.

Next, we study the error of a triangle caused by moving vertex positions. We
label the vertex positions of the triangle p, p, and p. With each vertex,
we store an attribute a, a, and a ∈ Rd. is can be any kind of d di-
mensional attribute, such as a unit normal vector, texture coordinate, and so
forth. When rasterizing a triangle, attributes are interpolated by the barycen-
tric coordinates ( − α − α, α, α)

T:

a(α, α) = ( − α − α) aa + α a + α a

=a + A
(
α
α

)
(3.6)

with
A =

(
a − a, a − a

)
∈ Rd×.

e fragment program f uses the interpolated result to compute the color
value for the sample, i.e., f (a (α, α)).

We examine the change of f (a (α, α)) when moving a vertex position pi.
Without loss of generality, we move p in some direction by a magnitude
of x in world space. Due to this movement, the shading equation f does not
evaluate to f (a (, )) = f(a). Instead, it evaluates the triangle at a different
barycentric coordinate, i.e., f (a (α, α)). is results in a shading error:

E = ‖f (a (α, α))− f (a)‖ .
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We want to make sure that this error is below a certain threshold ε, i.e.,
‖f (a (α, α))− f (a)‖ < ε. However, solving this inequality (α, α)

would tell us how far the barycentric coordinates may change but not how
much this would amount for in world space. We need the world space error
to compute a bit-level, as discussed in Section 3.4.1.

erefore, we need a coordinate transformation from the space of barycen-
tric coordinates to an orthonormal coordinate system in world space. We
deĕne that orthogonal coordinate system parallel to the tangent-plane of the
triangle, i.e., span {p − p, p − p}. e coordinate transformation from
the barycentric coordinates (α, α)

T into the orthogonal coordinate system
(u, v)T is therefore a linear mapping:(

u
v

)
=

(
‖p − p‖ ‖p − p‖ cos φ

 ‖p − p‖ sin φ

)(
α
α

)
= M

(
α
α

)
.

With the inverse mapping (
α
α

)
= M−

(
u
v

)
we rewrite Equation (3.6) in terms of an orthogonal coordinate system:

a(u, v) = a + AM−
(
u
v

)
.

Hence, the shading error of Equation 3.5.1 is:

E =

∥∥∥∥f(a + AM−
(
u
v

))
− f (a))

∥∥∥∥ . (3.7)

Note that ‖ (u, v)T ‖ equals the change Δo that is due to quantization. Inser-
tion into Equation (3.1) gives us the bit-level. erefore, we have to factor
Δo from Equation (3.7). As f can be any kind of function, solving for Δo can
become quite cumbersome. erefore, we use the ĕrst-order Taylor approx-
imation of f around a:
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f (a(u, v)) ≈ f (a) + Jf AM−
(
u
v

)
,

where Jf is the Jacobian of the shading equation f with respect to a. We will
detail the meaning of Jf shortly. First, we use the Taylor approximation to
estimate the sampling error of Equation (3.7):

E ≈
∥∥∥∥f (a) + Jf AM−

(
u
v

)
− f (a))

∥∥∥∥
=

∥∥∥∥Jf AM−
(
u
v

)∥∥∥∥ .
Further, we use the property of matrix and vector norms to isolate (u, v)T:

E ≤ ‖Jf‖︸︷︷︸
kf

·
∥∥AM−∥∥︸ ︷︷ ︸

Et

·
∥∥∥∥(u

v

)∥∥∥∥︸ ︷︷ ︸
Δo

As matrix and vector norms, we use the Euclidean and the spectral norm.
e shading equation constant kf = ‖Jf‖ only depends on the shading equa-
tion. e geometry constant Et =

∥∥AM−∥∥ depends on the geometry of the
mesh. e shading error is smaller than ε if the quantization error Δo is

Δo ≤ ε

kf · Et
.

With Equation (3.2) on page 41, we compute a minimum bit-level from Δo.

We determine the per-vertex minimum bit-level for each vertex and each
triangle. us, we have an array of per-vertex minimum bit-levels for every
vertex. e size of the array is the number of triangles incident to that vertex.
To guarantee that the shading error is maintained for all triangles, we use the
smallest bit-level of the array as the only per-vertex minimum bit-level.

e constant Et measures the speed at which the attribute values change
across the triangle. It depends on the positions and attribute values of the
mesh. erefore, it has to be computed only once per mesh. e constant
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kf depends on the shading equation. Next, we provide kf for Blinn-Phong
shading and texture mapping.

Blinn-Phong Shading Equation Constant

To avoid confusion, we rename the constant kf to kBlinn. Remember from
Equation (2.2) that the Blinn-Phong lighting model is deĕned as

fBlinn = ID · 〈n, l〉+ IS · 〈n, h〉s .

For explanatory purposes, it is sufficient to use only one color channel.
Hence, fBlinn is a scalar function and not a vector function. erefore, the
Jacobian of fBlinn is a row vector:

JBlinn = ID · lT + IS · s · 〈n, h〉s− · hT.

Next, we compute the spectral norm ‖JBlinn‖. In general, the spectral norm
of a matrix A is the square-root of the largest eigenvalue of AAT. Hence, we
need JBlinn · JTBlinn:

JBlinn · JTBlinn = ID · ‖l‖
 +  · ID · IS · s · 〈l, h〉 〈n, h〉s− + IS · ‖h‖

〈n, h〉s−.

As all vectors in this equation are unit vectors, their norms are equal to 1,
and their inner products are smaller than 1. Furthermore, the intensities are
no larger than 1, too. Hence, we bound the Jacobian by

JBlinn · JTBlinn ≤  +  · s+ s.

As JBlinn · JTBlinn is scalar, its largest singular value is its square-root, hence

kBlinn = ‖JBlinn‖ ≤ s+ .

Figure 3.11 shows the distribution of the per-vertex minimum bit-levels at
the example of the trunk lid of the Car.

50



3.5 Constrained Adaptive Precision

120

5 10 15 20 22
0

20

40

60

80

100

2

Th
ou

sa
nd

Ve
rt
ic
es

Minimum Bit-Level

Figure 3.11: Per-Vertex Minimum Bit-Level. The vertices of the trunk lid of the Car are
color-codedusingaheat-mapaccording to their per-vertexminimumbit-level determined
with a Blinn-Phong shading constant kBlinn = . The histogram shows the distribution of
minimum bit-levels. In total, the trunk lid possesses 349,311 thousand vertices.

Texture-Mapping Shading-Constant

For texture mapping, the shading constant kTexture corresponds to the maxi-
mum slope of the texture signal. It is determined by ĕnite differencing across
the texture. e ĕnite difference with the largest magnitude is then kTexture.
To compute the ĕnite differences between two texels, we need the distance
between them. at is /w and /h, respectively, where w and h denote the
width and height of the texture in texels. Instead of computing kTexture for
each texture individually, we use a worst case approximation. It occurs
for two neighboring black and white texels, i.e., an intensity difference of
 −  = . erefore, we obtain

kTexture = max
{



w
,


h

}
= max {w, h} .
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Figure 3.12: Cause of Depth Errors. At a higher bit-level, the red and the blue object, as
seen from the camera, have a well-deöned order, as shown on left. When decreasing the
bit-level by one bit (right), surfaces may penetrate each other. This results in undesired
depth artifacts. The binary digits represent the coordinates along the main directions.

For example, if Et =  and the texture has width and height of 256 texels
each, we need at least 8 bits for the vertex positions.

3.5.2 Depth Error

Reducing the per-buffer bit-levelmay change the depth order of the triangles.
is can result in rendering artifacts when two triangle meshes are closely
together. Consider the 2D example of Figure 3.12. e blue and the red line
curve represent two different objects. e underlying lattice shows the pos-
sible quantization locations of the positions at two bit-levels (le and right,
respectively). On the le of Figure 3.12, the two objects are shown at a high
bit-level. ere is a clear order imposed on the objects: when the objects
are observed from the location of the camera, the blue object is entirely in
front of the red object. However, when decreasing the bit-level, the objects
intersect each other, as shown on the right of Figure 3.12. is changes the
order of the triangle such that the red object is partially in the front and in
the back of the blue object. at leads to rendering artifacts.

is artifact can be avoided by individually constraining the bit-levels of ver-
tex positions in a pre-process: e vertex-positions of two objects that po-
tentially intersect each other are initialized at their highest bit-level. en,
we decrease the bit-level of all vertex positions by one bit and test for inter-
secting triangles. For every intersecting triangle pair, we increase the bit-
level of the vertex positions again and use this bit-level as their minimum
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(a) (b)

Figure 3.13: Removing Depth Artifacts. The top row shows the rendering, the bottom
rowawire-frame close-up. (a) AP is prone to depth artifacts, aswell as CAP, if we assign the
per-vertex minimum bit-level based on our shading-error criterion only. The mesh of the
knob penetrates the mesh of the “AUTO” character. (b) When we incorporate our depth-
error constraint, artifacts caused by faulty depth order are removed.

bit-level. We continue decreasing bit-levels until we reach bit-level one, or
until all vertex positions received a minimum bit-level.

Figure 3.13a shows an example where depth errors can lead to undesired
artifacts. e “AUTO” character is modeled using triangles that are placed
on top of the surface of the knob. When using CAP with our pre-process as
shown in Figure 3.13b, no artifacts occur.

3.5.3 Coverage Error

e minimum bit-level, computed with one of the methods introduced in
the previous sections, is view-point independent. It does not guarantee that
a certain coverage error ismaintained. erefore, we need to combine it with
the coverage error determined for AP.

In each frame, we compute the per-buffer bit-level in the exact same way as
for AP. When processing the vertices, we compare the per-buffer bit-level

53



CHAPTER 3 Adaptive Level-of-Precision
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b = 

b = 
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87 9

Per-Vertex Bit-Level:

Figure 3.14: Constrained Adaptive Precision. First, the per-buffer bit-level b is chosen
based on the distance of the object to the camera z. Then, the maximum of b and the
precomputed per-vertex minimum bit-level is chosen as the önal per-vertex bit-level. The
vertex positions are color-coded according to their per-vertex bit-level.

against the per-vertexminimum bit-level for every position. We use the per-
vertex minimum bit-level only if it is higher than the per-buffer bit-level:
Although the per-buffer bit-level would be sufficient to handle coverage er-
rors, it is not sufficient to ĕx shading errors. Hence, we choose the per-vertex
minimum bit-level instead.

e idea is summarized in an example in Figure 3.14. If the mesh is close to
the camera, then the bit-levels are dominated by the per-buffer bit-level. e
more distant the object is to the camera the more vertices use the per-vertex
minimum bit-level instead of the per-buffer bit-level.

3.5.4 Binned Adaptive Precision Buffers

CAP requires us to store an individual number of bits per vertex position.
However, storing a bit-level individually for each vertex would require addi-
tional memory. We propose a more memory efficient data structure.
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Figure 3.15: Binned Adaptive Precision Buffer. The vertex positions p are sorted by their
per-vertex minimum bit-level bmin and stored in the unpacked buffer U. Bits that are less
signiöcant than the minimum bit-level are removed from the positions, and all positions
are compactly stored in a binned adaptive precision buffer P. Bits are represented by the
colored boxes. They are color-coded according to their minimum bit-level. More signiö-
cant bits are shaded darker. An indexing structure consisting of two LUTs (VertexId and
BitId) enables random access. VertexId encodes the index to the örst vertex of a bin,
and BitId encodes the corresponding bit-index within the packed buffer P.

We put the vertex positions into bins of common minimum bit-levels. e
number of bins is limited since there are at most as many bins as bit-levels.
Positions that have a per-vertex minimum bit-level b are located in bin b− .
We call this buffer binned adaptive precision buffer.

To further avoid external fragmentation between the bins, we store all bins in
one continuous buffer P. By this, we effectively reorder the vertices according
to their minimum bit-level. Note that we also have to adapt the index-buffer
and reorder all other attributes as well. Each vertex position only stores the
bits it requires to maintain its bit-level. Initially, that amounts for the posi-
tion’s minimum bit-level.

We use a small indexing structure to allow random access: For each bin b,
we store the index to its ĕrst vertex position, VertexId [b], and its corre-
sponding bit-index, BitId [b], within the buffer P. Bin b goes from vertex
index VertexId [b] through VertexId [b+ ] − , inclusively. In the buffer
P, bin b occupies bits BitId [b] through BitId [b+ ] − , inclusively. An
example of an adaptive precision buffer and its indexing structure is shown
in Figure 3.15.
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To unpack the jth vertex position, we ĕrst have to ĕnd out to which bin it
belongs. is is done with a binary search in the array VertexId. As the
number of bit-levels is rather small — in our case 32 — only a few instruc-
tions are required for the binary search. is allows us to quickly determine
the bin index b of the jth vertex. Relative to the ĕrst vertex of bin b, j is the
rth vertex, where

r = j− VertexId [b] .

Bin b starts at bit-index s = BitId[b]. Each vertex position in bin b takes up
 · (b+ ) bits. Hence, we unpack the jth vertex by reading  · (b+ ) bits
from s+ r ·  · (b+ ).

Similar to the adaptive precision buffer, we are able to adjust the per-buffer
bit-level: First, we unpack the packed positions to a temporary buffer. en,
we add or removemissing bits, but respect the per-vertexminimumbit-level.
Furthermore, the indexing structure, consisting of the arrays VertexId and
BitId, has to be adjusted. en, we tightly pack the vertices again. Fig-
ure 3.16 illustrates an example of binned adaptive precision buffers at differ-
ent per-buffer bit-levels.

3.6 GPU Implementation

We store vertex positions in a packed buffer, i.e., an adaptive precision or
a binned adaptive precision buffer, on the GPU in order to save memory.
ere are two challenges that are crucial for LOP running efficiently on a
GPU: First, for efficient rendering, we need to access positions quickly from
within a vertex program, i.e., we need a tight integration with the graphics
pipeline. Second, in order to keep the time spent on adapting the bit-level
as short as possible, we need fast data-parallel algorithms for adding and
removing bits that run directly on the GPU.
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(b) Per-Buffer Bit-Level b = 

(c) Per-Buffer Bit-Level b = 

Figure 3.16: Bit-Levels of a Binned Adaptive Precision Buffer. The binned adaptive pre-
cision buffer P is tightly packed. The per-buffer bit-level b is adapted by adding and re-
moving bits. This requires adjusting the indexing structure (VertexId, BitId). Positions
maintain the bit-level if theirminimumbit-level bmin is higher than the per-buffer bit-level.

3.6.1 Graphics Pipeline Integration

All programmable stages of the graphics pipeline may access data from a
packed buffer. In our scenario, read-access from a vertex program is partic-
ularly important. e packed buffer containing the positions is bound as a
1D texture. e attribute buffers, such as normal vectors or texture coordi-
nates, as well as an index buffer, are bound as usual.

Each vertex that is processed has access to the shading language built-in
variable gl_VertexID that corresponds to the index of the vertex which it
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processes. We use gl_VertexID to compute the bit-index of the packed
position: We pass the per-buffer bit-level as uniform variable to the vertex
program. For CAP, we have to additionally supply the indexing structure
(VertexId, BitId). Using the bit-index, we read the corresponding bits from
a texture containing the packed buffer. e bits are separated to a vector of
three uniformly quantized numbers, cracks are closed (cf. Section 3.4.3), and
the uniformly quantized numbers are converted to Ęoating-point numbers
for further processing.

Note that this requires only little change to existing code. Instead of ac-
cessing the vertex positions using an attribute variable bound to a vertex
buffer, we call a library function that transparently unpacks the position to a
Ęoating-point vector. Hence, the rest of an existing vertex program remains
unchanged.

3.6.2 Bit-Level Adaption

Regardless of using AP or CAP, we determine the per-buffer bit-level for
every frame. If the per-buffer bit-level changes, we need to adapt the bit-
level of the vertex positions stored in the packed buffers prior to rendering.
For real-time rendering applications, it is crucial that bit-level adaption runs
as quickly as possible. erefore, it is no option to stock packed buffers for
every possible bit-level on the CPU and upload the appropriate buffer each
time the bit-level changes. While the GPU memory usage would be small,
memory consumption on the CPU would dramatically increase. Moreover,
this approach would entail large amounts of memory transfers from CPU to
GPU. at would further decelerate the overall performance.

Instead, we keep CPU-to-GPU memory transfer at a minimum: when in-
creasing the bit-level, we upload only the new bits to the GPU and add them
to the existing packed buffer. When decreasing the bit-level, the superĘuous
bits have to be removed and almost no memory traffic from CPU to GPU is
necessary. It is crucial that bit-level adaption algorithms run directly on the
GPU. erefore, we need data-parallel algorithms that utilize the processing
power of GPUs. We propose splitting bit-level adaption into an unpack stage
and a pack stage.
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Figure 3.17: Data-Parallel Unpacking and Packing. Each position component is repre-
sented by a different color. For clarity, the data-words use 4-bits instead of 32-bits. (a) For
packing, we assign one thread for each position component. Each thread reads the ap-
propriate number of bits from the packed buffer P and ölls low order bits with zeros. In
the ögure, the unpacked data-words are written to the unpacked buffer Uwithout adding
or removing bits. In our implementation, adding and removing bits is combined with un-
packing. (b) For packing, one thread is assigned to each packedword. Each thread gathers
those bits fromposition components from the unpackedbuffer that belong to the thread’s
packed word. Afterwards, the packed words are stored in the packed buffer P.

In the unpack stage, we run a kernel that uses one thread per position com-
ponent. Each thread unpacks a position component to a uniformly quan-
tized number, as described in Sections 3.4.2 and 3.5.4. e uniformly quan-
tized number is stored in a register. en, we add or remove bits. Finally,
we write out the unpacked data to a temporary buffer of 32-bit words. e
unpacking process is depicted in Figure 3.17a using 4-bit words instead of
32-bit words for brevity. While adaptive precision buffers add and remove
bits to and from all position components, binned adaptive precision buffers
only do so for position components up to a certain bin, to respect the mini-
mum per vertex bit-level (c.f. Section 3.5.4).

59



CHAPTER 3 Adaptive Level-of-Precision

In the pack stage, we convert the temporary buffer to a packed buffer. Con-
sider the packed buffer as an array of 32-bit words. Each thread of the pack-
kernel is assigned to one of these 32-bit words. A thread gathers the as-
sociated bits from the unpacked temporary buffer, tightly packs them into
its 32-bit word, and writes the packed word out to the packed buffer. Fig-
ure 3.17b illustrates the packing process using 4-bit words. Before launching
the pack kernel, we reallocate the storage of the packed buffer, i.e., we make
it bigger if we add bits or smaller when we remove bits.

is approach requires only little CPU-to-GPU memory transfers: Each
time the bit-level increases, only the missing bits have to be uploaded to the
GPU, i.e., only three bits per vertex position. For a bit-level decrease, no data
has to be uploaded to the GPU.

Although being tailored for compute APIs such as OpenCL or CUDA, we
have chosen to implement the bit level adaption algorithms using a combi-
nation of transform-feedback and vertex programs. is turned out to be
faster than a CUDA or OpenCL implementation. For vertex buffers that
inter-operate with a compute API, we observe an extra cost of about 0.1ms
when resizing. is becomes a serious issue when many vertex buffers are
used. For the Car model shown in Figure 3.3, it can easily happen that 250
vertex buffers require adaption. is would already amount for 25ms with-
out any bit level adjustment or rendering.

Instead of calling a CUDA kernel for packing, adding bit, or removing bits,
we emulate thread spawning by launching a draw call with as many point
primitives as there are vertex position components. We use vertex programs
to mimic kernels. e built-in variable gl_VertexID serves as thread iden-
tiĕcation number. We bind neither a vertex buffer nor an index buffer to
the OpenGL pipeline. All input data is read from a texture. e stream-out
stage serves as a mean to output data to vertex buffers.

3.6.3 Rendering Algorithm

e algorithms for adding and removing bits require a GPU buffer where
positions are temporarily unpacked. is buffer must be large enough to ĕt
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Data Set Sub-Meshes Min. Max. Avg. Total

David   ,  ,  , , 
Car ,   ,  ,  , , 

Table 3.1: Details of the David and the Car Data Set. The table lists the number of sub-
meshes (column Sub-Meshes), the minimum (columnMin.), the maximum (columnMax.),
and the average (column Avg.) number of vertices of all sub-meshes. Column Total lists
the total number of vertices.

all unpacked positions of a model. When using only one model, this would
effectively mean no memory gains at all, as we need the memory space for
both packed and unpacked vertices.

However, in practice, a scene rarely consists of one singlemodel andmultiple
models are used instead. ese models have to be rendered sequentially one
aer the other by issuing separate draw-calls. e bit-levels are also adapted,
model bymodel prior to every draw call. Hence, we only need one temporary
buffer that has to ĕt the unpacked vertex positions of the largest model. e
GPU buffer that contains the uploaded bits is also shared across multiple
models.

To minimize context switches between bit-level adaption and drawing, a
frame is rendered using two passes: In a ĕrst pass, we adapt the bit-levels
of all models if necessary. In the second pass, all models are drawn.

3.7 Results

WeevaluateAP andCAP fromSections 3.4 and 3.5with two trianglemeshes:
Michelangelo’s David (cf. Figure 3.18) and an industry model of a car (cf.
Figure 3.19). Both data sets already consist of multiple meshes, so further
segmentation as discussed in Section 3.4.3 is not necessary. e Car is tes-
sellated from trimmed NURBS surfaces using a high quality tessellation al-
gorithm [Suß08]. e David model originates from a point-cloud laser-scan
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reconstructed into 150 triangle meshes [LPC∗00]. In total, the data set con-
sists of almost one billion triangles. In the explicit representation, index and
vertex arrays (with positions and normal vectors) would amount for more
than 22GiB.erefore, themodel would not ĕt inGPUmemory that is avail-
able at the time of writing this thesis. With vertex quantization [GH97], we
reduce the model to 20M vertices. Aer decimation, the model occupies
one GiB of data. Details of the two data sets are listed in Table 3.1.

We carry out the experiments on an Nvidia GeForce GTX 580 with 1.5GiB
graphics memory at a resolution of 1920 × 1080 with 16 × MSAA and
on an Intel Core i7/2600 CPU running at 3.40GHz. Bit-level adaption re-
quires temporary video memory (see Section 3.6.1): one buffer for unpack-
ing packed buffers, and another buffer that stores uploaded bits. As we adapt
the bit-levels of the sub-meshes one aer the other, the temporary memory
is shared for all models. Hence, we allocate temporary memory that ĕts the
unpacked positions of the largest sub-mesh.

For coverage error (see Section 3.4.1), we set the error tolerance to half a
pixel. We use the Blinn-Phong lighting model. For CAP, we set the mini-
mum bit-level according to the method of Section 3.5.1. To avoid shading
errors, we empirically determine the shading constant kBlinn. is signiĕ-
cantly reduces artifacts caused by depth-errors, as well. Hence, we refrain
from running the algorithm avoiding depth errors from Section 3.5.2. Also,
due to its quadratic complexity, it is impractical for large models.

3.7.1 Quality

We compare the quality of images generated with AP and CAP (abbreviated
by AP- and CAP-images) against the baseline images generated with single-
precision Ęoating-point positions. e respective images for the David
model are shown in Figures 3.18a, b, and c. For the Car model, see Fig-
ures 3.19a, b, and c.
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Figure 3.18: Quality Results of the David Model. The subögures show Michelangelo’s
David (a) rendered with single-precision øoating-point positions, (b) AP, and (c) CAP. The
per-pixel shading-errors are color-coded using a heat-map for (d) AP and (e) CAP.

Still Images

While differences in the images of David are barely visible, the AP-images
in Figure 3.19b of the Car model exhibit differences over the baseline im-
age in Figure 3.19a: they are noticeable at the edges of the doors and the
engine hood. ese errors are due to shading, and therefore CAP is able to
remove these artifacts as shown in Figure 3.19c. Visually, the CAP-image is
not distinguishable from the baseline image.

Tomeasure the error, we subtract theAP- andCAP-images from the baseline
images and color-code the differences using a heat-map in Figures 3.18d, e,
and 3.19d, e: red corresponds to a high error and blue to a low error. ese
images validate the visual impression, as the CAP difference images contain
signiĕcantly more blue than the AP difference images. For the Car model,
the AP difference image is red along the edges of the doors and the engine
hood. at is exactly at that location where errors are visually perceivable.

We quantify the improvement from CAP over AP by computing the peak
signal-to-noise ratio (PSNR) [Say05, Sal05]. It is a common way of studying
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(a) Float

(b) AP (c) CAP

(d) Difference AP – Float (e) Difference CAP – Float

Figure 3.19: Quality Results of the Car
Model. The subögures show the Car
(a) renderedwith single-precision øoating-
point positions, (b) AP, and (c) CAP. The
shading-error of AP, shown in (d), is higher
than the one of CAP, shown in (e). The
color-coding is the same as in Figure 3.18.

the quality of different lossy image compression methods. A higher PSNR
means better image quality. We compute the PSNR between the baseline
image and either the AP- or CAP-image.

e PSNR of AP for the Car is 31 dB and 45 dB for CAP. For the David
model, the PSNRs values are 31 dB for AP and 42 dB for CAP. is amounts
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(a)

(b) (d)

(c) (e)

Figure 3.20: PoppingArtifacts. Wemove theCarmodel in (a) slightly towards the camera.
(b), (c), (d), and (e) show a close-up of the blue frame in (a). The close-ups of (b) and (c) are
from two successive frames rendered with AP. The apparent differences between (b) and
(c) result in unwanted popping artifacts when using AP. (d) and (e) are the same frames
rendered with CAP. As there are no visual differences, no popping artifacts occur.

for an increase of about 10 dB, which is a signiĕcant improvement. A coding
optimization that increases the PSNR by more than 0.5 dB is considered to
be an improvement that is worth incorporating to an image compression
method [Sal05].

Popping Artifacts

e abrupt change of bit-levels between two successive frames of an anima-
tion may lead to popping artifacts. Consider the Car in Figure 3.20a. All
other sub-ĕgures show close-ups of the area marked with a blue rectangle.
We observed popping-artifacts for the Car model when using AP: Between
sub-ĕgure b and c, the Car is moved slightly towards the camera. e im-
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Car David
b AP CAP AP CAP

 . % . % . % . %
 . % . % . % . %
 . % . % . % . %
 . % . % . % . %
 . % . % . % . %
 . % . % . % . %
 . % . % . % . %
 . % . % . % . %

Table 3.2: AP and CAP Memory Usage. We position the camera at different positions
such that the average per-buffer bit-level is as shown in column b. The last four columns
show the relative memory usage of AP and CAP for the Car and the David model relative
to vertex positions stored with single-precision øoating-point numbers.

ages show the Car at almost the same distance, yet they are different, and this
results in visible popping artifacts.

e reason for AP exhibiting popping artifacts is that in b, there are already
shading-artifacts. ey vanish as soon as their per-buffer bit-levels are in-
creased. is is exactly what happens when the object moves just slightly
closer to the camera.

Hence, popping artifacts result from shading artifacts, and therefore, CAP
effectively removes popping artifacts, as shown in Figures 3.20d and 3.20e.

3.7.2 Memory Usage

Table 3.2 shows the memory usage of AP and CAP relative to the memory
usage of positions stored as Ęoats. We position the camera such that the
average per-buffer bit-level reaches the numbers shown in column b. e
smaller the bit-level the further the object is away from the camera.
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e models ĕll the entire screen at a bit-level of 10 bits. ere, we observe a
compression factor of 3.2:1 for AP and 2.5:1 for CAP over single-precision
Ęoating-point positions.

e more distant the object is the higher the compression ratio becomes: at
an average per-buffer bit-level of 6, we obtain about 5.5:1 for AP. As render-
ing theCarmodel withCAP requiresmore precision, the gains frombit-level
6 over bit-level 10 are only small.

We could obtain higher memory gains with a little bit of extra work: Cur-
rently, we assign one common shading constant kBlinn for all sub-meshes of
the Car for simplicity. e sub-meshes of the Car model have different ma-
terials, and some could achieve the same quality with a much smaller kBlinn.
is would reduce memory requirements even further.

Rendering the David model with CAP allowed us to choose a much smaller
kBlinn without noticing any differences in shading. erefore, the savings
from bit-level 6 over 10 are much higher than those obtained with the Car
model. In fact, we did not even observe visual rendering artifacts when using
AP only.

In general, CAP requires more memory than AP, as it restricts the positions
to a minimum bit-level. e beneĕt of the higher memory usage is a better
rendering quality.

3.7.3 Rendering Performance

In Section 3.6.1, we described how to unpack positions from a packed (con-
strained) precision buffer directly in a vertex program. While the effort from
a programmer’s perspective is reduced to a library function call, vertex pro-
gram complexity increases. To pinpoint the impact on the overall rendering
performance, we measure rendering timings in milliseconds per frame at
various average per-buffer bit-levels. erefore, we place the model relative
to the camera in the exact same way as described in the previous experiment
of Section 3.7.2.
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Car David
b AP CAP Float AP CAP Float

 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .

Table 3.3: AP and CAP Rendering Performance. The camera is located the sameway as in
the experiment of Table 3.2. Columnb is the averageper-buffer bit-level. All other columns
list rendering timings for the Car and the Davidmodel using AP, CAP, and single-precision
øoating-point numbers (column Float), to represent positions.

Table 3.3 shows the result for AP, CAP, and single-precision Ęoats (column
Float) for the Car and the David model. AP and CAP deliver faster ren-
dering timings than Ęoat, particularly for smaller bit-levels. e smaller the
bit-levels are the less memory has to be accessed by the into the vertex pro-
gram, which increases the overall speed. As CAP requires more effort, it is
generally more expensive than AP, but also yields a rendering quality that
is indistinguishable from images generated with Ęoat positions. Moreover,
CAP still achieves similar frame-times as those obtained with Ęoats, while
saving up to 75% of the memory.

Unlike all other columns, the frame-times for the David model using Ęoats,
shown in the last column of Table 3.3, increases the further the object is away
from the camera. e smaller the model becomes the more triangles are
rasterized to the same pixel location, which increases the synchronization
effort of the depth test.
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Figure 3.21: Rotation Motion Timings. The four charts show the performance timings
for rendering (red curve) and changing the bit-level (blue curve) for a rotational motion
lasting 10 s. The camera rotates around the models while the objects öll the entire screen.
The animation time is shown along the horizontal axis and the performance timings along
the vertical axis. We test AP (left column) and CAP (right column) for the Car model (top
row) and the David (bottom row).
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Figure 3.22: Dolly Motion Timings. We show performance timings for rendering (red
curve) and changing bit-levels (blue curve) for a dolly animation that last 20 s. At second
0 and 20, the model is the furthest away from the camera. At second 10, the model is the
closest to the camera. Otherwise, the experiment and themeaning of the axis labels is the
same as in Figure 3.21
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3.7.4 Changing Bit-Levels

Tomeasure the impact of bit-level adaption, we use predeĕned camera paths
and log the time spent for rendering and bit-level adaption in each frame.
e time for adapting the bit-level includes:

• uploading missing bits (when adding bits),

• unpacking and either adding or removing bits,

• resizing the packed buffer,

• packing the unpacked data into the packed buffer again.

As predeĕned camera paths, we use two typical motions: A rotational path
and a dolly path. In the rotational path, the camera rotates around the object.
e object is aligned to the camera such that it ĕlls the entire screen. e
average per-buffer bit-level varies from 9.98 to 10.3 bits (Car) and from 9.21
to 9.66 bits (David). e dolly motion ĕrst moves the camera towards the
object and then back again. Here, the average per-buffer bit-level is more
dynamic and obtains values of 6.56 – 11.5 bits (Car) and 6.09 – 10.7 bits
(David).

e curves in Figures 3.21 and 3.22 show the timing results for the two mo-
tions. e blue curves represent the time spent for bit-level adaption, and
the red curves represent the time spent for rendering. e timings for AP are
shown in the le columns, and the timings for CAP are shown in the right
columns. We test both Car (top rows) and David (bottom rows) model.

Bit-level adaption for the rotational motion (cf. Figure 3.21) has only little
impact on the overall rendering performance. is is due to the fact that
the distance of the camera to the sub-meshes is almost constant. erefore,
bit-level adaption becomes a seldom event.

During the dolly motion (cf. Figure 3.22), we see that bit-level changes occur
for many sub-meshes within a couple of frames. is can be seen at the
peaks along the blue curves. Even though many bit-level changes are carried
out during the same frame, bit-level adaption never dominates rendering
timings.
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Although the David model has more vertices than the Car model (cf. Ta-
ble 3.1), bit-level adaption is faster than it is for the Car model. e Car
model has many small vertex buffers that are sometimes as small as four ver-
tices. Along with that, the average number of vertices per sub-mesh is signif-
icantly smaller for the Car. For many sub-meshes of the Car, simply launch-
ing the bit-level adaption is the most expensive part of the entire bit-level
adaption process. Combining several sub-meshes could speed this process.

3.8 Conclusion and Future Work

In this chapter, we introduced level-of-precision (LOP) methods for the
compression of positions in GPUmemory. e core idea is to adjust the pre-
cision of vertex positions in order to save memory. ereby, the precision
is interactively adapted to control rendering errors caused by representing
positions at a lower precision.

For dealing with coverage errors, we presented adaptive precision (AP). is
method is fast and easy to implement. It is suitable for models that are not
prone to shading artifacts. For models prone to shading artifacts, we recom-
mend using constrained adaptive precision (CAP). It reduces shading and
depth errors while keeping GPU memory usage low.

Storing positions using either AP or CAP delivers frame-rates comparable
to storing positions with standard single-precision Ęoating-point numbers.
At the same time, we obtain high memory savings from 60% to 85%.

Our methods allow reĕning and coarsening the LOP by adding or remov-
ing bits interactively during rendering. We achieve this through fast data-
parallel algorithms. Accessing our compact data-structures from a vertex
program is fast, and it is comparable to the speed of reading Ęoats. More-
over, our data structures can be integrated into existing GLSL program code
with minimal changes.

In this chapter, we explored LOP approaches on vertex positions only. As we
see in the next chapter, not all vertex attributes are suited for LOP: unit nor-
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Figure 3.23: Combining LODandLOP. Additionalmemory beneöts canbeobtainedwhen
integrating LOD- and LOP-methods.

mal vectors should not be stored with varying precision, because this would
result in changing color values.

LOP can be applied to texture coordinates: Texture coordinates address sin-
gle texels. For instance, the texture coordinates for a texture with 256 by 256
texels require log  =  bits in each direction. When amodelmoves away
from the camera, sampling from a large texture causes aliasing. To prevent
aliasing, a ubiquitous technique called mipmapping [Wil83] is used: Instead
of using a texture with 256 by 256 texels, a down-sampled and pre-ĕltered
version of the texture with only 128 by 128 texels is used. In that case, 7 bits
for each texture coordinate are sufficient. If the model moves even further
away from the camera, a 64 by 64 texel texture is sufficient for all vertices.
erefore, we can save one more bit one the texture coordinate components.
When mipmapping, the width and height of the texture are halved until a
texture containing a single texel is reached. erefore, texture coordinate
precision can go down to 0 bits for distant objects. If the model gets closer
to the camera, we add bits to texture coordinates again.

Future research also includes the incorporation of LOP and LOD meth-
ods. For a coarse LOD, a low LOP suffices to represent the vertex positions.
erefore, memory savings from both methods can be combined beneĕ-
cially. Figure 3.23 summarizes this idea. e ĕgure is the continuation of
Figures 3.1a and 3.1b from Section 3.1. Enhancing discrete LOD-methods
and AP should be straight-forward, however, more research is required for
continuous LOD-methods and CAP.
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CHAPTER 4

Unit Vector Compression

Unit vectors are ubiquitous in Computer Graphics. Mostly, they are used to
represent surface normal vectors that are required for lighting computations.
Typically, every vertex of a triangle mesh possesses one surface normal vec-
tor. When stored naively, unit vectors consume as much space as 3D posi-
tions. ey can be compressed very easily. However, care has to be taken, as
the accuracy of surface normal vectors directly affects image quality, particu-
larly for ĕnely resolved models. Moreover, compression and decompression
induces extra computational effort. For real-time applications, this effort
has to be as small as possible.

In this chapter, we analyze unit vector representations. e most impor-
tant and most widely used one is to use three Ęoating-point numbers. ey
serve as baseline for quality and speed. At single precision, they consume
96 bits. We analyze the error of this representation and show that the dis-
cretization error inherent to single-precision Ęoating-point unit vectors can
be achieved by exp (.) uniformly distributed unit vectors, addressable
by 50 bits. us, we can theoretically save 46 bits and not sacriĕce accuracy.

We look for representations of unit vectors other than three Ęoating-point
numbers that maintain this error and whose memory consumptions come
close to 50 bits per unit vector. We ĕnd that parameterization methods are
an effective way to obey this error. erefore, we present several parameteri-
zationmethods and study their errors using different quantization strategies.

We conclude that octahedron projection performs best. Unit vectors stored
in that representation are efficiently converted from and to three Ęoats. Par-
ticularly, they are very compact: they require 1.14 bits more than the theo-
retical optimal unit vector representation.
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4.1 Introduction

A unit vector is a vector with an Euclidean length of one. In 3D Computer
Graphics, we mostly deal with 3D unit vectors, i.e.,

n =

nx
ny
nz

 ⊆ R, with ‖n‖ =
√

n
x + n

y + n
z = . (4.1)

e set of 3D unit vectors S deĕnes a sphere with radius one, a so-called
unit sphere:

S = {n with ‖n‖ = } . (4.2)

A vector n′ 6=  is mapped to a unit vector n through normalization, i.e.,

n =
n′

‖n′‖
, with n′ 6= .

Even though the name might suggest it, a normal vector is not necessarily a
unit vector. A normal vector is rather a vector that is perpendicular to a point
on a surface. In Computer Graphics, most normal vectors are indeed unit
vectors. erefore, the terms “normal vectors”, “unit vectors”, “unit normal
vectors”, or short “normals” are oen used interchangeably.

4.1.1 Motivation

Unit vectors are widely used in Computer Graphics. Lighting computations
are themost prominent application of unit vectors (cf. Section 2.2.2). Almost
all lighting models require unit normal vectors.

Our application is driven by high-quality rendering of ĕnely tessellated
computer-aided design (CAD) models. In such a scenario, we need to han-
dle triangle meshes that have millions of vertices. In these cases, memory
space may become a problem, particularly when many of these models are
displayed simultaneously. Hence it is desirable to keep their memory usage
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low. Each vertex of the mesh has an associated per-vertex unit normal vec-
tor that is determined very carefully during the tessellation process. A unit
vector compression scheme that is not able to maintain the accuracy of the
unit vectors quickly results in artifacts, particularly for these types of mod-
els. erefore, we need a unit vector compression scheme that guarantees a
certain error.

4.1.2 Overview

Unit vectors are commonly represented in the component representation.
at means one real value is stored for each component. Obviously, this
representation suffers from several redundancies: ree real values possess
the magnitude of the entire 3D space R. But the set of unit vectors S is
only a two dimensional surface embedded in 3D space. Just by looking at
their deĕnition in Equation (4.1), unit vectors seem embarrassingly easy to
compress: It is enough to keep the sign of nz and reconstruct nz from nx and
ny.

Unfortunately, it is not as easy as it seems. e main reason is that n can-
not be represented by three real numbers (i.e., R) on a computer. Instead,
we have to quantize them and, therefore, we end up with a ĕnite set of unit
vectors. As any ĕnite set, the discrete set of unit vectors is also prone to
quantization errors. But before we can determine a quantization error, we
ĕrst have to deĕne a proper quantization errormeasure for unit vectors. is
is done in Section 4.2.

With that quantization error deĕnition at hand, we deĕne what an optimal
distribution of unit vectors is in Section 4.3. ereby, we derive two impor-
tant quantities: a lower bound for the accuracy of a unit vector distribution
and a lower bound for the number the unique unit vectors in such as distri-
bution.

e limit for the upper bound is determined by machine precision. ereby,
it is customary to directly quantize the component representation with three
Ęoats. We call this representation of unit vectors Ęoating-point unit vectors
(FPUVs). As all computations with unit vectors are carried out with FPUVs,
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every compact unit vector representation has to compete with FPUV accu-
racy. Floats have ĕnite precision and thus FPUVs possess a quantization
error. We assess this error in Section 4.4.

We study previouswork in Section 4.5 to see if there are alreadymethods that
have the potential to adhere to the quantization error of FPUVs. As most
practical and efficient ones, we identify parameterization methods. ere-
fore, we summarize the most important ones in Section 4.6.

e unit vectors retrieved from a parameterization method require parame-
ters stored as uniformly quantized numbers. We present two ways of quan-
tizing unit vectors and show how to derive the resulting errors in Section 4.7.

We present and discuss results in Section 4.8, including compression and
decompression timings and image quality considerations. We draw conclu-
sions in Section 4.9 and give an outlook to more applications that would
beneĕt from our ĕndings in Section 4.10.

4.1.3 Contributions

In this chapter, we make the following contributions:

• We determine a lower bound for the accuracy of unit normal vectors.

• We assess the quantization error of FPUVs.

• We study the quantization error of more compact unit vector repre-
sentations.

• We ĕnd that parameterization methods are best suited to obtain the
precision of FPUVs.

• For the error analysis, we compare various parameterization methods
using two different quantization strategies.

Moreover, we derive a lower bound for the number of bits that an optimal
unit vector representation requires, such that it is as accurate as FPUVs. For
example, single-precision FPUV reach their lower bound at about 50 bits.
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When using the component representation, they require  · bits =  bits.

Among all investigated parameterization methods we ĕnd that octahedron
projection (OP) performs best. In this representation, a unit vector requires
52 bits to achieve the error of Ęoating-point unit vectors. We show that a
unit vector stored using OP is very close to the optimal distribution of unit
vectors: it always consumes about 1.14 bitsmore. us, any other unit vector
compression method that rivals OP can at most save 1.14 bits on each unit
vector.

4.2 Discrete Sets of Unit Vectors

e set of unit vectors S consists of points on the surface of the unit sphere,
as deĕned in Equation (4.2). In continuous 3D space, the surface of the unit
sphere possesses an unlimited number of points. More precisely, the set of
unit vectors is innumerable. On a computer, however, a set can only be dis-
crete, and therefore it consists of a limited number of unit vectors. We call
such a set the discrete unit sphere q:

q = {q [] , q [] , . . . , q [N− ] ,where ‖q [i]‖ = } .

Of course, there are many ways of discretizing the unit sphere at different
levels of quality. To better assess the quality, we have to deĕne a measure
that helps us evaluate the quality of discrete unit spheres.

4.2.1 Maximum Angular Quantization Error

As a quality measure, we use the geodesic distance between two points on
the surface of the unit sphere. e geodesic distance between two points on
the sphere corresponds to the angle between them. erefore, we call it the
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angular distance between two points a and b and it is computed by

∠(a, b) = arccos
〈a, b〉

‖a‖ · ‖b‖
.

It is better suited than the Euclidean distance, as we are interested in the
direction in which a vector points rather than its position in 3D space. Note
that if a and b are on the unit sphere, they have unit length, and we can spare
the division.

We use the angle between two unit vectors to deĕne our quality measure ΔQ
for a discrete set of unit vectors q as follows: A unit vectorn gets quantized to
a unit vector quantize(n) ∈ q. For example, it may be — but not necessarily
must be — the nearest neighbor within q:

quantize : n 7→ argmin
q[i]

∠(q[i],n).

en, the largest quantization error deĕnes our quality measure ΔQ for q:

ΔQ = max
n∈S

∠ (quantize(n),n) .

We call ΔQ maximum angular quantization error.

We use the maximum rather than other error measures (e.g., average error),
as it covers the worst case and is not biased towards speciĕc object poses.
Consider the example of Figure 4.1. In the ĕrst row there is an eye-shaped
object. e arrows at the surface indicate the normal vectors. e second
row shows the same eye-shaped object rotated by 90 degrees. We compare
the quality of the surface normal vectors using three different unit vector
representations: a continuous one (le), which serves as reference, and two
discrete ones (middle and right).

We ĕrst use a distribution whose vectors are clustered around the poles,
shown in themiddle row. erefore, ΔQ is half the angle between the red and
black vectors (or likewise the green and blue vectors). When representing
the vertex normal vectors of a model with that set, all normal vectors point-
ing in pole direction are very ĕnely resolved. For this speciĕc eye-shaded
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Discrete
small ΔQ

Discrete
big ΔQ

Continuous

Original
Object

Rotated
Object

Figure4.1:Non-Uniformly vs.UniformlyDistributedUnit Vectors. Theeye-shapedobject
is represented by two poses (rows Orignal Object and Rotated Object). In contrast to con-
tinuous unit vectors (left column), discrete normal vectors are prone to errors (middle and
right column). The errors differ depending on the distribution of the discrete unit vectors.
Different object poses result in different quantization errors.

model in that pose, this results in a low discretization error, as the unit vec-
tors of the mesh almost coincide with those of our discrete set. However, the
same model rotated by 90 degrees possesses only normal vectors that cluster
around the equator. erefore, around the equator, the unit vector distri-
bution is a lot sparser and we get a higher discretization error. In contrast,
with a unit vector distribution of a small ΔQ (right column), the discretiza-
tion error is less sensitive to the orientation. When using a distribution with
the larger ΔQ, the discretization error strongly depends on the distribution
of the normal vectors of the mesh at hand.
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4.2.2 Properties of Discrete Sets of Unit Vectors

We use a discrete set of unit vectors q in order to represent unit vectors.
Such a set q has three key features that affect the compactness, quality, and
compression/decompression speed. ese are

• the number of unit vectors,

• the quality of their distribution, and

• the complexity of their distribution.

Number of Unit Vectors

e number of unit vectors affects compression rate. We can enumerate the
elements of q using a look-up table (LUT). ereby, wemap the unit normal
vectors associated with each vertex of a 3D mesh to an entry of the LUT. For
each unit vector of the mesh, we keep the index to one unit vector within the
LUT, rather than three Ęoats. us, every unit vector of the mesh requires
dlog Ne bits. e more unit vectors we use for the LUT the more memory
space an individual unit vector of the mesh requires.

Distribution Quality

e distribution of unit vectors inĘuences the compression quality. When
usingN unit vectors for q, we want them to be optimally distributed, i.e., the
minimum angle between any two unit vectors should be maximized. us,
an optimal distribution is obtained by uniformly placing points on the sur-
face of the unit sphere. We call a set that samples the unit sphere in such a
way a uniformly sampled unit sphere. is is a desirable property, as the prob-
ability of occurrence is the same for all unit vectors. When mapping a unit
vector n to a unit vector of a uniformly sampled sphere, the quantization er-
ror is not biased in certain areas on the unit sphere. In Computer Graphics,
there is no reason that a particular region on the unit sphere should be sam-
pled more densely than others. Reconsider Figure 4.1: the distribution used
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in the middle column is non-uniform whereas the distribution in the right
column is uniform. e uniform discretization gives good results for any
alignment of the object, whereas the non-uniform is only good for a small
subset of alignments. In literature, a uniformly sampled unit sphere is also
called Spherical Covering [Wei11b] for which — unfortunately — no general
solutions exist in 3D space [Wei11a]. at is why we can only try to get a
discrete unit sphere that is sampled “as uniformly as possible”.

Distribution Complexity

As we are not able to give an algorithm that distributes points uniformly on
the surface of the unit sphere, we need algorithms that provide reasonable
distributions of points on the unit sphere. ere are various ways of repre-
senting the distribution q. ese representations differ in compression and
decompression run-time, as well as in their memory requirements. We will
review prior art for these approaches in Section 4.5.

Before that, we ĕrst answer the question how accurate the set of discrete unit
vectors q has to be, such that it is useful in Computer Graphics.

4.3 Lower Bounds for Unit Normal Vectors

eproblemof unit vector compression has previously been tackled bymany
researchers. In many cases, they provided recommendations for the accu-
racy of their representation either by supplying angular discretization er-
rors or numbers of unique unit vectors. One of the ĕrst papers on geom-
etry compression that included unit vector compression was published by
Deering [Dee95]. He conducted “empirical tests” and found that “an angular
density of 0.01 radians between normals gave results that were not visually dis-
tinguishable from ĕner representations”. is amounts for amaximum angular
quantization error of 0.005 radians. He concluded that 100,000 unique unit
vectors should be sufficient to achieve this quantization error.

In the context of point-based rendering, Rusinkiewicz and Levoy [RL00] use
16,224 different unit vectors. is yields a maximum angular quantization
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(a) (b) (c) (d)

Figure 4.2: Artifacts Caused by Poorly Quantized Unit Vectors. We apply a point light to
a car bodyusingBlinn-Phong shading (a). Themodel is densely tessellated (b). Whenusing
single-precision FPUV, no artifacts are visible, as shown in the close-up (c). However, even
with Griffith and co-workers’ accurate distribution of unit vectors, their recommendation
of using 16 bits per unit vector clearly causes visible rendering artifacts (d).

error of 0.02 radians at which it “produces no visible artifacts in the diffuse
shading component”. However, they admit visible banding artifacts for more
complex lighting models.

Later, Botsch and co-authors [BWK02] ĕnd that 8,192 unique normal vec-
tors “proved sufficient in all cases” for their point based rendering approach.
By this, they accept a quantization error of 0.04 radians.

Griffith and co-authors [GKP07] need 16 bits for storing a unit vector: eir
discrete set of unit vectors has 61,442 entries and comes with a quantization
error of slightly below 0.01 radians. ey claim that their scheme produces
“almost no visual difference for rendering” triangles.

Although all of the listed works use unit vectors for the same purpose
(i.e., lighting), the recommendations of what quantization error is sufficient
varies from 0.005 radians to 0.04 radians. However, even though the er-
ror advocated by Griffith and co-authors [GKP07] is one of the lowest from
the list above, it can quickly become insufficient: In Figure 4.2, we compare
their unit vector quantizationwith single-precision FPUVat the example of a
ĕnely tessellated model of a car. We shade the scene with Blinn-Phong light-
ing. e close-up in Figure 4.2b indicates the underlying tessellation that
produces a smooth highlight using single precision in Figure 4.2c. However,
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quantize

Figure 4.3: Cause of the Artifacts with Poorly Quantized Unit Vectors. The two triangles
on the left have different surface normal vectors. Thus, their shading is different. The sur-
face normals are quantized to the same representative of the set of discrete unit vectors
(right). Therefore, the shading results are the same.

in Figure 4.2d, the same close-up generated with the distribution by Griffith
and co-workers exhibits strong banding artifacts. Note that their proposed
unit vector distribution is one of the most accurate methods for that partic-
ular number of unit vectors.

We want to investigate this artifact in more detail. We assume a lighting
model whose outcome is dominated by the orientation of the surface nor-
mal vectors and does less depend on other parameters such as the location of
the point that we want to light. Note that this is exactly the case for ĕnely tes-
sellated models using Blinn-Phong shading lit by an inĕnitely distant point
light source. On the le of Figure 4.3, there are two triangles for which we
compute the lighting. eir surface normal vectors are very similar, yet dif-
ferent. us, the shading result for both triangles is different. When quan-
tizing the unit vectors to the discrete set, shown in the middle of Figure 4.3,
both surface normal vectors map to the same discrete unit vector. erefore,
we compute the lighting with the same unit vector for both triangles, as seen
on the right of Figure 4.3. Consequently, the lighting computations yield the
same color for both triangles. is is the cause for the artifacts of Figure 4.2d.

Note that the example of Figure 4.3 uses Ęat-shading, however, the same
principle also explains the artifacts for Gouraud and Phong-shading. In fact,
all images of Figure 4.2 were generated with Phong-shading.
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4.3.1 Accuracy

Apparently, the precision for unit vectors depends on the application. e
numbers provided by researchers in the list above were sufficient for their
purposes. However, the high variance in the number indicates that no gen-
eral statement on the right accuracy for unit vectors that ĕts all purposes can
be made. Mostly, the number of unit vectors is simply an educated guess
and no mathematical arguments are provided.

It is, however, desirable to derive mathematical bounds for the accuracy of
unit vectors, as empirical estimates are easily rebutted, as seen in Figure 4.2.
Of course, we have to consider a speciĕc application. In Computer Graph-
ics, the main application for unit vectors is lighting. One of the most com-
mon lighting models is the Lambertian lighting model introduced in Sec-
tion 2.2.2. It serves as the diffuse term for a plethora of lighting models. So
a bound for the Lambertian lighting model is necessarily a bound for those
lighting models, too.

Ultimately, the result of the lighting computation is translated into a color
intensity value, which is quantized typically using 8 bits for each color chan-
nel. Hence, the color is subject to a quantization error, too. We estimate the
accuracy in radians that a discrete unit vector distribution needs to obey,
such that the error of the computed color intensity is lower than the color
quantization error.

We simplify the formula of the Lambertian lighting model in Equation (2.1)
by assuming that the dot product of the normal vector n and light vector l is
always positive and assume the highest possible intensity (IA = ), i.e.,

fDiffuse(n, l) = 〈n, l 〉 .

e resulting color is proportional to fDiffuse. Since these values range from
0 to 1, fDiffuse is an upper bound for the color value. e color range is quan-
tized with d bits with a quantization step size of exp (−d). Typically, d = 
bits are used. But d can be larger, for example for high dynamic range dis-
plays.
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Letn be an inĕnitely accurate unit normal vectorwhichwe approximatewith
a unit vectorm. When usingm instead of n the resulting color intensity has
an error of

ΔC = |fDiffuse(n, l)− fDiffuse(m, l)|
= | 〈n, l 〉 − 〈m, l 〉 |
= | 〈n−m, l〉 |.

Using the Cauchy-Schwarz inequality, we can give an upper bound for the
dot product:

ΔC = | 〈n−m, l〉 | ≤ ‖n−m‖ · ‖l‖.

As the vector pointing towards the light source l has unit length, an upper
bound of the error for using the approximated unit normal vectorm instead
of the inĕnitely accurate unit normal vector n is:

ΔC ≤ ‖n−m‖ .

To make sure that the error in the color intensity ΔC is acceptable, it should
be lower than the quantization step size of the color intensity values, which
is exp (−d). us, for all color channels the following inequality holds:

ΔC ≤ ‖n−m‖ ≤ exp (−d) . (4.3)

With the Law of Sines, we ĕnd that the angular difference between the quan-
tized unit normal vector m and original unit normal n should not be larger
than

εDiffuse =  · arcsin
(

ΔC


)
≤  · arcsin (exp (−d− )).

With color depth of d =  bits per channel, this amounts for 0.0039 radians.
Note that this is lower than Deering’s empirical estimations [Dee95], which
are among the highest. Hence, when adhering to his proposition, we would
make ameasurable error already when using a simple diffuse lightingmodel.
More sophisticated lighting models require an even ĕner accuracy.
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4.3.2 Number

We use the Inequality (4.3) to estimate the number of elements a uniformly
sampled unit sphere requires such that this error is obeyed. Since an algo-
rithm that distributes points uniformly on the unit sphere does not exist for
an arbitrary number of points, we give an estimate for the number of distinct
normal vectors we need at least.

Fejes Tóth [FT53, Wei11a] proved that when distributing N points on the
unit sphere, there always exist two points whose geodesic distance t is

t ≤ arccos



(
tan−

(
N

N− 
· π


)
− 

)
. (4.4)

Assume that we were able to distribute N points evenly on the unit sphere.
en, each point’s nearest neighbor is exactly within a geodesic distance of
t from Inequality (4.4). Half that distance t corresponds to the ideal quanti-
zation error:

ΔQopt : N 7→ 

arccos




(
tan−

(
N

N− 
· π


)
− 

)
. (4.5)

By inverting Equation (4.5), we determine the number of unit vectors we
need, such that all pairs have a distance of t:

N : ΔQ 7→ ω(ΔQ)
ω(ΔQ)− π

, where ω(t) = arctan ( cos t+ )−

 . (4.6)

We use Equation (4.6) to estimate lower bounds for the magnitude of dis-
crete unit vector sets. From Equation (4.3), we know that ΔC is negligible
if the angular distance between the original and the discrete unit vectors is
always at least exp (−d). At a color depth of d =  bits, we need at least
N(exp (−)) = ,  unique vectors to obtain correct imageswith Lam-
bertian lighting.
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4.3.3 Conclusion

e number of 237,740 distinct unit vectors that we approximately need in
order to maintain a quantization error of . radians gives us a good
idea of how accurate unit vectors have to be at least. However, the consid-
erations from which the numbers are derived are only valid for the rather
simple Lambertian lighting model. More complex lighting models demand
amuch ĕner unit vector resolution. is could be done by carrying out simi-
lar estimations for other lightingmodels. However, this approach has several
drawbacks:

• Meaningful approximations become tedious to derive for complex
lighting models. is is due to the fact that a lighting model can be
basically described by any kind of shading language code with arbi-
trary complexity.

• Even if we came upwith useful approximations, they are only valid for
the lighting models we considered. If we apply a new lighting model,
it might require a more accurate set of discrete unit vectors.

• e accuracy depends on the number of bits per color channel d. Once
we increase the color depth of our output images, the unit normal vec-
tor distribution is no longer accurate enough.

So the answer to the question of how accurate unit normal vectors need to be
depends on the application. But for many applications the accuracy can only
be estimated. To be on the save side, we have to pick the highest accuracy
we can get, or the accuracy at which we carry out computations with unit
vectors.

In order to ĕnd out the highest possible accuracy, it is necessary to investi-
gate how unit vectors are used in practice. It is customary to carry out com-
putations with unit vectors in the component representation. at means
we use a triple of real numbers n =

(
nx,ny,nz

)T. So no matter how we
represent a discrete unit vector (e.g., by an index into a LUT), at some point
we have to convert it into the component representation. Of course, on a
computer each component cannot be an inĕnitely accurate real number, but
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it has to be approximated by a Ęoating-point number. Other approxima-
tions are possible. However, as mentioned in Section 2.3.1, Ęoating-point
numbers appreciate a widespread hardware support, particularly on mod-
ernGPUs. Due to this, unit normal vectors are typically represented by three
Ęoats, for convenience.

us, the highest possible accuracy on a computer is limited by its machine
precision. erefore, we have to determine the quantization error of FPUVs.

4.4 The Accuracy of Floating-Point Unit Vectors

e three components of a 3D unit vector are encoded using Ęoating-point
numbers. We do not want to recommend a speciĕc accuracy, i.e., half, single,
or double: we have already seen that the decision depends on the application,
and accuracy remains a design choice. e main goal of this section is to
determine how accurate unit vectors in the Ęoating-point representation are.
e conclusions drawn from this section apply to any Ęoating-point format.
In fact, the provided quantization error is a function of the mantissa length
Nm in bits.

4.4.1 Redundancies

We study the redundancies unit vectors possess when we use Ęoating-point
numbers to represent each coordinate. Floats cover a wide range of the real
axis, e.g., single precision goes from−. ·  to . · . However, the
squares of the unit vector components sumup to one, i.e., nx

+ny
+nz

 = .
us, the absolute value of a component is not larger than one, or in other
words − ≤ nx,ny,nz ≤ . We could deĕne a modiĕed Ęoating-point
format that takes this property into account and exploits memory savings.
For example, for single-precision accuracy, the exponent e of a modiĕed
Ęoating-point number does not require the full range from [−, ] and
instead the range [−, ] is sufficient. Basically, we exclude positive ex-
ponents, i.e., the sign bit of the exponent has vanished. Hence, excluding

90



4.4 The Accuracy of Floating-Point Unit Vectors

numbers larger than one effectively saves us at most three bits. However,
there are more memory savings to be exploited.

In the range from − to , where the components of unit vectors are de-
ĕned, Ęoats are distributed unevenly: the closer the values approach zero
the denser the sampling rate becomes. is sampling inĘuences the distri-
bution of unit normal vectors across the unit sphere. Figure 4.4 shows the
sectors of the 2D and 3D sphere with positive components. e heat map
colors encode the resolution of the Ęoating-point unit vectors: cold colors
indicate a ĕne resolution and warm colors indicate a coarse resolution. e
distribution of Ęoating-point vectors is highly non-uniform.

x
 



 











y

x y

z

-3 -4 -5 -6 -7 -8 -9 <-9-2 -3 -4 -5 <-5

Sum of øoat
exponents

Figure 4.4: Floating-Point Unit Vectors Distribution. Left: A 2D unit vector is a point on
the circle, of which we show the örst quadrant only. Its quantized counterpart is a lattice
point in the vicinity of the unit circle. The underlying øoating-point lattice has different
sample densities. The sample density is determined by the exponent of the øoating-point
representation. We show the sum of the exponents to indicate how önely resolved a unit
vector is. The lower the exponent thedenser theunit vectors are sampled. Right: The same
considerations are applied to 3D unit vectors of the örst octant of the 3D unit sphere.
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Figure 4.5: Rotation of FPUVs. (a) We rotate a FPUV from a önely-resolved region of the
øoating-point grid to a coarsely-resolved one. (b) However, the angle between the two
vectors cannot be preserved, as the unit vectors need to be re-quantized.

Similar to other non-uniform distributions, the Ęoating-point unit vector
distribution has undesired properties. Consider the example in Figure 4.5:
e orange and blue vector drawn with solid lines on the le are unit vec-
tors. ey are quantized to themini-Ęoat format introduced in Section 2.3.1.
Note that the angle between them is very small. e dashed errors indicate
the vectors aer rotating them by a common angle. In continuous math-
ematics, we expect that the angle between the rotated vectors is preserved.
However, the vectors are no longer valid Ęoating-point vectors. erefore,
they have to be quantized to Ęoating-point vectors as shown on the right of
Figure 4.5. Due to this quantization, the angle between the two vectors is not
preserved but instead increased signiĕcantly. In Computer Graphics, rota-
tions and other types of transformations are very common. For example, we
typically apply a transformation to map a mesh from its object space coor-
dinate system to the eye space coordinate system. Hence, the extra memory
space devoted for the ĕnely resolved unit vectors around the pole caps is su-
perĘuous aer rotation. We can only be sure that the coarsest resolved unit
vectors maintain their accuracy. Hence, we want to determine the coarsest
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Figure 4.6: Naming Conventions of the Floating-Point Grid. The blocks, i.e., the region
with constant sample spacing, are shown in different colors (left). The cell’s sample dis-
tances in x and y direction, εi and εj respectively, depend on the block indexes i and j
(right). A cell with a lower-left corner v and center c is shown on the right. A real valued
vector inside a cell is quantized to either one of the four lattice pointsmarkedwith crosses.

angular accuracy of the Ęoating-point quantization. is will be done in the
next section.

4.4.2 Maximum Angular Quantization Error

We will ĕrst show how to compute the largest angular quantization error
of 2D Ęoating-point unit vectors. e extension to 3D requires only a little
extra work, which is discussed further down.

Notation

To ĕnd the largest angular quantization error of FPUVs, we have to take the
non-uniform distribution of Ęoats into account. e set of Ęoats, where the
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sample spacing is equal, is called a block:

Bi,j = [exp (i) , . . . , exp (i+ )]× [exp (j) , . . . , exp (j+ )].

In Figure 4.6, regions that are of the same color belong to the same block.

e sample spacing along the main directions of the Ęoating-point grid is
according to Equation (2.3)(

εfloat,i
εfloat,j

)
=

(
exp (i− Nm)

exp (j− Nm)

)
,

where Nm is the number of bits in the mantissa of the Ęoat. roughout this
section, we abbreviate εfloat,i and εfloat,j with εi and εj, respectively.

We deĕne a cellwith respect to its lower-le corner v. Let the cell be in block
Bi,j. A cell is deĕned by the set that consists of the four adjacent Ęoating-
point vectors:

cell(v) =
{(

vx
vy

)
,

(
vx + εi
vy

)
,

(
vx + εi
vy + εj

)
,

(
vx

vy + εj

)}
.

e sample distances εi and εj depend on the location of v, as shown in Fig-
ure 4.6 on the right. We further deĕne the center of a cell as

c =
(
vx + εi/

vy + εj/

)
.

Optimization Functional

Unit vectors are computed by normalizing direction vectors. However, when
computing a direction vector, we already get a quantization error. We will
now derive a formula for the maximum angular quantization error of direc-
tion vectors that also bounds the maximum angular quantization error of
unit vectors.
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Assume that we have a real-valued direction vector s that we want to quan-
tize to a Ęoating-point vector. It is somewhere in the interior of one partic-
ular cell. erefore, it is quantized to one of the four corners of that cell. A
computer carries out the quantization process independently for each coor-
dinate: sx is quantized to either vx or vx+ εi, depending on which of the two
is closer. Likewise, sy is quantized to either vy or vy + εj. If s is the center
of a cell c, the quantization error is the largest. erefore, the quantization
error is

∥∥∥( εi
 ,

εj

)T∥∥∥


.

But this is the error measurement used for points in the plane and not direc-
tion vectors. For direction vectors, the angular distances is better suited to de-
scribe the quantization error, as we have already described in Section 4.2.1.
It is the largest if s coincides with the center of the cell c, i.e.,

ã(v) = max
k={,},l={,}

{
∠
(
v, v+

(
k · εi
l · εj

))}
. (4.7)

Our goal is to ĕnd that cell for which ã is maximized, i.e.,

v′ = argmax
v∈float

ã(v).

is optimization problem is solved more easily if we let v be a real-valued
vector instead of a point on the Ęoating-point lattice. en, in each block
ã(v) is a continuous function, and we can ĕnd its maximum using calculus:

v′ = argmax
v∈R

ã(v).

In order to get an idea of the character of the problem, we plot ã(v) in the
region [exp () , exp ()]

 shown in Figure 4.7. e error is color-coded
using a heat-map, i.e., the warmer the color, the higher the error. In this
plot, the error is the largest in the lower-le cell of diagonal blocks Bi,i. We
will prove this observation now, but before that, we simplify the problem.

We exploit symmetry properties and consider only those cells whose center
c is above the bisection of the ĕrst quadrant, i.e., cx ≥ cy > . In this case,
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Figure 4.7: 2Ds FPUVsAngularQuantization Error. Weplot the angular quantization error
of single-precision FPUVs using a heat-map. According to this experiment, the error is the
largest in the lower-left corner of a diagonal block.

the maximum error of a cell from Equation (4.7) simpliĕes to

ã(v) = ∠
(
v, v+

(
εi


))
. (4.8)

As Equation (4.8) contains arccos and square-root functions, we transform
the problem to a minimization problem:

v′ = argmin
v∈R

a(v),

where

a(v) =

〈
v, v+

(
εi


)〉

‖v‖
 ·

∥∥∥∥v+ (
εi


)∥∥∥∥



. (4.9)
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Figure 4.8: Example of the Vertical Motion. Wemove an arbitrary cell of a block vertically
within that block (left). We önd that the largest angular quantization error is locatedwhere
the function g has a minimum (right), which is located at the bottom of the block. The
example shown here is carried out using our mini-øoat format.

Optimization

In order to minimize a(v), we place a cell somewhere on the 2D grid above
the diagonal of the ĕrst quadrant. We ĕrst consider the case where the cell is
in a block that is also located above the diagonal, i.e., Bi,j with i > j. For that
cell, we perform two motions that move it towards the minimum of a(v).

• Vertical step: First, we move the cell vertically within its block. We
show that theminimumof this verticalmotion is obtained at the lower
edge of the block. erefore, the minimum of Equation (4.9) must be
located on the lower edge of all blocks.

• Horizontal step: e result of the vertical step allows us to restrict our
minimum search to the lower edges of all blocks. We ĕnd that the
minimum is located at the lower-le cell of a diagonal block.

ese two steps require symbolic computations that can be carried out with
the computer algebra system Maple 15 [BCD∗11].
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Figure 4.9: Example of the Horizontal Motion. We move a cell located at the horizontal
edge of all blocks. We cross multiple blocks until we reach a diagonal block. The angular
error associated with this motion (right) is expressed by the array of functions hk(t). The
largest quantization error is located in the lower-left corner of a diagonal block.

e vertical step is mathematically expressed by a univariate function:

g : t 7→ a
(
x
t

)
, where t ∈ [exp (k) , exp (k+ )] .

e constant x has to be chosen such that (x, t)T is above the bisection of
the ĕrst quadrant, i.e., x ≤ exp (k). We ĕnd the minimum of g by looking
for the roots of the derivative ġ. is can be done by assuming — without
loss of generality — that x = . It is easy to see that ġ(t) <  in its do-
main: the derivative ġ is continuous, all ĕve roots are smaller than exp (k),
and ġ(exp (k)) < . erefore, g is monotonically increasing in its domain.
us, it reaches a minimum at the lower end of the domain t′ = exp (k).
Figure 4.8 shows an example of the vertical motion using our mini-Ęoat for-
mat, that we introduced in Section 2.3.1.
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e horizontal step is expressed by an array of functions:

hk : t 7→ a
(

t
exp (l)

)
, where

{
t ∈ [exp (k) , exp (k+ )] if k < l
t ∈ [exp (l)] if k = l.

ereby, exp (l) is the lower horizontal axis of a block. As we consider only
cells above the bisection of the ĕrst quadrant, k ≤ l holds. For each function
hk, we determine its minimum. is gives us a series Hk = min hk(t). We
will show that:

H−∞ > · · · > Hl− > Hl.

Again, we take the derivatives ḣk. We distinguish three cases:

• For k ≤ l − , four of the ĕve roots of ḣk are smaller than 0 and one
root is bigger than exp (k+ ). erefore, all roots are outside the
deĕnition interval of hk. As hk is continuous and ḣk(exp (k)) < , hk
is a monotonically decreasing function:

hk(exp (k)) > hk(exp (k+ )) = Hk, for k ≤ l− .

As we double the sample spacing in t direction when going from hk to
hk+,

hk (exp (k+ )) > hk+ (exp (k+ )) for k ≤ l− .

us, Hk > Hk+, for k ≤ l− .

• For k = l − , hl−(t) has a root t inside the deĕnition interval and
hl−(t) represents the minimum of this function. erefore,

hl− (exp (l− )) > hl− (exp (l− )) > hl−(t).

Hence, Hl− > Hl−.

• Finally, we need to investigate the case where k = l. is function is
deĕned only at one point and therefore the minimum is located triv-
ially at exp (l). Without loss of generality, we set l =  and prove,
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Figure 4.10: Special Case of the Diagonal Motion. Wemove the cell along the diagonal
of a diagonal block and önd that the angular error (right) is located in the lower-left corner
of a diagonal block.

using a computer algebra system [BCD∗11], that

h(exp ()) < h(t)

is true, and therefore
Hl− > Hl.

Hence,Hl = hl(exp
(
l
)
) is the location of theminimumof all functions hk.

us, ã(v) has a maximum at all locations where v′ = (exp (l) , exp (l))
T,

where l are valid integer exponents of the Ęoating-point format. Figure 4.9
illustrates the horizontal motion using mini-Ęoats.

Remember that we started the optimization process by picking a cell from a
non-diagonal block Bi,j, where i > j. erefore, we have to ĕnally treat the
case in which the initial cell is in a diagonal block Bi,i, but above the diagonal,
i.e., for the center c of a cell, it holds that cy ≥ cx. Again, we perform two
motions: the ĕrst is again vertically. However, we have to limit the motion
to the region above the bisection, which passes through the diagonal block,
as shown in Figure 4.10.
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By similar arguments as before, we ĕnd that the minimum of any vertical
motion in a diagonal block is on the bisection, i.e., cy = cx. To ĕnd the
minimum along the bisection, we deĕne the functional that measures the
values of a along the bisection of the ĕrst quadrant

d : t 7→ a
(
t
t

)
, where t ∈ [exp (k) , exp (k+ )],

and can show analytically that the minimum is located at t′ = exp (k).

e proof runs analogously in 3D. It requires an extra motion prior to the
vertical motion. is motion is orthogonal to the vertical and horizontal
motion. ereby, wemove an arbitrary cell until it reaches the bottom-plane
of a 3D block, where it has a minimum. en, we run the vertical motion
and the horizontal motion as illustrated above.

is concludes the proof for the maximum angular quantization error ΔQFP
in the standard Ęoating-point representation. It is equal to the angle between
the center of the cell located in the lower-right corner of the block B−,− and
the lower-right corner of that cell:

∠
(



+

ε−


,


+

ε−


,


+

ε−



)T

.

(


+ ε−,



,



)T

.

We have chosen block B−,− here, but we could pick any other lower-le
corner from a different diagonal block. In all cases, the maximum angular
quantization error is:

ΔQFP = arccos
√

 − ε

 + ε+ ε . (4.10)

4.4.3 Summary

Typically, ε of Equation (4.10) is small. erefore, it is oentimes enough to
use the lowest order term of the Taylor expansion, i.e.,

ΔQFP : ε 7→ 

√

ε+O
(
ε) .
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We further re-parameterize this function for convenience and express ΔQFP
in terms of bit lengths of themantissaNm, as ε = εfloat,− = exp (− − Nm):

ΔQFP : Nm 7→
√




exp (−Nm) +O (exp (−Nm)) .

Equation (4.6) provides an estimate for the number of elements a uniformly
distributed set of unit vectors requires to maintain a given error. us,
N(ΔQFP(Nm)) tells us how many uniformly distributed unit vectors are re-
quired to be as accurate as Ęoating-point unit vectors. Hence, one needs

B : Nm 7→ log N(ΔQFP)

bits to encode unit vectors that have the same accuracy as three Ęoating-
point numbers. We can show that in the limit we always need

lim
Nm→∞

B(Nm) = ( · Nm + )− log
 ·

√


 · π
≈  · (Nm + )− .

bits. Table 4.1 summarizes the result from this section for three popular
choices of Ęoats. Only the mantissa Nm inĘuences the largest quantization
error ΔQFP. From that, we can estimate the number of distinct unit vectors
we need to maintain the accuracy. In turn, this directly yields the number of
bits required to encode a unit vector. e last two columns show the numbers
of bits that we need when using three components in the respective Ęoating-
point format. at means that in the best case, we achieve memory savings
in the order of 44% – 51%.

4.5 Previous Work

In the previous section, we discovered a high potential for compressing unit
vectors without sacriĕcing accuracy: we are theoretically able to be as ac-
curate as the largest quantization error of Ęoating-point unit vectors while
spending a signiĕcantly lower number of bits on each unit vector.
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Format Nm ΔQFP N B Ęoat3

Half  . · − . ·  . 
Single  . · − . ·  . 
Double  . · − . ·  . 

Table 4.1: MaximumAngular Quantization Error of Floats. The values shown in column
ΔQFP are given in radians. They depend on the number of bits used for the mantissaNm.
A uniform distribution of unit vectors across the unit sphere would require roughlyN dis-
tinct unit vectors. Thus, B = log(N) bits are sufficient to uniquely identify a unit vector.
For comparison, the column øoat3 lists the number of bits used for the component-wise
representation of øoating-point unit vectors.

us, our goal is to ĕnd a representation that is as accurate as the largest
quantization error of Ęoating-point unit vectors ΔQFP from Equation (4.10).
Of course, this representation should cause unit vectors to consume signiĕ-
cantly less memory than the component-wise representation: Optimally, it
should come close to the values in column B of Table 4.1.

We review existing works on unit vector representations and ĕgure out if
they already provide reasonable solutions to achieve our goal. e body of
existing work can be categorized into three groups:

• Parameterization methods,

• subdivision methods,

• LUT methods.

We explain the concepts behind these methods and provide relevant works.

4.5.1 Parameterization Methods

From the component-wise representation of Equation (4.1), it is apparent
that unit vectors contain redundancy: e probablymost obvious idea is not
to explicitly store the z coordinate of a unit vector n. It is sufficient to know
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the sign of the z coordinate together with the x and y coordinate. en, |nz|
is simply

√
 − n

x − n
y . As this is a parallel projection (PP) of a unit vector

to the plane spanned by the x and y axis through the origin, we refer to it as
the PP method.

ese are two mappings from a 2D parameter domain (e.g., with PP, the x
and y coordinate of the unit vectors) to a 3D surface (e.g., with PP, the surface
of the two hemispheres). In general, a mapping thatmaps from a 2D domain
to an image of a 3D surface is called a parameterization.

A single parameterization is oentimes not sufficient tomap from its domain
to the entire unit sphere. erefore, we combine several parameterizations to
jointly map to the entire surface of the unit sphere. We call such a collective
of parameterizations a parameterization method.

To distinguish between the different parameterizations of a parameterization
method, we use the parameterization index called s. For example, the PP
method has two parameterizations: one for each hemisphere. For methods
that we investigate in this thesis, s ranges from 0 to 5. For each index s,
we deĕne a parameterization that maps from a two dimensional parameter
domain (u, v) ∈ D ⊂ R to a region on the surface of the unit sphere S.
us, a parameterization method is speciĕed by

P :

u
v
s

 7→

nx
ny
nz

 .

e inverse function P−(n) maps a unit vector to a point (u, v)T of the pa-
rameter domain with index s:

P− : n 7→

u
v
s

 .

Parameterization methods are used to save memory for unit vectors: Only a
small number of parameterizations (two in the example above) are sufficient
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to describe the entire sphere. We encode the parameterization index s using
a few bits (in this thesis, s needs 0 to 3 bits). Each parameterization needs two
parameters rather than the three components of a unit vector. is saves up
to one third ofmemory. Next, we review existing parameterizationmethods.

e PP method has previously been used to compress normal-map textures.
ereby, unit normal vectors are stored as entries of a 2D texture. Each tex-
ture element contains a normal vector. During rasterization, the unit normal
vector is read per fragment from the normal map, and lighting computa-
tions are performed with it. Typically, unit vectors of the normal map are
stored relatively to the tangent-space of the vertex. us, these unit normal
vectors have the property that nz ≥ . is means that only the parame-
terization of the positive hemisphere is required. One method that exploits
those properties is called 3Dc compression by its inventors [ATI05] and is
referred to as RGTC in the OpenGL standard [SA11]. e two parameters
are quantized using 8 bits each and stored as texture elements in the normal
map. Finally, the size of the normal map is further reduced by using a lossy
compression scheme that allows random access on GPUs. Several improve-
ments of the technique also rely on computing the z component by applying
PP [MAMS06, MOSAM07].

Yamasaki and co-workers [YHA05] derive the mean square error of PP for
normal maps: As unit vectors of normal maps are stored relatively to the
tangent space of a vertex, they tend to cluster around nz = . In those
cases, the z component can be reconstructed stably. However, the com-
putations become unstable the more nz approaches 0. Van Waveren and
Castaño [vWC08] prefer stereographic projection over PP, as it features better
interpolation behavior.

Another application of unit vector compression appears in the context of de-
ferred shading and deferred lighting algorithms [DWS∗88]. ese algorithms
require at least two passes: e ĕrst pass conducts visual surface determi-
nation. It stores the parameters required for shading each fragment in a so-
called g-buffer. at contains at least the unit normal vector and — depend-
ing on the particular deferred shading technique— somemore information.
In a second pass, lighting is carried out only once per fragment, using the en-
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try from the g-buffer associated with that fragment. Deferred shading and
lighting approaches deploy PP to compact the unit normal vector written to
the g-buffer. Some deferred shading implementations use only one hemi-
sphere to store screen space unit vectors [Shi05, Koo07, i11], and spare
saving the sign of the z component. However, as pointed out by Lee [Lee09],
this may cause artifacts because screen-space unit vectors are part of both
hemispheres.

Isenburg and Snoeyink [IS02] ĕnd that PP using two parameterizations re-
sults in a highly uneven distribution of unit vectors. erefore, they pro-
pose amodiĕcation that only stores those two components of the unit vector
with the smallest absolute value. During unpacking, the missing component
is reconstructed from them. is approach requires six states for the pa-
rameterization index s. It encodes the component with the largest absolute
value, and whether it is positive or negative. We call this the sextant parallel
projection (SPP) method.

Fenny and Butler [FB05] describe a method for which unit vectors are pro-
jected onto the triangles of an octahedron that is inside the unit sphere.
en, pairs of neighboring triangles are combined to a single quadrilateral.
Each quadrilateral is sampled with seven bits in each direction. ey further
improve quantization error by carefully choosing the parameter-pair whose
corresponding unit vector is closest to the unit vector which is compressed.
Engelhardt and Dachsbacher [ED08] use a similar projection to encode en-
vironment maps.

Deering [Dee95] encodes unit vectors via a longitude and a latitude angle of
the spherical coordinate system. ereby, he exploits that each sphere can be
divided into eight symmetric octants. Each octant in turn is subdivided into
six symmetric sextants. Further, a transformation is applied to the parame-
ters, however, no motivation or justiĕcation for using this warping function
is provided.

Rusinkiewicz et al. [RL00] project points of the unit sphere on the six faces
of a cube enclosing the sphere. A unit vector is then uniquely identiĕed with
one index referencing the face, and the two parameters in the domain of
each face. ey apply a warping function “to sample normal space more uni-
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formly” [RL00]. Unfortunately, the authors do not further specify the warp-
ing function. A similar method is described in the MPEG-4 Binary Format
for Scenes (BIFS) standard [ISO05]. In contrast to the work of Rusinkiewicz
et al. [RL00], the warping function is fully speciĕed.

In the ĕeld of astrophysics, HEALPix (hierarchical equal area isolatitude pix-
elization) [GHB∗05] is used to map measurements from the entire sky to a
single plane. e surface of the sky can be considered as the surface of a
sphere. One key feature of HEALPix is that it is an area-preserving parame-
terization of the sphere and the generated pattern is very uniform. However,
from a computational point of view, it is very complex as it contains many
trigonometric functions.

Griffith et al. [GKP07] use a triangulated base polyhedron that approximates
the unit sphere. Each triangle is then further reĕned by barycentric inter-
polation. Hence, a unit vector is encoded by the triangle index of the base
polyhedron and two barycentric coordinates. As the sampled points are on
the surface of the base polyhedron, they need to be projected onto the unit
sphere by normalization.

4.5.2 Subdivision Methods

Subdivision methods start from a base polyhedron that consists only of a
few polygons. e base polyhedron serves as an approximation of the unit
sphere. en, the polygons are subdivided into a ĕxed number of polygons.
Aer a ĕnite number of subdivisions, the leaf polygons are reached. e
centers of the leaf polygons are considered the directions of the unit vectors,
and aer normalization, we obtain the ĕnal unit vector. For example, when
subdividing each polygon into four child polygons, we create a quad-tree for
each face of the base polyhedron. e path down to the leaf polygons is then
encoded using two bits for each subdivision step. Further, a set of bits is
required to encode the base polygon on the base polyhedron.

Taubin and co-workers [THLR98] propose a subdivision scheme based on
an octahedron as base polyhedron. It was later adopted in the MPEG-4
3D Mesh Compression standard [ISO04]. Likewise, Botsch et al. [BWK02]

107



CHAPTER 4 Unit Vector Compression

also subdivide an octahedron. However, they perform normalization af-
ter every subdivision step and not just for the ĕnal step. Ahn and co-
workers [AKH06] subdivide a cube rather than an octahedron. With em-
pirical tests with a series of models they provide empirical proof that this
improves the compression error over an octahedron as base polyhedron.

Oliveira and Buxton [OB06] generalize the concept to Platonic polyhedron
as base polyhedron. ey conduct measurements with commonly used
models and conclude that the icosahedron provides the best result with re-
spect to compression quality.

Finally, Griffith and co-workers [GKP07] generalize the concept even fur-
ther to arbitrary base polyhedron. ey are able to provide a maximum
quantization error for unit vector distributions rather than an empirically
derived error. Besides Platonic solids, they test Archimedean solids, Cata-
lan solids, and convex hulls of spherical coverings provided by Sloane et
al. [HSS94]. Most notably, the spherical coverings yield the best compres-
sion results.

4.5.3 Look-Up-Table Methods

LUT methods sample the entire unit sphere and store the result in a table.
A unit vector can then be encoded using a single index. us, decompres-
sion boils down to indexing into the table. Compression, however, is more
involved as it entails searching the entire table for the appropriate unit vec-
tor. e LUT has to be generated only once and is reused to compress unit
vectors of arbitrary models.

To ĕll the LUT with unit vectors, one of the methods described above can
be used. In fact, the latter two subdivision approaches [OB06, GKP07] are
not used as pure subdivision methods: in a pre-process, the entire sphere is
subdivided down to a certain depth and all unit vectors are stored in a LUT.

LUTmethods were ĕrst considered byDeering [Dee95] in the same paper in
which he proposed a parameterization method. He suggests to exploit sym-
metries of the sphere (8 octants, 6 sectors per octants) to keep the size of the
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LUT small. But Deering does not provide an algorithm for creating a LUT,
as he rejects the thought in favor of a parameterization method. He consid-
ers the high compression times and the disability of using delta compression
techniques on indices as the biggest drawbacks of LUT methods.

A LUT method that exploits Deering’s symmetries was proposed in 2007 by
Hadim and co-workers [HBR∗07]. ey ĕll the LUTwith values by sampling
the parameterization proposed by Rusinkiewicz [RL00].

Kaplanyan [Kap10] uses a LUT for compressing rather than decompressing
unit vectors: A unit vector is mapped to the closest direction vector in the
space of three 8-bit uniformly quantized numbers. As the compression en-
tails an involved search, it is accelerated by a LUT. Decompression boils
down to a normalization of the direction vector.

4.5.4 Conclusion

Remember that our goal is to be as accurate as the largest quantization error
of FPUVs. We now investigate how the existing methods listed above serve
our purposes. ere are ĕve important properties of a unit vector represen-
tation that contribute to its quality and usability in practice:

• Accuracy: How accurate is this representation?

• Size: How many bits do we need for each unit vector using this repre-
sentation for the desired accuracy?

• Compression time: How much time does it take to convert from the
component-wise representation?

• Decompression time: How much time does it take to convert back to
the component-wise representation?

• Run-time space complexity: How much auxiliary storage does it re-
quire?

LUT methods theoretically provide the best possible accuracy at the low-
est number of bits. We need to distribute the points as uniformly as possible
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and store the results in a table. An advantage of LUT-methods is that decom-
pression is fast, as only a single look-up is sufficient to unpack a unit vector.
Compression is more involved as we need to ĕnd the closest unit vector in
the LUT to the unit vector we wish to compress. is entails a search which
can be accelerated using hierarchical data structures. However, run-time
space complexity is the biggest obstacle: From Section 4.4.2 we know an es-
timate for the lower bound of the size of a LUT: to achieve the accuracy of
the component-wise representation using single-precision Ęoats, the table
demands . ·  distinct entries. Each entry consists of three Ęoats, i.e.,
12 bytes. erefore, the entire table consumes

. ·  ·  bytes ≈ . · exp () bytes = . PiB.

At the time of writing this thesis, themaximum amount ofmemory available
on graphics hardware is 6 GiB. For half precision, which requires 6 bytes per
normal in the component representation, the table would still have 108MiB.
As pointed out byDeering [Dee95], symmetries allow reducing the table size
by a factor of 48. For half precision, the table size reduces to 2.25MiB.Hence,
LUT would be feasible when aiming for half precision. However, single and
double precision cannot be supported due to run-time memory constraints.

Subdivision methods, on the other hand, have little run-time memory re-
quirement except for storing the polygons of the base polyhedron. However,
time for converting a subdivision code to the component-wise representa-
tions grows linearly with the precision. For example, to obtain half (sin-
gle) precision, 10 (22) subdivisions are needed, for Griffith and co-workers’
“Spherical Covering 2” [GKP07]. One subdivision requires at least two aver-
age determinations of two vectors, so even obtaining half precision becomes
computationally intense. Other subdivision schemes show a similar behav-
ior.

As opposed to LUT methods, parameterization methods have the advantage
of not requiring any run-time memory space. ey can be of arbitrary com-
putational intensity and decompression and/or compression may be very
time-consuming. However, simple and efficient mappings exist, too, mak-
ing parameterization techniques more attractive over subdivision methods.
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erefore, we study how accurate parameterization methods are and how
well they compress.

4.6 Parameterization Methods

For real-time compression and decompression, we focus on simple meth-
ods with low computational complexity. We will therefore introduce and
investigate the following methods:

• cube projection (CP),

• octahedron projection (OP),

• warped octahedron projection (WOP),

• parallel projection (PP),

• sextant parallel projection (SPP),

• spherical coordinate projection (SCP),

• warped cube projection (WCP).

Most of these parameterizations require only simple Ęoating-point opera-
tions such as addition, multiplication, division, and square roots. ese
types of arithmetic operations run fast, particularly on GPUs. Only the last
twomethods deploy trigonometric functions. Our goal is to be as accurate as
Ęoating-point unit vectors. We will see that even simple parameterizations
can be very effective and efficient to achieve this goal.

For each parameterization method we provide a mapping that decodes a
triple (u, v, s)T into a unit vector n. ereby, (u, v)T is a 2D coordinate in
the parameter domain, and s is an integer that encodes the parameterization
index. We also provide a mapping P− that is used to encode a unit vector
into a triple (u, v, s)T.

Before we continue, we want to establish some nomenclature. When map-
ping a unit vector n to a parameter triple (u, v, s)T using the function P−,
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we refer to this process as compression. Likewise, the application of P called
decompression. e triple (u, v, s)T is referred to as the compressed unit vector.
To distinguish between the methods, we preĕx the term with the acronym
used for the parameterization method. For example, when using spherical
coordinate projection (SCP), the result is called an SCP-compressed unit vec-
tor, or short SCP-vector.

Spherical Coordinate Projection

Spherical coordinates are a well-known way of representing points on the
surface of a sphere. A longitude angle u ∈ [, π] and latitude angle v ∈
[, π] map to a unit vector on each hemisphere. For each hemisphere, we
get DSCP = [, π] as domain. We use the index s to discriminate the two
hemispheres:

PSCP :

u
v
s

 7→



sin u · cos v
sin u · sin v

cos u

 , if s = sin u · cos(v+ π)
sin u · sin(v+ π)

cos u

 , if s = .

e inverse mapping is deĕned by

P−
SCP : n 7→



arccosnz
arctan ny

nx



 , if nz ≥  arccosnz
arctan ny

nx
− π



 , if nz < .

Cube Projection

Regular unit vectors are normalized: they are direction vectors divided by
their Euclidean lengths. We can exchange the Euclidean norm and apply any
other norm. When using the inĕnity norm, we obtain the cube projection
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(CP) method. at is, we divide a direction vector by the component of
the largest magnitude. is projects the points onto the six faces of a unit
cube and sets the component of the largest magnitude to ±. We only have
to store the parameterization index s that tells on which face the point is
projected and a 2D coordinate relative to that face. Obviously, we have six
parameterizations (one for each face) and the parameter domain of each face
is DCP = [−, ].

In order to encode a unit vector, we ĕrst normalize the unit vector n using
its inĕnity norm

c = n
‖n‖∞

=
n

max(|nx|, |ny|, |nz|)

and then skip the component of c with the largest magnitude:

P−
CP : c 7→



(
cx, cy, 

)T if cz = +(
cx, cy, 

)T if cz = −(
cy, cz, 

)T if cx = +(
cy, cz, 

)T if cx = −
(cz, cx, )T if cy = +
(cz, cx, )T if cy = −.

For decompression, we use the inverse function:

PCP :

u
v
s

 7→ √
u + v + 

·



(u, v,+)T if s = 
(u, v,−)T if s = 
(+, u, v)T if s = 
(−, u, v)T if s = 
(v,+, u)T if s = 
(v,−, u)T if s = .
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(b) (c)(a) (d)

u

v

−
−





Figure 4.11: Unfolding an Octahedron. An octahedron (a) is unfolded to a 2D plane
by örst øattening the positive pyramid (b), shown in blue. Then, the negative pyramid is
folded upwards (c). Finally, the octahedron is projected onto a unit square (d).

Warped Cube Projection

eWCPdeĕned in the ISO standard [ISO05] is a parameter-transformation
of the CP method:

PWCP :

u
v
s

 7→ PCP

(
tan

π

u, tan

π

v, s

)
.

e tan function warps the unit vectors such that they are more uniformly
distributed across the surface of the unit sphere. To map a unit vector into
the parameter domain, we apply the inverse function

P−
WCP : n 7→ 

π

arctan u
arctan v

s

 , where

u
v
s

 = P−
CP(n).

Octahedron Projection

For the CP and WCP method, we use the inĕnity norm to project direction
vectors on the surface of the unit cube. Likewise, we can apply the one norm
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to a direction vector n, i.e.,

c = n
‖n‖

=
n

|nx|+ |ny|+ |nz|
,

which projects it onto the surface of the unit octahedron. An octahedron (cf.
Figure 4.11a) consist of two pyramids. Each pyramid corresponds to one
hemisphere of S. As shown in Figure 4.11, the octahedron can be unfolded
to a single plane by Ęattening the upper pyramid and folding the lower pyra-
mid upwards. is results in the following mapping:

P−
OP : n 7→ 

‖n‖

{
(u, v)T if nz ≥ (
σ(nx)− τ · ny, σ(ny)− τ · nx

)T otherwise,

where τ = σ(u) · σ(v). e function σ is deĕned in Equation (2.7). us, we
obtain a square-shaped domain DOP = [−, ].

To map from the parameter domain to the surface of the unit octahedron,
we apply

TOP :

(
u
v

)
7→

{
(u, v, z)T if z ≥ 
(σ(u)− τ · v, σ(v)− τ · u,−z)T otherwise,

where z = −|u|−|v|. Finally, by normalizing TOP(u, v)with the Euclidean
norm, we obtain the mapping

POP :

(
u
v

)
7→ TOP(u, v)

‖TOP(u, v)‖
.

Warped Octahedron Projection

e warped octahedron projection (WOP) method also projects a unit vec-
tor onto the surface of an octahedron. We consider one pyramid ĕrst and
Ęatten it (similar to OP), shown in Figure 4.12a-c.

We need to provide u and v that range from− to . However, not all Carte-
sian pairs (u, v) map to a valid point on the surface of the octahedron. e
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u

v

−
−





u

v

−
−





(b) (c)(a) (d)

Figure 4.12: Warped Octahedron. The upper pyramid of an octahedron (a), shown in
blue, is øattened to a 2D plane (b). This requires u and v to be in the range of − to .
However pairs of the gray region of (c) do not map to valid unit vectors. Therefore, we
rotate the plane by 45 degrees in clockwise direction and scale it by

√
 (d).

regions of invalid pairs are marked gray in Figure 4.12a-c. We call these re-
gions cut-off regions. Leaving pairs (u, v) unused results in a waste of mem-
ory. To get rid of the cut-off region, we rotate the domain by 45 degrees in
clockwise direction. Finally, we scale it by

√
, as shown in Figure 4.12d, to

get a parameter domain of DWOP = [−, ].

We proceed in a similar way with the second pyramid and ĕnally get a map-
ping for compressing

P−
WOP : n 7→


nx−ny
‖n‖
nx+ny
‖n‖

σ (nz) ,


and decompressing:

PWOP :

(
u
v

)
7→ TWOP(u, v)

‖TWOP(u, v)‖
,

where

TWOP :

u
v
s

 7→

 
 (u+ v)

 (v− u)

(−)s ·
(
 −

∣∣ 
 (u+ v)

∣∣− ∣∣ 
 (v− u)

∣∣)
 .
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Parallel Projection

e PP method already served twice as an example for parameterization
methods earlier in this chapter. e function that maps a unit vector to
(u, v, s)T is:

P−
PP : n 7→

{ (
nx,ny, 

)T if nz ≥ (
nx,ny, 

)T otherwise.

P−
PP can be considered as a parallel projection of points of the unit sphere

onto the Euclidean plane. is means that parameters u and v take values
from − to . However, [−, ] is not the parameter domain of the function
P−. Consider the inverse of P−:

PPP :

u
v
s

 7→

 u
v

(−)s
√

 − u − v

 .

Without loss of generality, we study the function for computing the z value
of the positive hemisphere:

nz =
√

 − u − v.

is expression is only positive if u and v are both inside the unit circle, i.e.,
u + v ≤ . But as the parameters u and v are provided in Cartesian coordi-
nates, there exist combinations for u and v that are not part of the parameter
domain. us, we get a cut-off region, similar to WOP, but this time we do
not seek to remove it. e cut-off region is shown in gray in Figure 4.13a,
and the domain

DPP =
{
(u, v)T ∈ R|u + v ≤  ∧ − ≤ u, v ≤ 

}
is shown in red. To leverage this unused cut-off area, we could stretch the
circular domain into the square-shaped domain [SC97, HDS03]. However,
the gains would be less than a bit, since the area of the cut-off region is only
less than half the area of the square-shaped domain.
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−
−





√


 − −
√




−

−
√






√






(a) (b)

u

v

u

v

Figure 4.13: Cut-off Regions of Parallel Projections. Both PP (a) and SPP (b) have cut-off
regions (gray). Only the regions shown in red are valid locations of the parameter domain.
In their compressed representation, u and v can theoretically have values from the union
of the red and gray areas. (a) showsDPP of one hemisphere and (b) showsDSPP of one of
the six faces.

Sextant Parallel Projection

Similar to CP, sextant parallel projection (SPP) stores the two components
of the smallest magnitude. During decompression, the one with the largest
magnitude is reconstructed using the PP. Again, this divides the unit sphere
into six regions and we therefore need six parameterizations:

PSPP : n 7→



(
nx,ny, 

)T if ‖n‖ = nz ∧ nz ≥ (
nx,ny, 

)T if ‖n‖ = nz ∧ nz < (
ny,nz, 

)T if ‖n‖ = nx ∧ nx ≥ (
ny,nz, 

)T if ‖n‖ = nx ∧ nx < 
(nz,nx, )T if ‖n‖ = ny ∧ ny ≥ 
(nz,nx, )T if ‖n‖ = ny ∧ ny < .

To distinguish between the six different branches, three bits for the parame-
terization index s are required.
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4.7 Parameter Quantization and Error Analysis

e parameters are mapped back to the surface of the unit sphere by the
inverse

PSPP :

u
v
s

 7→



(u, v,+z)T if s = 
(u, v,−z)T if s = 
(+z, u, v)T if s = 
(−z, u, v)T if s = 
(v,+z, u)T if s = 
(v,−z, u)T if s = ,

where z =
√

 − u − v.

Since z is the value with the largest magnitude, the parameter values u and v
are restricted to |u|, |v| ≤ z. at means that the values u and v may never
be larger than

√


 .

As with PP method, the domain is not
[
−

√


 ,
√




]
. e values of u and v

are only valid if they are smaller than z and therefore the parameter domain
of PSPP is

DSPP =
{
(u, v)T ∈ R|u + v <  ∧ v + u < 

}
,

as shown in red in Figure 4.13b. Similar to PP, there is a cut-off region in
the domain (shown in gray in Figure 4.13b), i.e., some values of u and v do
not map to valid unit vectors. Again, we do not attempt to remove it as this
would entail too much effort and the gain would be too little.

4.7 Parameter Quantization and Error Analysis

We use the mappings P− and P to compress and decompress unit vectors.
Remember that in practice the parameter values u and v are not real values,
but are quantized. is is the major source to the maximum angular quan-
tization error, which we investigate in this section. It should be noted that
another source may be due to the ĕnite precision of arithmetic operations.
However, we do not consider this aspect, but we assume that all operations
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are always sufficiently precise.

Consider a unit vector n that is compressed to the triple (u, v, s)T = P−(n).
Due to the symmetry of the sphere, it is enough to consider only one parame-
terization. For the analysis, it is sufficient to choose without loss of generality
s = . For brevity, we omit the parameter s in P and use the short notation
to rewrite the compression process as (u, v)T = P−(n).

e values of n, u, and v may either be Ęoating-point values or real values.
In any case, we need to quantize (or re-quantize in the case of Ęoating-point
values) u and v into ĕnite precision parameters ū and v̄, respectively. We use
uniformly quantized numbers as explained in Section 2.3.2 for representing
values in the parameter domain. eir sample spacing is ε in each direction.
us, values are arranged on a uniformly sampled lattice. Every valid lattice
point (ū, v̄)T maps to a discrete unit vector. erefore, the actual compres-
sion process is: (

ū
v̄

)
= quantize

(
P− (n)

)
. (4.11)

e operation m = P (ū, v̄) decompresses the unit vector again. It is need-
less to say that q 6= n in almost all cases. is is because ū 6= u and v̄ 6= v.
erefore, we need to determine for which m the angular error ∠ (m,n) is
the largest. In otherwords, we seek themaximumangular quantization error
that is caused by a parameterization method.

ere is still an undeĕned part in Equation (4.11). We have deĕned the
function “quantize” for uniformly quantized numbers in Equation (2.8) in
Section 2.3.2, but only for scalar values and not for vectors. However, P−

returns a 2D vector (u, v)T. erefore, we need to deĕne the functions for
vectors, too. We discuss twomeaningful ways for the quantize-method used
in Equation (4.11):

• domain quantization and

• range quantization.

We outline properties of these two methods in the following two sections.
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ū
D

ε
v̄

n
P−

S

Figure 4.14: DomainQuantization. Wemap the unit vectorn from the surface of the unit
sphere S to the parameter domainD using the mapping P− . Then, we apply quantiza-
tion using the sample spacing ε. To which of the four crosses it is quantized, depends on
theVoronoi cell (brown, green, red, andblue regions) intowhich theunit vector ismapped.

4.7.1 Domain Quantization

For domain quantization, every component of a vector is quantized individ-
ually using the quantize-function of Equation (2.8):

quantizeDomain :

(
u
v

)
7→

(
quantize(u)
quantize(v)

)
. (4.12)

In Figure 4.14, we apply domain quantization: we project a unit vector n into
the parameter domain and retrieve two parameters u and v. en, they are
quantized to ū and v̄. e unit vectors whose parameters are in the brown,
green, red, or blue region are mapped to the respectively colored crosses that
represent quantized parameters. Inside of the depicted cells, the colored re-
gions correspond to the Voronoi regions of the quantized parameters. e
Voronoi centers are the respectively colored crosses.

However, the quantized parameters might not map to the unit vector whose
angular distance is the smallest to the original unit vector n. Let us consider
an example that uses theOPmethod introduced in Section 4.6. We compress
the unit vector n = 

 (, , )
T. erefore, we ĕrst map it to the parameter
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domain and obtain

(
u
v

)
= P−

OP

 






 =



(



)
.

Next, we quantize (u, v)T using uniformly quantized numbers with 4 bits
per parameter. For the lower and upper bound of the uniformly quantized
numbers, we choose umin = vmin = − and umax = vmax = , respectively,
as that region corresponds to the parameter domain of the OP method. We
get a sample spacing of ε = 

 . Finally, we quantize the 2D vector 
 (, )

T

as deĕned in Equation (4.12) and get(
ū
v̄

)
=




(



)
.

is gives us an angular quantization error of about 16 degrees. However,
when mapping (u, v)T to a neighboring grid point (ū, v̄+ ε)

T, we obtain a
smaller and therefore better angular quantization error of about 9 degrees.
is example shows that domain quantization is not optimal.

4.7.2 Range Quantization

is observation immediately leads to a method that we refer to as range
quantization. We map the unit vector to the parameter domain ĕrst (Fig-
ure 4.15 le). e parameter is inside a particular lattice cell (Figure 4.15
middle). From the four points that deĕne the lattice cell, we choose the one
whose corresponding unit vector has the smallest angular distance to the in-
put unit vector n (Figure 4.15 right). is whole process is mathematically
described by:

quantizeRange :
(
u, v

)
7→ argmin

i,j∈{,}
∠
(
P
(
q+

(
σ(u) i ε
σ(v) j ε

))
,n

)
,

122



4.7 Parameter Quantization and Error Analysis

S
u

D

v

S

n
P−

P

P

P

P

Figure 4.15: Range Quantization. We map the unit vector n from the surface of the unit
sphere S to the parameter domainD. There, we quantize it to one of the four candidates.
We pick the one with the smallest angular distance.

where m = quantizeDomain (u, v). In the right of Figure 4.15, unit vec-
tors that are in the brown, green, red, or blue region are mapped to the re-
spectively colored crosses that represent quantized unit vectors. e colored
regions are part of the spherical Voronoi regions whose centers are the re-
spectively colored crosses.

Note that range quantization is more expensive: we have to map to the do-
main, map to the unit sphere four times, and ĕnally compute and choose
between four angles. is affects compression only: decompressing unit vec-
tors is independent of how we compress them.

In the following two sections, we study the maximum angular error when
quantized in the domain and in the range for the parameterization methods
introduced in Section 4.6.

4.7.3 Error Analysis of Domain Quantization

To ĕnd the maximum angular quantization error of a parameterization
method, we need to locate (u′, v′, s′)T where the angular deviation is the
largest. Due to the symmetry of the sphere, it is enough to consider only
one parameterization, i.e., s = . erefore, we omit the parameter s in P
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for brevity.

We determine (u′, v′)T by maximizing the function

gdomain
ε (u, v) = max

i,j∈{−,}
∠
(
P (u, v) ,P

(
u+

i · ε


, v+
j · ε


))
, (4.13)

using analyticmethods. e reasoning behind this approach is the following:
Say, u and v are valid vertices of a lattice of uniformly quantized numbers.
e unit vector that belongs to the center of a lattice cell is P (u, v). As the
center of a cell is not a valid lattice vertex, it is mapped to one of the four cor-
ners P

(
u± ε

 , v±
ε

)
. We are interested in the largest angular quantization

error. Hence, we use the corner that causes that largest angular quantization
error. is is exactly what is modeled by the function gdomain

ε . By deter-
mining the location (u′, v′)T of the maximum of gdomain

ε , we get the largest
angular quantization error:

ΔQdomain(ε) = gdomain
ε (u′, v′).

Optimizing Equation (4.13) is straightforward, particularlywhen using sym-
bolic algebra packages such as Maple 15 [BCD∗11]. We exploit symmetries
in the parameterizations to simplify the optimization. Special care has to
be taken for PP and SPP, where the maximums are located at the boundary
of the parameter domain (dashed lines in Figure 4.13). We summarize the
error, the locations of the errors in domain, as well as the unit vectors that
cause the largest quantization error in Section 4.8.

4.7.4 Error Analysis of Range Quantization

When using range quantization, we map a unit vector n to the parameter
domain ĕrst. is gives us a parameter value pair (u, v)T = P−(n). en,
we quantize the pair and further investigate its four neighboring points in
the domain, which are
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Figure 4.16: Voronoi Regions of RangeQuantization. There are four possible parameters
ui in the parameter domain to which we may quantize (a). The parameters are projected
onto the unit sphere and we obtain the unit vectorsmi (b, c). They are the centers of the
Voronoi regions on the unit sphere shown in red, green, brown, and blue. There are two
possibilities, p (b) and p (c), for the unit vector furthest away fromm.

u = (ū, v̄)T ,
u = (ū+ ε, v̄)T ,
u = (ū+ ε, v̄+ ε)

T
,

u = (ū, v̄+ ε)
T
.

ereby, (ū, v̄)T are the parameters obtained with domain quantization as
shown in Figure 4.16a. We map the four parameter values back onto the
sphere, i.e.,

m = P(u) = P(ū, v̄),
m = P(u) = P(ū+ ε, v̄),
m = P(u) = P(ū+ ε, v̄+ ε),

m = P(u) = P(ū, v̄+ ε),

as shown in Figures 4.16b and c. Say, n is the vector that wewish to quantize.
We choose from the fourmi vectors the one with the closest angular distance
to n. erefore, n is inside of the region on the unit sphere bounded by the
four great circles connectingmi withm(i+)mod , as shown in Figures 4.16b
and c. In order to determine the maximum angular quantization error, we
need to ĕnd the unit vector p that is the furthest away from all four candi-
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datesmi. at can be done by determining the sphericalVoronoi cells of each
mi. We identify two cases for the shape of the Voronoi cells, shown in Fig-
ure 4.16b and c. Without loss of generality, we look for the unit vector that is
the furthest away from m. at is either the unit vector p or p. Whether
it is p or p depends on the shape of the Voronoi cell (cf. Figure 4.16b and
4.16c).

e vectors p and p can be computed using the geometry of spherical tri-
angles. e distance of p (cf. Figure 4.16b) has to be the same from the
three unit vectorsm,m, andm. erefore, it must be the midpoint of the
corresponding spherical triangle:

p = (m −m)× (m −m) .

Similarly, p (cf. Figure 4.16c) is the midpoint of the spherical triangle m,
m, and m:

p = (m −m)× (m −m) .

us, the largest distance to m is

grangeε (u, v) = min (∠ (m, p) ,∠ (m, p)) . (4.14)

We determine the location of the maximum (u′, v′)T and its magnitude
grangeε (u, v) usingmulti-variable calculus. We use the symbolic algebra pack-
age Maple 15 [BCD∗11] to derive the symbolic expressions. As in Sec-
tion 4.7.3, symmetry considerations greatly simplify the search for the op-
timum. With the location (u′, v′)T, i.e., the maximum of grangeε , the largest
angular quantization error using range quantization is computed by

ΔQrange(ε) = grangeε (u′, v′).

Due to the singularity at the boundary of the parameter domain of the PP
method, it is tedious to derive the maximum angular quantization error for
range quantization using the error analysis of Equation (4.14). Instead, we
carry out empirical tests (cf. Section 4.8.3). As it is one of the highest quan-
tization errors of all methods presented here, we omit a formal analysis ver-
ifying this result.
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4.7.5 Compactness Factor

Every parameterization has a different sample spacing ε that depends on the
range of the parameters u and v. Say, we want to spent a bit-budget of b bits
for encoding u, v, and s. e values u and v are stored as uniformly quan-
tized numbers as deĕned in Section 2.3.2. For the parameterizationmethods
presented here, the range of both u and v is always the same and goes from
umin to umax. Remember that s is the index that distinguishes between the
different parameterizations, and that we need bs bits for it. en, the exact
sample spacing in the u and v direction is according to Equation (2.5)

ε′(b) =
umax − umin

exp
( 

 (b− bs)
)
− 

.

For error considerations, it is more convenient to skip the− in the denomi-
nator as it does not signiĕcantly change the sample spacing value, but makes
the equations a lot simpler:

ε′(b) ≈ ε(b) = (umax − umin) · exp

(


(bs − b)

)
. (4.15)

is comes in handy, as it allows determining a factor CP for each parame-
terization method P. e factor CP relates the maximum quantization error
ΔQ(ε) to the number of bits b spent for representing a unit vector using this
parameterization:

ΔQ : b 7→ CP · exp

(
−b



)
. (4.16)

is helps us to compare parameterization methods: Say, we want to decide
which of two distinct parameterization methods is better when spending a
bit budget of b bits to represent a unit vector. en, the representation with
the smaller CP has the smaller error while using the same memory space.
us, the smallerCP themore effective a parameterizationmethod is. ere-
fore, we call CP the compactness factor of a parameterization method.
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Method S umin umax Sample Spacing

PP 2 −   · exp
(
− b−


)

SPP 6 −
√




√



√

 · exp
(
− b−


)

OP 1 −   · exp
(
− b


)

WOP 2 −   · exp
(
− b−


)

CP 6 −   · exp
(
− b−


)

WCP 6 −   · exp
(
− b−


)

SCP 2  π π · exp
(
− b−


)

Table 4.2: Summary of ParameterizationMethods. Column S lists the number of param-
eterizations for the respective methods and umin (umax) the minimum (maximum) value
the parameters u and v can take. Further, we list the Sample Spacing between u and v rep-
resented as uniformly quantized numbers. Thereby, b is the total number of bits used to
encode u, v, and s.

4.8 Results

In Section 4.6, we have studied various parameterization methods whose
most important properties are summarized in Table 4.2. OnlyWCP and SCP
make use of transcendental functions, all others of simple operations, such
as addition, subtraction, multiplication, and division. Column S shows the
numbers of parameterizations that are required to cover the entire sphere.
e columns umin and umax show the range of the parameter values u and v.
Note that only for the PP and SPP methods, the region [umin × umax]

 does
not coincide with the parameter domain.

e sample spacing is the distance between two neighboring parameters rep-
resented by uniformly quantized numbers. For simplicity, we choose to take
the approximation of Equation (4.15). It depends on the total number of bits
b that we spend on encoding a unit vector. For example, the SPP method
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needs S =  parameterizations. at is why dlog()e =  bits are reserved
for encoding which parameterization is used. us, for each parameter u
and v, only b−

 bits remain to encode the parameter range from −
√

 to√
, resulting in the given sample spacing.

All methods, except OP, require an odd number of bits to represent a unit
vector. Having an even number of bits is an important property, as primi-
tive data types consume an even number of bits. For example, a unit vector
represented by SCP in a 16-bit word can only use 15 bits effectively. is can
be seen as an advantage, as we have one bit le over that we can use to store
other information. It can also be considered a disadvantage, since one bit
is wasted. Note that OP is the only parameterization that ĕts in a primitive
data-type without leaving any bits unused.

4.8.1 Quantization Errors

In Sections 4.7.3 and 4.7.4 we studied the maximum angular quantization
errors for various parameterizations. e locations (u′, v′)T of those errors
and the according unit vectors for each parameterization method are sum-
marized in Table 4.3. Due to symmetry, (u′, v′)T are valid for all parameter-
izations s. For OP, WOP, CP, and SCP the location of the maximum errors
is the same for both domain and range quantization.

e errors and compactness factors for domain and range quantization are
shown in Table 4.4. Columns ΔQdomain and ΔQrange list the maximum an-
gular quantization errors as a function of the sample spacing ε. Note that
the listed errors exclude orders of ε that are higher than one. As we use bit
numbers b ≥ , this is a reasonable approximation. Formore exact bounds,
insert (u′, v′)T into Equation (4.13) and Equation (4.14).

Note that the maximum angular quantization error does not improve when
using range quantization for WOP, CP, and SCP. is is because the param-
eterizations have no distortion at the location of their maximums. In fact,
the Voronoi cells in the regions are four squares, rather than the shapes of
Figure 4.16b and c. So putting extra effort in range quantization does not
pay off, when considering the maximum angular quantization error. How-

129



CHAPTER 4 Unit Vector Compression

Method (u′, v′)T n′

PP Domain
√

/ (±,±)T
√

/ (±,±, )T

PP Range (±, )T , (±, )T (±, , )T, (,±, )T

SPP Domain
√

/ (±,±)T
√

/ (±,±,±)T

SPP Range
√

/ (±,±)T
√

/ (±, ,±)T,
√

/ (,±,±)T,
√

/ (±,±, )T

OP / (±,±)T
√

/ (±,±,±)T

WOP / (,±)T, / (±, )T
√

/ (±,±,±)T

CP (, )T (, ,±)T, (,±, )T,
(±, , )T

WCPDomain (±,±)T (±,±,±)T

WCP Range (, )T (, ,±)T, (,±, )T,
(±, , )T

SCP (π/, )T, (π/, π/)T
√

/ (±,±, )T,
(π/, π/)

T, (π/, π/)T, (±, , )T,(,±, )T

Table 4.3: Parameters and Unit Vectors of Maximum Error. Column (u′, v′)T lists the
location in the domainwhere themaximum angular quantization error occurs. Columnn′

shows the corresponding unit vectors. Parameterization methods whose location is the
same for domain and range quantization are listed only once. Only the entries of PP at
range quantization were determined empirically. All others were derived analytically.

ever, there are regions on the unit sphere that have a high metric distortion
under the mentioned mappings. Unit vectors in those regions beneĕt from
range quantization. is decreases the average angular quantization error.
Yet, the maximum angular quantization error remains.

Also note that the error of PP has an order that is lower than linear. It is
therefore the worst of all methods when considering the maximum angular
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Method ΔQ domain ΔQ range C domain C range

PP 
√


√
ε

√
ε exp

(
 + b


)

exp
( 

 +
b

)

SPP
√


 · ε

√


 · ε
√

 ≈ .
√

 ≈ .

OP
√


 · ε

√
 · ε

√
 ≈ .

√
 ≈ .

WOP
√


 · ε

√


 · ε
√

 ≈ .
√

 ≈ .

CP
√


 · ε

√


 · ε . .

WCP
√


 · π · ε

√


 · π · ε
√


 ·  · π ≈ . π ≈ .

SCP
√


 · ε

√


 · ε π ≈ . π ≈ .

Table 4.4: Maximum Error and Compactness Factors. Columns ΔQdomain and ΔQrange

list the maximum angular quantization errors for domain and range quantization, respec-
tively. Columns Cdomain and Crange show the compactness factors. Underlined numbers
highlight the lowest compactness factors for domain and range quantization.

quantization error. All other errors are linear in the sample spacing ε, but
have a different scaling factor.

e compactness factor for each method is listed in columns Cdomain and
Crange of Table 4.4. For domain quantization, the method with the lowest
compactness factor is SCP. We would further like to point out that WOP is
the second best. Given that WOP compresses and decompresses faster than
SCP, as shown further down in Section 4.8.6, WOP should be considered an
efficient option. For range quantization, OP achieves by far the best com-
pactness factor.

4.8.2 Bit-Budget of 48 Bits

e compactness factor considerations pretend that we are able to spend
“half-bits”, which is not possible in practice. To this end, we compare in
Table 4.5 the quantization errors when spending both an even and a odd
number of bits on a compressed unit vector. We use concrete bit numbers of
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48 bit 47 bit

Method ΔQdomain ΔQrange ΔQdomain ΔQrange

PP . · − . · − . · − . · −

SPP . · − . · − . · − . · −

OP . · − . · − . · − . · −

WOP . · − . · − . · − . · −

CP . · − . · − . · − . · −

WCP . · − . · − . · − . · −

SCP . · − . · − . · − . · −

Table 4.5: MaximumError Example. The table shows themaximum angular quantization
error in radians when spending a bit-budget of 48 and 47 bits for u, v, and s.

48 bits and 47 bits. at means that the storage used for the parameters u, v,
and smay at most amount for 48 bits or 47 bits, respectively. is equals the
storage of three half precision Ęoats, which are commonly used to compactly
represent a unit vector in the component representation.

First note that PP is four decimal orders of magnitudes worse than all other
methods. e error of a unit vector represented by FPUVs using half preci-
sion is . · − (cf. Table 4.1). So PP is effectively worse than using three
half Ęoats, even though both representation consume the same amount of
memory.

For 48 bits, OP has the lowest error, even with domain quantization. OP
range quantization even improves the error by a third. is is because all
methods except for OP effectively use one bit less.

In turn, when using 47 bits to compress a unit vector, OP is among themeth-
ods with the highest quantization error, as it effectively uses only 46 bits. For
both domain and range quantization, the other octahedron based method
WOP is right aer SCP. However, WOP does not use trigonometric func-
tions. Unit vectors compressed in the range with SPP are on par with WOP.
However, we get the same accuracy using the much simpler domain quan-
tization of WOP.
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Double Single
Method Domain Range Domain Range

PP . · −
" . · −

" . · −
% . · −

%

SPP . · −
" . · −

" . · −
% . · −

%

OP . · −
" . · −

" . · −
% . · −

%

WOP . · −
" . · −

" . · −
% . · −

%

CP . · −
" . · −

" . · −
% . · −

"

WCP . · −
" . · −

" . · −
% . · −

%

SCP . · −
" . · −

" . · −
% . · −

%

Table 4.6: Maximum Error Experiment. We compute themaximum angular quantization
error in radians of the per-vertex unit vectors of the Statuette data set (see picture in Ta-
ble 4.7). The parameters u, v, and s of the listed methods consume at most 48 bits. The
conversion is carried out using double and single precision. Numbers marked with % fail
to maintain the predicted error; numbers marked with "maintain the error.

4.8.3 Validation of Errors

So far, we have only presented values that we have derived theoretically.
Next, we validate the maximum angular quantization error using several
models that are commonly used in Computer Graphics (see Figure 5.13 and
Table 5.3 for more details on themodels). Each model has a set of per-vertex
unit vectors which we compress. Each unit vector is ĕrst mapped to (u, v, s)T

using P−. en, (u, v)T is converted from Ęoating-point numbers to uni-
formly quantized numbers. We test even numbers of bits for (u, v, s)T (16,
24, 32, 48, and 64), and odd numbers of bits (15, 23, 31, 47, and 63) per com-
pressed unit vector. All computations were carried out on the CPU. When
using double precision we maintain the errors derived theoretically in all
cases.

At single precision, we ĕnd that all methods except SCP work reliably up
until at least 32 bits. SCP runs into trouble already at about 23 bits, which
we believe is due to the use of sine and cosine functions. OP with range
quantization also works reliably until 46 bits, inclusively. at means that
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Double/Single
Method Domain Range

PP . · −
" . · −

"

SPP . · −
% . · −

%

OP . · −
" . · −

"

WOP . · −
" . · −

"

CP . · −
" . · −

"

WCP . · −
% . · −

%

SCP . · −
% . · −

"

Table 4.7: Mixed Precisions Experiment. We use the Statuette data set shown on the left.
It consists of 4,999,996 per-vertex unit normal vectors and 10,000,000 triangles. We use
the same labeling and settings as in Table 4.6, except that decompression is carried out
with single precision and compression is done at double precision.

each parameter u and v is encoded using 23 bits. is is exactly the number
of bits of the mantissa of a single-precision Ęoat. Any number of bits higher
than 23 causes round-off errors in the conversion from uniformly quantized
numbers to single-precision Ęoating-point numbers and vice versa. at is
why, from 46 bits onwards, the error cannot be maintained.

In Table 4.6, we provide an example of the maximum angular quantization
errors for the unit normal vectors measured with the Statuette data set that
has almost 5M unit vectors. An image of the Statuette is shown in Table 4.7.
e unit normal vectors use 48 (OP) and 47 bits (all others) per compressed
unit vector. Whereas double precision maintains the predicted error in all
cases (markedwith the symbol "), most of the single-precision computations
fail, even with range quantization (marked with %).

Sometimes one can afford to spend more effort during unit vector compres-
sion. erefore, compression is carried out at a higher precision than de-
compression. Using double precision for compression and single precision
for decompression is better than using single precision for both compres-
sion and decompression. However, not all methods succeed to maintain the
predicted error. Results of compressing with double precision but decom-
pressing with single precision are shown in Table 4.7.
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Half Single Double
Method Domain Range Domain Range Domain Range

PP 49 49 101 101 217 217
CP 27 27 53 53 111 111
SPP 27 27 53 53 111 111
OP 28 26 54 52 112 110
WOP 27 27 53 53 111 111
WCP 27 27 53 53 111 111
SCP 27 27 53 53 111 111

Table 4.8: Bits To Maintain FPUV-Error. Column Half (Single, Double) shows the bit-
budget required for the parameterizationmethods shown in the örst column tomatch the
respective precision of FPUVs. OP (underlined numbers) achieves the lowest bit number.

4.8.4 Comparison with FPUVs

In Section 4.4, we derived the maximum angular quantization error of
FPUVs. It is interesting to know how many bits a compressed unit vector
of a parameterization method requires, such that the unit vectors are as ac-
curate as the FPUV representation. Table 4.8 lists these numbers rounded to
match the next valid number of bits a unit vectors can have for the respec-
tive representation. For example, WOP needs an odd number of bits andOP
needs an even number of bits. Note that PP requires one bit more than the
respective Ęoating-point representation. We get savings of about 45% per
unit vector and we achieve the lowest number of bits when quantizing OP
in the range. Under these considerations, domain and range quantization
make no difference except for OP.

As outlined in Section 4.8.3, we cannot reconstruct unit vectors with single-
precision accuracy using single-precision operations. We need double-
precision operations. Likewise, half precision can only be reconstructed us-
ing single precision.

4.8.5 Quality

For quality comparison, we consider the car hood that we have already seen
in Figure 4.2 on page 4.2. In order to visualize the error, we use a bit-budget
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Single Float Griffith et al. OP Domain OP Range

WOP Domain WOP Range SCP Domain SCP Range

CP Domain CP Range WCP Domain WCP Range

SPP Domain SPP Range PP Domain PP Range

Figure 4.17: Shading Results at a Bit-Budget of 17 bits. Blinn-Phong shading is applied
to the car hood of Figure 4.2. We compare various unit vector compression methods. The
car hood is rotated such that the unit vectors are around the worst-case unit vector of the
used compression method. The bit budget is limited to 17 bits. We use 16 bits for Griffith
et al. and OP, as they do not support 17 bits.
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Griffith et al. OP Domain OP Range

WOP Domain WOP Range SCP Domain SCP Range

CP Domain CP Range WCP Domain WCP Range

SPP Domain SPP Range PP Domain PP Range

0 radians

≥ 0.0157 radians

Error

Figure 4.18: Angular Error at a Bit-Budget of 17 bits. We compute the angle between a
single-precision FPUV and a unit vector reconstructed from a compression method. The
geometry and the alignment match with those used in Figure 4.17.
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WCP Shading OP Domain ShadingOP Domain ErrorWCP Domain Shading

Figure 4.19: ComparingWCPandOPwith aBit-Budget of 16Bits. Weplot the angular er-
ror 15 bitWCP and 16 bit OP produce against single-precision FPUV and show the shading
result using Blinn-Phong lighting. The colors of the error are the same as in Figure 4.18.

of 16 bits for OP and 17 bits for the remaining parameterizations. We use
such a low number of bits to better visualize the error and to highlight the
resulting shading artifacts. Additionally, we show an image that was gen-
erated using Griffith and co-workers’ “Spherical Covering 2” [GKP07]. For
this number of bits, it has one of the smallest errors reported in literature so
far.

In Figure 4.17, we directly show the rendering result using Blinn-Phong
shading. Figure 4.18 directly plots the angular difference between the FPUV
and the unit vector decompressed from a parameterization method. In each
image, the model is aligned such that the normal vectors of the car hood
point roughly into the direction of the unit vector that causes the largest an-
gular quantization error for the respective parameterization method.

What is apparent from these two images is that PP delivers the worst quality.
e rendering result and the plotted angular error of WOP, SCP, and CP for
both domain and range quantization are almost identical. is is, in fact,
expected, as the maximum angular error does not improve when applying
range quantization. e parameterizations that obtain a better error under
range quantization also show better rendering results in Figure 4.17 and the
error is perceivably lower in Figure 4.18.

e image quality and the error of the parameterization methods are com-
parable to the method by Griffith and co-workers. ey report a maximum
angular quantization error of about . · − radians, whereas OP with
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Compress Decompress
Method Domain Range Direction Unit

PP 94 15 250 250
SPP 80 15 230 230
OP 100 17 210 120
WOP 110 (16) 250 120
CP 88 (20) 290 120
WCP 28 7 62 40
SCP 21 (4) 24 24

Table 4.9: CPU Compression and Decompression Timings. We measure the speed of
compressing and decompressing the normal vectors of the Statuette data set in million
vectors per second on an Intel Core i7/2600 CPU running at 3.40GHz. For compression, we
compare domain and range quantization. Column Direction reports the rate for direction
vectors, i.e., without normalization. Column Unit lists the unit vector decompressing rate.

range quantization has a maximum error of . · − radians. Both need 16
bits to represent a unit vector. However, Griffith et al. rely either on expen-
sive subdivision or a LUT. at means, it is either computationally intense
or requires extra storage. Both strategies do not scale to higher precisions as
discussed in Section 4.3.3, whereas parameterization methods do.

e image quality and the error of Griffith et al. and OP that use 16 bits per
unit vector are slightly worse than the other methods that use 17 bits. When
doing the same comparison with 16-bit OP and only 15-bit WCP (both do-
main quantization), we see in Figure 4.19 that OP clearly achieves more ac-
curate results.

4.8.6 Timings

In order to test timings, we use the Statuette data-set andmeasure howmany
unit normal vectors a second each method compresses and decompresses in
a single-threaded CPU program running on an Intel Core i7/2600 CPU at
3.40GHz. e results in Table 4.9 are listed in million vectors per second.
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e arithmetic operations are carried out at single precision, which is about
10%–20% faster than double precision. We measure the rate for convert-
ing a unit vector into the two uniformly quantized numbers u and v and
one possible parameterization index s (columns Compress). Each uniformly
quantized number is stored in one 32-bit unsigned integer. For the chart
index, 32 bits are used, too. We avoid further compaction using logical bit
and shi operations to provide timings that are more independent from the
concrete number of bits. First, we measure the rate for converting the two
parameters u and v from uniformly quantized numbers and apply the pro-
jection P− to FPUVs. For compression, we distinguish between domain
and range quantization.

Most notably, domain quantization is between 4 to 6.8 times faster than
range quantization. is is not surprising, as range quantization requires
at least four domain quantizations plus the computation for determining
which of the four candidates matches the best packed unit vector. Timings
in parenthesis in the column for range quantization are given only for com-
pleteness, as these methods yield already the same maximum error using
domain quantization. us, WOP is the fastest of all methods. It has the
second highest accuracy for an uneven number of bits. One can improve
accuracy by about 10% when using SCP at more than ĕve times the com-
pression cost.

Remember that both OP quantization methods are the most accurate meth-
ods for an even number of bits. One can obtain 33%more accuracy for range
quantization which comes, however, at more than ĕve times the compres-
sion time. For roughly the same cost of OP range quantization, SCP only
improves the error over OP domain quantization by less than ĕve percent.

e columns Decompress list the timings for decompressing a unit vector.
Applications that require unit vectors do not necessarily need normalized
unit vectors and work equally well with direction vectors. For those appli-
cations, we can omit the normalization of the direction vectors computed
with OP, WOP, CP, and WCP. e decompression rate in million unit vec-
tors per second is shown in column Direction of Table 4.9. However, some
applications speciĕcally demand unit vectors. Hence, we incorporate the
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timings for normalization and show decompression rates in column Unit.
Note that PP, SPP, and SCP already deliver unit vectors. us, the ĕgures in
both columns are the same.

Methods using transcendental functions (WCP, SCP) are up to an order of
magnitude slower. All other methods compute roughly between 200-300
million direction vectors per second. A method that does not provide built-
in unit vectors roughly requires twice the decompression time. e only at-
tractive alternative in terms of speed and error is SPP: e error of SPP range
quantization equals the error of the much simpler WOP domain quantiza-
tion.

4.8.7 GPU Decompression of Per-Vertex Unit Vectors

Our main application is to compress per-vertex unit vectors of large triangle
meshes. We store vertex positions and unit vectors in vertex buffers and
decompress them in a vertex program on an Nvidia GeForce 580 GTX.

In our ĕrst experiment, we want to ĕnd out if the use of uniformly quan-
tized numbers and the complexity of computing P− have any impact on the
performance. We use the memory space of a float2 or a float3 to transfer
the parameters of a unit vector into the vertex program. Note that we do
not bother to further pack them using bit shis and logical operations, as
we only want to measure the cost for computing P− and the conversion of
uniformly quantized numbers to Ęoats. Vertex positions are stored using a
float3. For any of our models, we were not able to measure any difference
in the execution time, no matter which parameterization method we were
applying or what bit-budget of a compressed unit vector was used. Even
SCP and WCP, that use expensive transcendental functions, did not show
any negative impact on the performance. We believe that in our application
vertex processing is not a bottleneck and the GPU can hide decompression
operations well with memory transactions.

In a second experiment, we store the position and the parameters of the unit
vector as uniformly quantized numbers and tightly pack them into the 64
bits, i.e., the memory-space of one float2. Instead of two float3 (192 bits),
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we now need only one float2 (64 bits). Bit operations separate the bits cor-
responding to the positions and unit vectors from the 64-bit input word. In-
dependent of the distribution of the bits for packed position or unit normal
vectors across the input word, there is no difference in execution and speed,
despite the instruction overhead. Again, we anticipate that this is due to our
application being memory bandwidth bound.

4.8.8 Surplus Bits

In order tomaintain the error ΔQP(b) of Equation (4.16), we essentially need
exp (b) distinct unit vectors. e parameterization P, however, does not
optimally distribute them. An optimal distribution would require a smaller
number bits bopt to maintain the same error. Assume we were able to dis-
tribute exp

(
bopt

)
unit vectors optimally, i.e., uniformly. en, we would

obtain a quantization error of ΔQopt
(
exp

(
bopt

))
(cf. Equation (4.5) from

Section 4.3.2). As we cannot optimally distribute exp
(
bopt

)
unit vectors,

ΔQopt
(
exp

(
bopt

))
is a lower bound for the error. us, solving

QP(b) = ΔQopt
(
exp

(
bopt

))
,

for bopt gives us a lower bound for number of bits, we need to maintain the
error ΔQP(b):

bopt = log N
(
C · exp

(
−b



))
.

We refer to Equation (4.6) for the deĕnition of N. Hence, optimally we
would require only bopt bits to represent a unit vector. But a parameteri-
zation method requires b > bopt bits. erefore, the difference

b− bopt

tells us how many bits we “waste” when using a parameterization method
rather than the optimal distribution. For reasonable b, e.g., b > , and for
constant C, we have found that Δb is almost independent from b. us, we
use the limit instead of the exact formula:

Δb = lim
b→∞

b− bopt = log
C
P
√


 · π

.
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Method Domain Range

SPP . .
OP . .
WOP . .
CP . .
WCP . .
SCP . .

Table 4.10: Surplus Bits of Various Parameterization Methods. A parameterization
method encodes a unit vector using b bits. Therefore, it has the power to represent
exp (b) distinct unit vectors. However, they are not optimally distributed. The table
shows the number of bits wasted over an optimal distribution.

Table 4.10 lists Δb for the most important parameterization methods we dis-
cussed. e smaller Δb the closer themethod is to the optimum. For domain
quantization, the bestmethod is SCP. It is less than 2 bits away from the opti-
mum. OP at range quantization is the closest to the optimum of all methods:
it is only 1.14 away, which is just a little more than one bit. at means that
any other method that compresses unit vectors can improve at most by 1.14
bits upon range quantization of OP.

4.9 Conclusion

In this chapter, we have thoroughly investigated unit vector compression.
First, we derived a lower bound for the accuracy of unit vectors required for
lighting computations in Computer Graphics. From that, we concluded that
a unit vector needs at least 18 bits. As an upper bound for the accuracy, we
identiĕed machine precision. However, unit vectors are typically stored as
three Ęoats (FPUVs). is representation possesses redundancies that can
be avoided using alternative representations. Before looking for those alter-
natives, we needed to see how accurate they have to be at least. Hence, we
derived the location where FPUVs are most inaccurate, i.e., where they have
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(a) (b)

Figure 4.20: Comparison Between FPUVs and OP Unit Vectors. At 8 bits per color chan-
nel, single-precision FPUVs (a) are identical to (b) 48-bits OP unit vectors.

the largest angular quantization error. We proved that any alternative rep-
resentation that is as accurate as single-precision FPUVs requires about 50
bits instead of 96 bits. We compared previous work and found that param-
eterization methods are the only effective way of representing unit vectors
when aiming for Ęoating-point precision. We analyzed the error of vari-
ous parameterization methods using two different quantization strategies.
It turned out that parameterization methods are in fact an excellent way of
compressing unit vectors in terms of compression and decompression speed,
compactness, and suitability for GPU rendering.

For our purposes, we ĕnd that both OP and WOP provide the best trade-
off between quality and speed. At an even bit-number, we use OP, as both
quantization strategies have superior error behavior. As mentioned, we can
only obtain the accuracy of single-precision FPUVs when using 52 bits to
store an OP unit vector. Since 52 bits is a very impractical number of bits to
be stored in a system word, we choose 48 bits, yielding a compression ratio
of 2:1. On the one hand, that increases the error by a factor of three over
single-precision FPUVs. On the other hand, the error is over 2,700 times
better than the one of half-precision FPUVs, which also requires 48 bits. As
outlined in Section 4.8.3 when using single-precision for both compression
and decompression, we cannot guarantee the predicted error for 48 bits OP.
However, we observed that when compressing at double precision and de-
compressing at single precision, we are able to maintain the predicted error.
As compression time is a minor issue to us, we choose the more complex
range quantization at double precision for OP.
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Figure 4.20a and b show the rendering result of the car hood using FPUVs
with single precision and 48-bit OP unit vectors. With 8 bit per color chan-
nel, the images are identical. When using 13 bit per color channel, two pixels
are different.

Using only 1.14 bits more than the theoretical optimum, OP with range
quantization is from a theoretical point of view the bestmethodwe explored.
Any other method that we have not studied here can at most be 1.14 bits
better. Given the simplicity of compressing and decompressing unit vectors
using OP, we believe that it is questionable whether the extra effort is worth
the gain of about one bit per unit vector.

One alternative could be storing unit vectors in a LUT. However, LUTs be-
come quite large when aiming for accuracies higher than those of FPUVs
at half-precision. Besides, the compression of unit vectors involves match-
ing an entry in the LUT. at entails a search which comes at the cost of
O (logN). Parameterization methods compression is in O ().

For an uneven number of bits, we recommend WOP, as they provide fast
compression and decompression at a low error. SCP and WCP are able to
give a better error, however, at the cost of using sine, cosine, and tangent
functions. While this does not pose a problem in our GPU application, it
might impact applications that are more vertex transform bound. at is
why we would accept an error that is 10% higher and prefer WOP over SCP.

4.10 Further Applications

Our motivation for unit vector compression was driven by keeping the stor-
age of per-vertex unit normal vectors small. But other applications may
beneĕt from our results, too. One of them is deferred shading [DWS∗88].
We already introduced the concept behind deferred shading and lighting in
Section 4.5. Unit vectors are stored per fragment in a g-buffer. Hardware
supports g-buffers whose data-types may have 8, 16, or 32 bits. is makes
the parameters of OP an ideal candidate as they consume an even number
of bits and thus no bit is wasted. Moreover, OP has one of the lowest of all
errors, even when using fast domain quantization.
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Another example is normal mapping. Hardware textures may contain data-
types with an even number of bits. With the same argument used for g-
buffers, OP is an ideal candidate. Normal map creation is an off-line pro-
cess. Hence, we suggest using range quantization, as it possesses the best of
all errors. Oentimes, the normal vectors in the normal map are stored in
tangent space that is deĕned relative to the surface. us, the normal vectors
need to be transformed into the coordinate system in which lighting is car-
ried out. To express this transformation, three unit vectors — called tangent
space — are stored per vertex. ese three unit-vectors may be stored using
OP. Moreover, as the normal vectors of the normal-map are stored relatively
to the tangent space, their z component is always non-negative. us, using
only one parameterization ofWOPwould allow us to use an even number of
bits, and every compressed unit vector uses all bits of a normal map’s texel.
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CHAPTER 5

Triangle Mesh Topology Compression

In the previous two chapters, we studied ways of efficiently decompressing
positions and unit normal vectors directly on the GPU. We explored how
to quantize attributes effectively. e advantage of this approach is that ver-
tices are independent from each other. is allows randomly accessing them
when stored in a vertex buffer or texture in GPU memory. erefore, they
can easily be decompressed in a vertex program with almost no overhead
and completely transparent to the programmer.

In practice, positions and normal vectors are attributes that are probably en-
countered most frequently. In a triangle mesh with a triangle-to-vertex ratio
of 2:1, positions and unit normal vectors account for 50% of the data. e
remaining half is topology, i.e., the piece of information that describes how
vertices are connected to form triangles.

Decompressing triangle connectivity in the graphics pipeline is different
from decompressing attributes. Connectivity is discrete and therefore quan-
tization is simply not possible. Moreover, we do not want to modify con-
nectivity, for example, by reducing the number of triangles. What makes
the endeavor even more challenging is that a shader stage that allows cre-
ating or modifying index buffers does not exist on the GPU. Instead, we
propose to decompress triangle topology using CUDA and then hand the
decompressed triangles to the graphics pipeline.

In this chapter, we present a lossless, single-rate triangle mesh topology com-
pressor and decompressor (abbreviatedwith codec) that is tailored for fast data-
parallel GPU decompression. Our compression scheme is based on coher-
ently ordering generalized triangle strips in memory. To unpack generalized
triangle strips efficiently, we propose a novel parallel and scalable algorithm.
Further, we exploit coherency in the order of vertex references to improve
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our compression scheme. We use a variable bit-length code for additional
compression beneĕts, for which we propose a scalable data-parallel decom-
pression algorithm. For a set of standard benchmark models, we obtain 3.7
bpt (minimum), 4.6 bpt (median), and 7.6 bpt (maximum). Our CUDA de-
compression requires only about 15%of the time it takes to render themodel
even with simple lighting models.

5.1 Introduction

ere is a whole body of sequential methods well suited for decompressing
triangle meshes on single-core systems. However, far too little attention has
been paid to efficient data-parallel decompression on many-core architec-
tures, particularly on GPUs. To unpack a triangle, most existing algorithms
rely on previously unpacked triangles. As a consequence, they are inherently
sequential.

Although they achieve compression rates of 1 bpt, they contain recursive de-
pendencies. ose dependencies are either hard to resolve or require far too
many synchronization points, which impedes efficient parallel implemen-
tations. e bottom line is that decompression algorithms are sequential,
whereas GPUs aremassively parallel. erefore, it is particularly challenging
to decompress triangles quickly on a GPU, and to obtain high compression
ratios at the same time.

In this chapter, we propose a codec that signiĕcantly reduces the memory
needed for triangle connectivity. We compress and decompress vertex at-
tributes, such as positions and normal vectors, as described in the previous
chapters. Our algorithm belongs to the class of single-rate methods. at
means that all triangles are compressed and decompressed at once, and not,
for example, progressively.

Unlike previous approaches, our algorithm is highly parallel and therefore
enables real-time decompression. us, we save precious GPU memory.
is additionally reduces the need for CPU-to-GPU data transfers.
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Figure 5.1: Welsh Dragon. We compress the 2.2M triangles of the Welsh Dragon from 96
bpt to 3.72 bpt. It takes 1.6ms for our data-parallel algorithm to decompress the mesh.

Sequentialmethods reach high compression ratios with data structures, such
as stacks, queues, or trees. However, the use of these data structures in a data-
parallel algorithm would harm performance signiĕcantly. us, we cannot
simply turn a sequential algorithm into a parallel one and expect close-to-
optimal compression rates at high-performance decompression times.

Instead, we design a novel codec that prefers higher decompression speed at
the cost of lower compression ratios. For a series of test models, we observe
3.7 bpt as best and 7.6 bpt asworst compression rate. emedian is at 4.6 bpt.
For the Welsh Dragon of Figure 5.1 with 2.2M triangles, we obtain a com-
pression ratio of 26:1 for the topology. While rendering the uncompressed
Welsh Dragon with simple Blinn-Phong shading takes 6.5ms, rendering the
samemodel including our decompression takes 8.1ms, which is an overhead
of only 1.6ms. For more complex shading, the overhead amortizes quickly.

149



CHAPTER 5 Triangle Mesh Topology Compression

(a) (b) (c)

Figure 5.2: Overview of our Codec. For compression, we reorder triangles and vertices
coherently. (a) We traverse themodel in a breadth-örst fashion and create a series of belts,
shown in different shades. (b) We derive generalized triangle strips, from these belts. (c)
Vertices are ordered as guided by the strips. Triangles visiting a vertex for the örst time are
in light shades. Dark shaded triangles revisit a vertex.

5.1.1 Contributions

We achieve these results by the following contributions:

• We traverse the mesh breadth-ĕrst. Triangles visited in the same
breadth-level form a belt. In Figure 5.2a, belts are indicated through
different colors. en, the triangles are ordered coherently to form
generalized triangle strips (Figure 5.2b).

• We present a novel data-parallel method for decoding generalized tri-
angle strips efficiently. Its thread allocation scales linearly with the
number of triangles.

• We coherently order vertices as guided by the triangle order: If a tri-
angle references a vertex for the ĕrst time (bright triangles in Fig-
ure 5.2c), one bit is enough for the vertex information.

• For triangles that refer to an already referenced vertex (dark triangles
in Figure 5.2c), we compress its vertices using a variable bit-length
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code. For decompression, we present a fast data-parallel algorithm
that scales well.

Compressing a model is fast enough to do it at load time. For example, the
Welsh Dragon requires 2.3 seconds for compression.

We alter triangle and vertex order (but not orientation) as it is common
practice in most cache optimization and compression methods. As a by-
product, our coherent triangle order is also very beneĕcial for GPU render-
ing. Frame-times turned out to be very similar to those achieved by cache-
oblivious orders.

5.1.2 Overview

Section 5.2 reviews prior art that is most relevant for the approach presented
in this chapter. en, we showhow to order triangles to form generalized tri-
angle strips in Section 5.3. is is a major part of the compressor side of our
algorithm. e data-parallel decompression is explained in Sections 5.4, 5.5,
5.6, and 5.7. In Section 5.8, we thoroughly evaluate our algorithms in terms
of compression rate and decompression time. Further, we discuss applica-
tion scenarios. Finally, Section 5.9 concludes with suggestions for future
research projects.

5.2 RelatedWork

As the ĕeld of geometry compression is too vast, we focus on single-rate,
lossless connectivity coding of triangle meshes. We refer to overview re-
ports [GGK02, AG03, PKJK05] and references therein for detailed descrip-
tions.

To reach the entropy for planar triangle graphs of 1.62 bpt [Tut62], connec-
tivity coding methods conquer the mesh and thereby encode the mesh el-
ements. Depending on the element type that guides the conquest, we dis-
tinguish between face-based [GS98, Ros99], edge-based [Ise00], and vertex-
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based [TG98, AD01, KPRW05] approaches. ese methods achieve about
2 bpt. When paired with arithmetic [Pas76] or Huffman coding [Huf52],
they obtain about 1 bpt. However, they unpack element aer element and
are therefore sequential. As far as we know, no data-parallel implementa-
tion has been described yet.

As meshes grow faster than main memory, several formats have been pro-
posed to allow for out-of-core access [HLK01, IG03]. Meshes are divided
into clusters that are compressed using existing sequential algorithms. Typi-
cally, each cluster contains about  vertices, and each triangle uses 1–2 bpt.
is immediately leads to a parallelization approach that unpacks each clus-
ter on one core independently. However, every cluster comes with a certain
memory overhead. us, themore cores we have to keep busy themore clus-
ters we require and theworse the compression rate becomes. In the limit case
of one triangle per cluster, clustering approaches yield no compression at all.
GPUs already have hundreds of cores and will have even more in the future;
hence, these approaches do not scale well. Moreover, as the underlying de-
compression algorithms are quite involved, parallel threads are unlikely to
run in lockstep, which signiĕcantly degrades performance on SIMD archi-
tectures.

So called random access mesh compression techniques divide the mesh
into clusters. To access a vertex, the cluster it is located in has to be de-
termined with an indexing structure. en, the cluster is entirely decom-
pressed. e methods are designed for interactive out-of-core applications
and reach about 3 – 8 bpt. However, they all reuse sequential decompression
methods [YL07, CKLL09, CH09].

Only recently, compact data structureswere proposed [GLLR11a, GLLR11b]
which allow for true random access and thus do not rely on sequential meth-
ods. ey are primarily designed to access neighborhood information in or-
der to enable efficient mesh operations. us, connectivity is compressed
only moderately to about 26 bpt.

For fast decompression, special hardware implementations have been pro-
posed [Dee95, Cho97, CK07] that report around 40, 20, and 8 bpt, respec-
tively. However, all of them use FIFO caches which prevent fast and scalable
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data-parallel replications. Moreover, we are not aware of current hardware
exposing these compression techniques.

Olick [Oli08] presents a compression scheme based on ordering triangles
coherently [LY06]. He targets real-time decompression on the Cell proces-
sor [GHF∗06] used in game consoles. e Cell processor has nine cores.
us, the degree of parallelism is signiĕcantly lower than on GPUs. Olick
splits triangles into chunks of 500 – 1500 triangles. Each chunk is decom-
pressed sequentially on one core. On GPUs, Olick’s approach performs only
moderately [Kei11].

Within the pipeline, there are programmable units that create primitives,
but they have their own disadvantages. Geometry programs are capable of
outputting an arbitrary number of triangles including per-vertex attributes.
However, already a trivial geometry program creates overhead that degrades
performance. Moreover, the geometry shader stage is located aer the vertex
shader stage. Transparently integrating triangle decompression is therefore
a lot more difficult than it is with attribute decompression, as done in the
previous chapters. One reason is that many vertex programs are an integral
part of an existing shading pipeline. Decompressing triangles from within
a geometry program entails that all vertex program code has to be moved
and incorporated to the geometry program. While this could be done au-
tomatically, for example, by a source-to-source compiler, there is another
drawback that would impact performance negatively: As a vertex is shared
by six triangles on average, it needs to be transformed six times in the ge-
ometry shader stage. When carrying out vertex transformations in the ver-
tex shader stage, the number of transformations is signiĕcantly lower: is
is because GPU vendors have optimized the vertex shader stage to largely
reduce redundant vertex shader executions. Many algorithms exist that op-
timize the layout of triangle meshes to strive for maximum vertex-shader-
stage throughput [Hop99, BG01, YLPM05, LY06, For06, SNB07]. When de-
compressing triangles in the geometry shader stage, this advantage would
completely vanish, and performance would degrade signiĕcantly.

Variable bit-length codes were decompressed ĕrst on a GPU by Lindstrom
andCohen [LC10] in the context of terrain rendering. erefore, they group
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Figure 5.3: Belt Traverser. The array T stores triangles in the explicit representation. Tri-
angles of the same color belong to the same belt. The initial belt is shown in blue. Black
arrows show the traversal order of the generalized triangle strip. The numbers below the
elements ofT are the corresponding array indices.

height maps in patches and then decompress the values sequentially in a ge-
ometry program. For compression, they use a recursive integer coding tech-
nique by Moffat and Ahn [MA05]. Lindstrom and Cohen’s approach re-
quires carefully tweaking the chunk size to trade between compression rate
and decompression speed.

Dick and co-workers [DSW09] unpack generalized triangle strips in a geom-
etry program for terrain rendering. ey spawn one thread for each strip,
and each strip consists of 16 triangles at most. However, for general meshes,
efficiently ĕnding strips of a ĕxed length is hard and time-consuming. is
reduces thread divergence, as no thread of a group requires more than 16
steps. Yet, for triangle meshes, short strips signiĕcantly reduce compression
beneĕts.

Recently, hardware tessellation has been introduced that can create large
number of triangles directly in the pipeline. However, the triangles adhere
to well-deĕned patterns that are hard to match with arbitrary, generic in-
dex buffers. us, we can at most only approximate topology using hard-
ware tessellation [SPM∗12]. But this counteracts our goal of lossless triangle
topology compression.

5.3 Generalized Triangle Strips

Consider the triangle mesh of Figure 5.3 stored in the explicit representation
(cf. Section 2.2.1). Similar to other compression schemes, ours exploits data
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coherency to reduce memory consumption. erefore, we order the trian-
gles such that T[i] and T[i + ] share an edge. A generalized triangle strip is
a sequence of triangles in which every triangle shares an edge with its pre-
ceding triangle. Of course, it is not always possible that all neighbors in T
share an edge. But the more neighboring entries share an edge the better
the compression rate becomes. Additionally, it is crucial for high compres-
sion ratios that strips are ordered coherently in memory, as well. is will
become apparent in Section 5.6.

5.3.1 Creating Belts and Stripiöcation

Our algorithm for ordering triangles and strips consists of two stages: In
stage one — named belt creation — we conquer the triangles of a mesh
breadth-ĕrst and create an ordered sequence of belts. A belt is an unordered
set of triangles visited in one breadth-ĕrst step. For example, in Figure 5.2,
the connected triangles of common color belong to the same belt. In the
second stage — called stripiĕcation — we order triangles of each belt into
generalized triangle strips.

Belt Creation

To simplify explanations, we use the term triangle one-ring of a vertex, which
is the set of triangles that is connected with that vertex through an edge. As
initial belt, we pick the triangle one-ring of a seed vertex. In the example
of Figure 5.3, the initial belt is shown in blue and originates from the seed
vertex 0. We observe that the seed vertex has only minor inĘuence on the
compression rate, so we choose it randomly. For each connected component
of a mesh, we need one seed vertex.

We iteratively add new belts by considering the union of all triangle one-
rings of vertices of the previous belt. All triangles from that union which
are not part of an existing belt are added to the next belt. In Figure 5.3, the
belt following the blue belt contains all the green triangles. We continue
adding belts until the last triangle is added to the ĕnal belt, shown in red in
Figure 5.3. In Figure 5.2, the connected triangles of the same color are in a
common belt.
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Stripiöcation

e belts allow for easily ordering the triangles into generalized triangle
strips, shown with dashed arrows in Figure 5.3. We start with the ĕrst belt
and add one of its triangles to the array of triangles T. en, we consider all
its neighboring triangles in the same belt which are not yet inT. We add one
of them to T and put all others onto a stack. In the same way, we iteratively
consider the neighbors of the recently added triangle.

If the current triangle has no neighbors le within the current belt, we start
a new strip using a triangle from the stack. Once the stack is empty, we look
for a triangle in the current belt that is not yet in T, add it to the belt, and
continue by considering its neighbors.

If all triangles of the belt are in T, we proceed to the next belt. To create
strips across belt boundaries, we try to merge strips from neighboring belts
by choosing the ĕrst triangle of a new belt such that it neighbors the most
recently added triangle.

Figures 5.2b and 5.3 show the result of our stripiĕcation. e triangles in the
array T of Figure 5.3 are in generalized strip order.

We use this ordering for compression in Section 5.4. At the same time, the
strips are arranged according to the order guided by the breadth-ĕrst traver-
sal. at means strips which are close on the mesh are also close in T. is
is done intentionally since it improves compression rate as explained in Sec-
tion 5.6.

5.3.2 Vertex Order

Further, we order the vertices coherently. We label the vertices to adhere to
the order in which they are visited when added to T. If a vertex is visited
multiple times, it keeps the index that it was originally assigned, as seen in
Figure 5.3. By this, we order the vertices coherently. is results in additional
compression beneĕts, as outlined in Section 5.5.
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N

v v

v v

P

v v

vv

R

v v

v

v

v v

Figure 5.4: Strip-Codes. The left and themiddle ögure show the two adjacency cases that
occur for orientedmanifoldmeshes. If the triangle (v, v, v) shares theedge (v, v)with
its successor, we assign anN (next edge) as strip-code. If the triangle (v, v, v) shares the
edge (v, v) with its successor, we assign a P (previous edge) as strip-code. If no edge is
shared, as shown on the right, we use an R (restart) code.

5.3.3 Compact Representation of Generalized Triangle Strips

Obviously, generalized triangle strips can be stored compactly: If triangles
T[i] andT[i+] share an edge, we do not have to store three vertices explicitly
to specify T[i + ]: it is sufficient to store information about the edge that
is shared with the previous triangle T[i], and the vertex of T[i + ] that is
not used in the previous triangle. We can always order the vertices of the
triangles consistently such that only the adjacency cases of Figure 5.4 occur
for orientedmanifoldmeshes. e current triangle (v, v, v) is marked red.
Its descending triangle, shown in blue, is either adjacent to the edge (v, v)
or (v, v). To distinguish the two cases, we introduce the strip-codes N and P,
respectively. N is short for “next edge”, since (v, v) is the edge aer (v, v)
with respect to the current triangle. Likewise, P abbreviates “previous edge”.
If T[i] and T[i + ] do not share an edge, we introduce the strip-code R, as
for “restart”. In that case, all three vertices have to be provided explicitly
to specify the triangle. e restart-code enables us to handle non-manifold
meshes as well.

As depicted in Figure 5.5, it is sufficient to store one strip-code per triangle
in an array C and — depending on the strip-code — one or three vertices
per triangle in the vertex array V. is allows saving up to two third of the
vertex information over an explicit representation. As we have three strip-
code states (N, P, and R), each triangle requires two bits for its strip-code.
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3V
0 1 2 3 4 5 7 8 9 10 116

C N N RR P N PP
0 1 2 3 4 5 6 7

0 7

4 5 6 98710 32

4 5 6 98

1

3

2

2

Figure5.5:GeneralizedTriangleStrip. Thegeneralized triangle strip of Figure 5.3 is stored
compactly in a strip-code array C and a vertex array V. The numbers below the elements
are their array indices.

5.4 Decompression of Generalized Triangle Strips

Current graphics hardware only supports simple triangle strips. ey are a
special case of generalized triangle strips: A strip-restart is encoded with a
magic number in the vertex array V, and the array of strip-codes is given
implicitly as C = (R,N, P,N, P, . . . ).

If we used simple triangle strips, we could not choose between the two neigh-
bors of a triangle and would be forced to take the one predeĕned by the im-
plicit strip-codes. We could mimic the behavior with adding restart-codes
or degenerate triangles but compression rates would suffer.

us, we have to account for the lacking hardware support of generalized
triangle strips by converting them into the explicit representation T using
CUDA. We only need the arrays C and V on graphics hardware, which gen-
erally require less space than T. Yet, the conversion is a lot more involved
than it is for simple triangle strips.
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5.4 Decompression of Generalized Triangle Strips

5.4.1 Data-Parallel Scan

For our data-parallel algorithm, we make use of scan-operations, which are
brieĘy referred to as scan. Scan operations in the context of data-parallel
programming are due to Blelloch [Ble90b], who ĕrst come up with a work-
efficient algorithm for a scan. Blelloch describes how to express various fun-
damental algorithms in terms of scan-operations.

An exclusive scan is deĕned as

A[i] :=

{
, i = 
op

(
A[i− ],A[i− ]

)
, i > ,

(5.1)

and an inclusive scan as

A[i] :=

{
A[], i = 
op

(
A[i− ],A[i]

)
, i > ,

(5.2)

where A is the input array, A is the scanned output array, and op is a bi-
nary associative operation. Here we use the maximum and the sum of two
numbers.

Scans are very common operations in Computer Graphics (e.g., [PO08,
HZG08, LGS∗09, CF09, LHLK10, DBB11, ND12]) and many libraries pro-
vide scan implementations [HOS∗11, Mic10, HB11]. Most important for
the scalability of our algorithm is the fact that scans scale linearly with the
available bandwidth on current GPUs [MG09].

Scan implementations are based on algorithmsproposed byBlelloch [Ble90b],
and Hillis and Steele [HS86]. A detailed description of a CUDA scan imple-
mentation is outside the scope of this thesis and we have to point the inter-
ested reader to the relevant articles [HSO07, SHG08, BOA09, HG11].

Our algorithms make use of an optimized scan for CUDA [SHG08]. To fur-
ther boost speed, we carry out two minor modiĕcations. First, we add sup-
port for reading from bit-streams, instead of entire 32-bit data words. is is
important, because the code elements of the strip-code array C use two bits
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(or even one, as described further down), rather than 32 bits. erefore, we
tightly pack the elements without fragmentation in a 32-bit data word and
use logical bit operations to extract the individual elements.

e secondmodiĕcation is to support transform scans. It is deĕned similar to
a regular scan of Equation (5.1) with a little modiĕcation, i.e., we transform
A[i− ] using a function f:

A[i] :=

{
, i = 
op

(
A[i− ], f (A[i− ])

)
, i > ,

A similar deĕnition applies for the inclusive scan of Equation (5.2).

5.4.2 Data-Parallel Algorithm

We formalize the conversion from generalized triangle strips to the explicit
representation. For simplicity, we neglect restart-codes R for now. We ex-
press the relation between the current and the previous triangle recursively:

T[i] =
{
(T [i− ] .v,T [i− ] .v,V [i+ ]) , C [i] = P
(T [i− ] .v,T [i− ] .v,V [i+ ]) , C[i] = N.

(5.3)

e parts depending on the previous triangle are colored red. By the end of
this section, all red parts will have disappeared. is allows unpacking each
triangle independently and therefore in parallel with one thread per triangle.

We extend Equation (5.3) to support restart codes. Without restart-codes,
i +  always points to the third vertex of the ith triangle. In the presence
of restart-codes, that is no longer the case, as each restart shis the third
vertex of the ith triangle three more vertices back in V. In case the current
triangle uses either a P- or an N-code, the third vertex of ith triangle is just
one element further in V. We use these two properties to create a helper

160



5.4 Decompression of Generalized Triangle Strips

4 5 6 98

7

1

0

3

2

(a) Triangle Mesh

C R N N R P N PP

inclusive add-scan

M[tid]=M′[tid]-1;
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9
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if(C[tid]==R)
M[tid]=3;

else
M[tid]=1;

tid 0 1 2 3 5 6 74

(b) M_Scan

0 1 1 4 5 8 95

0 1 0 4 0 8 95

M 2 3 4 7 9 10 118
R N N R P N PC P

if(C[tid-1]==C[tid])

if(C[tid-1]==R &&
C[tid]==P)

Q[tid]=M[tid]-3;

else
Q[tid]=0;

Q[tid]=M[tid]-2;

Q

inclusive max-scan

Q

else

tid 0 1 2 3 5 6 74

(c) Q_Scan

Figure 5.6: M_Scan and Q_Scan. From the strip code arrayC, we create the arraysM and
Q. We continue the example from Figure 5.5. The solid arrows indicate the data-parallel
øow. Threads and array indices are enumerated consecutively by a thread identiöcation
number tid. The different colors in the arrays match the colors of the triangles. The code
in the white boxes is executed for each thread independently. The green boxes indicate
data-parallel scans.
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array M that points to the third vertex of each triangle:

M[i] =

{
M [i− ] +  C [i] 6= R
M [i− ] +  C [i] = R.

(5.4)
(5.5)

As the ĕrst triangle’s strip-code is always R, we initialize M[] = . e
recursion of Equations (5.4) and (5.5) match the deĕnition of the inclusive
scan using the plus-operation of Equation (5.2). We emphasize that scans
can be computed efficiently on GPUs.

Figure 5.6b shows a Ęow chart including code for computing M. e trans-
formations before and aer the scan require no separate kernel as they can
be fused into one kernel. Hence, the intermediate arrays M and M′ are, of
course, not created explicitly and are depicted only for explanation purposes.
e ĕgure further demonstrates the computation ofM by continuing the ex-
ample of the mesh in Figure 5.3 and 5.5.

With M, we enrich Equation (5.3) to support restart-codes:

T[i] =


(
T
[
M [i− ]

]
.v,T

[
M [i− ]

]
.v,V

[
M [i]

])
, C [i] = P(

T
[
M [i− ]

]
.v,T

[
M [i− ]

]
.v,V

[
M [i]

])
, C [i] = N(

V
[
M [i]− 

]
,V

[
M [i]− 

]
,V

[
M [i]

])
, C [i] = R.

While the R-case does not have any recursive dependency, the P- and N-
cases require vertices from the previous triangle. Fortunately, both contain
the third vertex of the previous triangle T

[
M [i− ]

]
.v. But we know that

the third vertex of the triangle i−  is V
[
M [i− ]

]
.

Using Equation (5.4), we simplify this further to V
[
M [i]− 

]
:

T[i] =


(
T
[
M [i− ]

]
.v,V

[
M [i]− 

]
,V

[
M [i]

])
, C [i] = P(

V
[
M [i]− 

]
,T

[
M [i− ]

]
.v,V

[
M [i]

])
, C [i] = N(

V
[
M [i]− 

]
,V

[
M [i]− 

]
,V

[
M [i]

])
, C [i] = R.

Now, there are onlyT
[
M [i− ]

]
.v andT

[
M [i− ]

]
.v that depend on the

162



5.4 Decompression of Generalized Triangle Strips

previous triangle. erefore, we need an arrayQwhose entries point to those
vertices in V that are already used in a triangle prior to the previous one. By
this, we get rid of the recursion:

T[i] =


(
V
[
Q [i]

]
,V

[
M [i]− 

]
,V

[
M [i]

])
, C [i] = P(

V
[
M [i]− 

]
,V

[
Q [i]

]
,V

[
M [i]

])
, C [i] = N(

V
[
M [i]− 

]
,V

[
M [i]− 

]
,V

[
M [i]

])
, C [i] = R.

(5.6)

Now, we have to compute Q, where it is not enough to consider each trian-
gle and its strip-code C[i] independently. Instead, we need to compare the
indices pointing into V (given by Equation (5.6)) of two successive triangles
T[i− ] and T[i]:

C[i] = P C[i] = N

C[i− ] = P Q[i] = Q[i− ] Q[i] = M[i− ]− 
C[i− ] = N Q[i] = M[i− ]−  Q[i] = Q[i− ]
C[i− ] = R Q[i] = M[i− ]−  Q[i] = M[i− ]− 

Using these identities andM[i−] = M[i]− (cf. Equation (5.4) asC[i] 6= R),
we ĕnd that

Q[i] =


M[i]− , C[i− ] = R and C[i] = P
Q[i− ], C[i− ] = C[i]
M[i]− , otherwise.

Now, Q[i] = Q[i− ] is the only recursive branch. We need to ĕnd a way to
propagate previous entries across Q:

From its deĕnition, we see that Q is monotonically increasing. at means
Q[i] ≥ Q[i− ] or

Q[i] = max
(
Q [i] ,Q [i− ]

)
.

is suits the deĕnition of an inclusive scan (compare Equation (5.2)). us,
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Figure 5.7: T_Kernel. We convert a generalized triangle strip represented by the strip-
code array C and the vertex array V to the explicit representation T. M and Q are com-
puted as shown in Figure 5.6b and 5.6c, respectively. The solid arrows indicate the data-
parallel øow. Threads and array indices are enumerated by tid, colors of the array ele-
ments match those of triangles, and the code inside the white box is executed for each
thread independently.

we compute the array Q ĕrst, i.e.,

Q[i] =


M[i]− , C[i− ] = R and C[i] = P
 C[i− ] = C[i]
M[i]− , otherwise.

ereaer, we apply an inclusive max-scan toQ, which yieldsQ, as shown in
Figure 5.6c. e operations prior to the scan are fused into one kernel called
Q_Scan, so no explicitmemory has to be reserved forQ. With the temporary
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arrays M and Q, Figure 5.7 shows an example including code for T_Kernel
that computes the explicit representation T using one thread per triangle.
Note that both M_Scan and Q_Scan scale with the number of triangles.

5.4.3 Restart Emulation

Each strip-code C[i] needs two bits to encode one of the three states R, P,
and N. We can save one bit on each code when we remove the R-state and
simulate it by inserting four degenerate triangles. Say, we have two triangles
that are not connected by an edge and therefore require a strip-restart:

(v, v, v) , (v, v, v) .

We do not need the restart code when replacing the two triangles by

(v, v, v) , (v, v, v) , (v, v, v) ,
(v, v, v) , (v, v, v) , (v, v, v) .

Note that we inserted for degenerate triangles. is is a generalized triangle
strip that only uses P and N codes.

Obviously, this increases the amount of triangles. But it also decreases the
number of bits required for each code from two down to one. In some cases
restart emulation has a positive effect on compression rate, while for a mesh
with many restart codes it degrades compression rate. We will detail the
differences in the result section.

In any case, it simpliĕes conversion to the explicit representation: We remove
all R-branches from the kernels in Figure 5.7. Moreover, M[i] = i +  is
given implicitly. is does not only make the code simpler, but also saves
bandwidth, as no kernel accesses elements of M. But most notably, we can
save the entire kernel call for M_Scan of Figure 5.6b.

However, aer decompression, degenerate triangles populate T. is does
not impose a major problem, as we feed the triangles into the GPU pipeline
which removes degenerate triangles automatically.
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5.4.4 Alternative Decompression Approaches

Having presented our method, we would like to discuss two other possible
implementation options and explain why our method is superior to them.

One approach is to express the transformation of generalized triangle strips
to the explicit representation in terms of a recursion equation. As shown by
Blelloch [Ble90a], recursion equations can be solved in parallel using scan
operations. However, the associative operation used for the scan is more
complex and it requires more memory. us, it consumes more bandwidth,
and our experiments showed that it is less efficient than our approach.

A trivial way to unpack generalized triangle strips in parallel is to divide the
triangle strips into chunks, assign each chunk to a thread, and unpack the
chunks in parallel. However, we have found that this approach bears several
disadvantages:

Dividing when R codes occur does not signiĕcantly harm compression rate.
However, as the individual strip runs vary heavily in length, threads idle un-
til the longest strip has ĕnished. is is called warp divergence and it is a
major cause for SIMD performance degradation [Nvi11a]. In tests, we have
observed that performance is inferior to the performance of our approach.

Alternatively, dividing strips into chunks of common sizes yields better de-
compression times. However, this approach negatively impacts compression
rate as this requires to artiĕcially add expensive R codes at the beginning of
every chunk. Moreover, there is a performance problem caused by memory
access patterns favored on GPUs: Assume that we have B chunks with A tri-
angles, each. read i outputs triangles sequentially to memory fromT[i ·A]
throughT[(i+)·A−]. is write pattern is not favored byGPUs [Nvi11a],
and we experienced signiĕcantly lower unpacking performance.

A better memory performance may be achieved when each thread i writes
to T[i · B] through T[i · B + A − ]. However, this moves neighboring tri-
angles far apart within T. As a result, vertex transform performance of the
graphics pipeline is degraded ([Kil08], Section 7.2): GPU vertex transform
performance greatly beneĕts, if vertices shared bymultiple triangles are close
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within T. ose vertices only need to be transformed once. If they are too
far apart, they are transformed multiple times. is signiĕcantly harms per-
formance.

Our approach also scales very well in contrast to chunking. With GPUs
adding more cores every generation, more chunks are required to maintain
a high utilization. But more chunks means worse compression rates.

In contrast, our approach has a granularity of one thread per triangle, which
is the lowest granularity one can possibly hope for. When addingmore cores,
our algorithms will automatically beneĕt without sacriĕcing compression
rate.

5.5 Incremental Vertices

With generalized triangle strips, it is possible to achieve a compression ratio
of at most 3:1: every triangle requires at least one vertex to be speciĕed, plus
the bits for the strip-code.

Wewill now improve on this by compressing the vertex arrayV. As explained
in Section 5.3, vertices are numbered in the order they are visited when gen-
erating generalized triangle strips. us, many neighboring entries of V are
consecutive. For example, consider the V array in Figure 5.8. For incremen-
tal vertices, we do not have to use the full storage. Instead, we store only one
bit for every vertex j in an array INC, the incremental vertex array. is array
indicates if the vertex is incremented with respect to previously incremented
vertex (INC[j] = ) or revisited (INC[j] = ). Whenever a triangle needs to
revisit a vertex, the vertex is stored in U, the reused vertex array.

In Figure 5.2c, all triangles in bright shades have incremental vertices. For
our test meshes, U is 51% – 55% the size of V.

Existing sequential mesh compression techniques use a similar approach
(“add-operation” [TG98, IG03], “new-vertex operation” [GS98], or “C oper-
ation” [Ros99, RSS01]), however, no parallelization is yet given. Figure 5.8
demonstrates how to compute V from U and INC efficiently in parallel: An

167



CHAPTER 5 Triangle Mesh Topology Compression

32

exclusive add-scan

INC 0 1 9876555432

V[tid]=U[tid-INC[tid]];

V[tid]=INC[tid];
if(INC[tid]==)

else
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(a) INC_Scan

(b) V_Kernel

INC 0 1 9876555432

1 1 1111100111INC
0 1 2 3 4 5 7 8 9 10 116tid
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Figure 5.8: Data-Parallel Unpacking of Incremental Vertices. From the arrays INC andU
we compute the vertex arrayV using a data-parallel (a) scan and (b) kernel.

exclusive add-scan over INC directly yields the entries ofV in case the vertex
is a simple increment. In the case of a vertex reuse, i.e., INC[j] = , we have
to properly index into U as shown in the code of Figure 5.8. Both scan and
kernel scale with the number of cores as they use O(|V|) threads.

5.6 Data-Parallel Word-Aligned Code

e strip generation algorithm of Section 5.3 puts the strips into an order
that conforms to the ordering of the belts. Hence, neighboring belts are close
within the triangle array T. If a vertex is not part of the previous triangle and
not an incremental vertex, it must re-reference a vertex from the current or
the previous belt. In Figure 5.2c, these are the triangles in dark shades.

168



5.6 Data-Parallel Word-Aligned Code

Selector a b c d e f g h i

bitsPerCode 1 2 3 4 5 7 9 14 28
numCodes 28 14 9 7 5 4 3 2 1

Table 5.1: Simple-9 Selectors. A Simple-9 code word holds numCodes[s] codes, where
each code uses bitsPerCode[s] bits.

us, neighboring elements ofU do not differmuch in value. So it is custom-
ary to use a delta code for further compression, i.e., D[k] = U[k]− U[k− ].
We could store the values of D using dlog (maxD− minD+ )e bits per
element. While this would already give good compression rates, we further
compress D[k] with a scheme similar to entropy encoding. We do not store
the values of D[k] in the two’s complement. Instead, we map the signed val-
ues to unsigned values using a zigzag pattern, i.e., ,−, ,−, , . . . , as done
by Lindstrom and Cohen [LC10]. In this representation, the smaller the ab-
solute value of a number is the more leading zero bits it has.

5.6.1 Simple-9 Codes

We make use of this property and apply Anh’s and Moffat’s Simple-9 tech-
nique [AM05]. Instead of storing all bits of a code D[k], we omit leading zero
bits and pack the remaining bits into code words. Every code word has a ĕxed
size of 32 bits: 4 bits for a selector and 28 bits for data bits.

e data bits are partitioned uniformly into codes of equal bit length. e 4
selector bits encode what partitioning is used, i.e., the code length and the
number of codes per code word, as shown in Table 5.1. To create a code
word S[l], we use a fast greedy approach: we sequentially collect values from
D, remove leading zero bits, and tightly pack the trailing bits in the data bits
of S[l]. If no more space is le in S[l], we proceed to the next code word.

For example in Figure 5.9, D[] uses 9 bits and D[] uses 14 bits. So we
allocate 14 bits for each, completing the 28 bits we can have per code
word. us, we store them in S[] together with the selector h. Next up
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14 7 7 5 6 13 109 4 5 3 1 2

h

D

f h eS

Figure 5.9: Simple-9 Compression Example. For Simple-9 compression we remove lead-
ing zeros of the elements of D. The numbers shown in D indicate the number of the re-
maining bits. The elements of D are packed into the data bits of the code word array S.
Every code word contains 28 data bits and a 4-bit selector, shown as lower-case letters.

h f h eS

s=S[tid]>>28;
S′[tid]=numCodes[s];

tid 210 3

0 2 6 8S

2 4 2 5S′

exclusive add-scan

Figure 5.10: S_Scan. S[i] points to the örst element of D, to which the compressed con-
tents of S[i] are ultimately written to. To compute S, we apply a parallel preöx sum over
the number of codes in the selector bits of S to create S. Arrows indicate the data-parallel
øow. The white box contains code executed for each thread tid.

is D[] through D[], all encoded using 7 bits in S[], and so forth. For
our test models, S compresses on average 2.7:1 with respect to D that uses
dlog (maxD− minD+ )e bits per element.

5.6.2 Data-Parallel Decompression of Simple-9 Codes

Unlike Huffman [Huf52] or arithmetic [Pas76] codes, which are commonly
used for topology compression, Simple-9 has the advantage that it can be
decompressed efficiently in parallel using a three pass algorithm. We unpack
every code word D[k] individually, as it is independent from all other code
words. e only thing we need to know is where to output the unpacked
codes D[k].
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h f h eS

D

0 2 6 8S

sr=(n-1-k)*b;

c=S[tid];

for(k=0;k<n;k++){

// read compressed code
s=c>>28; // get selector cf. Tab. 5.1: a≡0,..., i≡8
b=bitsPerCode[s];
n=numCodes[s];
m=(1<<b)-1;

D[S[tid]+k]=cw;}

// look-up bits per code
// look-up # codes

// and-mask to zero bits above b

// # bits to shift right

// write unpacked code word
cw=(c>>sr)&m; // mask out code word

tid=0 tid=1 tid=2 tid=3

tid=0 tid=1 tid=2 tid=3

Figure 5.11: D_Scatter. To restore the unpacked data D, we use one thread tid (code
shown in the white box) for each codeword S[i]. Each thread tid unpacks all packed data
of S[tid] and writes the uncompressed words intoD.

is is done as ĕrst pass, shown in Figure 5.10: Using S_Scan, we ĕnd to
every code S[l] the location S[l] of its ĕrst code in the array of unpacked codes
D. e ĕgure also continues the example of Figure 5.9.

In the second pass, D_Scatter, we spawn one thread for each code word
and scatter all unpacked codes of the code word intoD. Figure 5.11 contains
code each thread executes along with our example.

In the ĕnal third pass, U_Scan, we undo the zigzag mapping and use an in-
clusive add-scan over D to invert the delta encoding. is gives us the array
of reused vertices U.
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All passes of the algorithm offer a high degree of parallelism and scale well
with the number of threads: the ĕrst two passes spawn O(|S|) threads and
the third pass uses O(|U|) threads.

5.6.3 Alternatives to Simple-9

Simple-9 compresses our data sufficiently enough and runs in parallel. ere
are design decisions to be made for Simple-9 and alternatives to Simple-9
that we want to discuss brieĘy.

During the scan of the code words, only 4 selector bits are required and 28
data bits are fetched uselessly. One could use a separate array for selectors
and use a modiĕed scan that accounts for 8 selectors stored in one 32 bit
word. Another option is to use 64 bit code words [AM10]. However, we
have found that interleaving selector and data bits in one 32 bit word gives
the best compression rates for most of our test data. In the original work
by Anh and Moffat [AM05], other word-aligned codes are introduced that
compress slightly better. However, they require state from the previous code
words. us they do not suit data-parallel programming model as well as
the Simple-9 technique does.

Common compression schemes, such as Huffman coding or arithmetic cod-
ing, use variable bit-aligned code words. e decoder reads single bits from
a stream until a code word is complete and outputs an unpacked word. Ob-
viously, this is a sequential procedure.

One commonway to achieve parallelism is to divide the data into chunks and
compress them separately. en, a parallel decoder may use an independent
thread for each chunk. In order to fully utilize all the processing units of
our massively parallel GPU environment, we need thousands of threads and
thus chunks. Unfortunately, with every chunk carrying a certain amount of
memory overhead, such a high number of chunks negatively affects com-
pression rates.
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S S_Scan S D_Scatter UD U_Scan

V_Kernel VINC_Scan INCINC

C M_Scan Q_ScanM Q T_Kernel T

(a) Data-Parallel Word-Aligned Code

(b) Incremental Vertices

(c) Generalized Triangle Strips

Figure 5.12: Decompression Pipeline. The overview of our decompression pipeline
shows how the different parts of the algorithm interplay. Details on the different parts
are explained in (a) Section 5.6, (b) Section 5.5, and (c) Section 5.4. Green boxes represent
data-parallel scans and white boxes data-parallel kernels. The arrows indicate the data
øow. S, INC, and C are input arrays representing the compressed triangle mesh. T is the
decompressed triangle mesh in the explicit representation. S,D,U, INC,V,M, andQ are
intermediate arrays.

5.7 Decompression Pipeline

Our decompression pipeline consists of three major parts introduced in the
previous three sections. Before presenting results, we want to brieĘy recap
the dependencies between the different parts and give an overview of how
the different parts of our decompression algorithm are stitched together.

Figure 5.12 shows the data Ęow of the arrays and the dependencies of the
data-parallel kernels (white boxes) and scans (green boxes). All kernels and
scans are implemented using CUDA. us, they run entirely on the GPU.
Kernels or scans that are on the right or below the head of an arrow can only
be launched once the array at the other end of arrow is available.

As input, our algorithm receives the array of strip-codes C, the array of in-
cremental vertices INC, and the array of reused vertices compressed with
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Simple-9 S. For every triangle, C contains two or one bits, depending on
whether we use restart codes or mimic them by inserting degenerate trian-
gles during compression. e array INC requires one bit for every vertex
listed in the vertex array V. e size of S depends on the mesh.

Our decompression pipeline outputs the explicit representation of the trian-
gle mesh T. We use it directly as input to an OpenGL renderer.

First, we start with decompressing the array of reused vertices U. ereby,
we use our data-parallel Simple-9 decompressor shown in Figure 5.12a. e
process is explained in Section 5.6.

Second, the array of reused vertices is merged with the incremental vertices,
shown in Figure 5.12b. e concept of incremental vertices is detailed in
Section 5.5. At the end of the process, indices to the verticesV are outputted.

Finally, we use the strip-code array C and the vertex array V to convert gen-
eralized triangle strips into the explicit representation (cf. Figure 5.12c). e
entire process is derived in Section 5.3.

5.8 Results and Discussion

We test our algorithms on the models of Figure 5.13. For mesh details, see
Table 5.3. e heat-map colors on the images represent the belt traversal
order (cf. Section 5.4), starting with blue for the ĕrst seed vertex.

Our compression algorithm compresses allmodels at a constant rate of about
922 thousand triangles per second (± 10%, depending on the model) on an
Intel Core i7/2600 CPU running at 3.40GHz. We provide the option to en-
code strip restarts either explicitly or by degenerate triangles, as explained
in Section 5.4. is inĘuences both compression rate and decompression
times. erefore, in most tables we discriminate between explicit restart
codes (columns R) and emulation of restart codes (columns Deg.).
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Fan Disk Rocker Arm Horse

Dinosaur

Igea

Armadillo
Isis

Hand

Angel

Dragon
Buddha

Neptun Asian Dragon

Bunny

Welsh Dragon

Figure 5.13: TestMeshes. The vertices of themodels are heat-map color-coded according
to the triangle order our stripiöcation algorithm of Section 5.4 creates. Vertices with cold
colors (blue) are visited before warm colored vertices (violet).
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Mesh Triangles Restart Codes Val. 6

Fan Disk ,   %
Bunny ,  ,  %
Rocker Arm ,  ,  %
Horse ,  ,  %
Dinosaur ,  ,  %
Igea ,  ,  %
Armadillo ,  ,  %
Isis ,  ,  %
Angel ,  ,  %
Hand ,  ,  %
Dragon ,  ,  %
Buddha , ,  ,  %
Welsh Dragon , ,  ,  %
Neptun , ,  ,  %
Asian Dragon , ,  ,  %

Table 5.2: Mesh Details. We list the number of Triangles, Restart Codes, and the relative
amount of valence-six vertices (columns Val. 6) of the meshes shown in Figure 5.13.

5.8.1 Compression Rate

We measure bpt shown in column Compression Rate of Table 5.3. Our com-
pression algorithms achieve compression rates of as low as 3.7 bpt. When
using degenerate triangles, we observe a median compression rate of 4.6 bpt.
Only few models need more than 7 bpt.

Similar to other compressionmethods [GLLR11b], we observe that themore
valence-six vertices amesh possesses the better the compresses rate becomes.
For example, 33% of the Dragon’s vertices have valence six, whereas 87%
of the Welsh Dragon’s vertices have valence six. e number of valence-six
vertices indicates how regular a surface is meshed. us, the more regular a
mesh is the better it compresses.

When stored in the commonly used explicit representation, i.e., using three
indices per triangle, as in the array T on the GPU, most of our models con-
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Compression Rate Decompression Speed
R Deg. R Deg. Rate Render

Mesh [bpt] [bpt] [ms] [ms] Gtps [ms]

Fan Disk 4.92 4.16 0.33 0.26 0.05 3.83
Bunny 5.02 4.36 0.36 0.32 0.22 3.31
Rocker Arm 5.27 4.61 0.38 0.35 0.23 4.71
Horse 5.22 4.65 0.24 0.30 0.33 2.17
Dinosaur 5.88 5.42 0.34 0.34 0.33 2.21
Igea 5.03 4.35 0.53 0.38 0.71 4.18
Armadillo 5.63 5.19 0.60 0.54 0.64 2.76
Isis 4.66 3.84 0.47 0.42 0.89 2.25
Angel 6.04 5.74 0.68 0.62 0.76 4.28
Hand 6.23 6.00 0.78 0.64 1.03 3.07
Dragon 7.40 7.59 0.98 0.93 0.94 6.07
Buddha 7.42 7.61 1.12 0.98 1.11 3.24
Welsh Dragon 4.53 3.72 1.81 1.56 1.42 6.49
Neptun 4.76 4.01 2.52 2.13 1.56 4.86
Asian Dragon 4.67 3.87 5.05 4.20 1.72 11.1

Table 5.3: Compression Rates and Decompression Performance. We use the meshes
shown in Figure 5.13 to measure the decompression times of our CUDA implementation
on an Nvidia GeForce 580 GTX. We distinguish between the use of explicit restart codes
(columns R) and the emulation of restart codes using degenerate triangles (columnsDeg.).
We give compression rates in bpt (columns Compression Rate). Sub-columns R andDeg. of
the column Decompression Speed list timings for decompression in milliseconds (ms). We
measure decompression rate in billion triangles per second (Gtps) for the degenerate-case
(column Rate). Further, we provide timings in for rendering the models without compres-
sion (column Render).

sume 96 bpt. Hence, we achieve compression ratios from 13:1 up to 26:1,
and a median of 21:1. Note that for the models Dragon and Buddha, the use
of explicit restart codes pays off, since they require relatively many restart-
codes.

In Table 5.4 we representatively investigate themodel with the lowest (Welsh
Dragon) and highest (Buddha) bpt, and a model with a medium number
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Welsh Dragon Armadillo Buddha
R Deg. R Deg. R Deg.

Explicit . . . . . .
Strips . . . . . .
Inc. . . . . . .
Simple-9 . . . . . .

Table 5.4: Compression Rate Details. Compression rates in bits per triangle are broken
down for three different models into the rates of the explicit representation (row Explicit),
after creating generalized triangle strips (row Strips), after using incremental vertices (row
Inc.), and after Simple-9 compression (row Simple-9). R and Deg. refer to the two kinds of
encoding restart codes.

of triangles and an average bpt (Armadillo). We analyze the compression
achieved aer each stage of our algorithm.

e row Explicit shows the bpt achieved with the explicit representation us-
ing  · dlog(number of vertices)e bpt. We are using the input number of
triangles as reference for computing bpt values. erefore, the use of degen-
erate triangles bloats the storage per triangle for the explicit representation.

e row Strips shows the beneĕts of using generalized triangle strips, as ex-
plained in Section 5.4. It cuts the cost by a factor of 2.5 – 2.8 which comes
close to the strict upper bound of 3. However, this is an optimistic upper
bound, as it ignores the overhead of one bit (Deg.) or two bits (R) for each
strip-code.

Note that only the Welsh Dragon beneĕts from the use of degenerate trian-
gles. is is because less than 1% of all strip-codes are restarts. e Ar-
madillo (3%) and the Buddha (6%) have a higher restart code frequency.
us, they do not proĕt from degenerate triangles.

e row Inc. shows the result achieved by incremental vertices, as explained
in Section 5.5: A triangle that references a vertex ĕrstly can infer the vertex
by incrementing a counter. If a triangle references an already visited vertex
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it has to store the vertex explicitly. is further improves the compression
by a factor of about 1.6.

When using degenerate triangles the compression beneĕt is a little lower: In
that case each restart code is emulated by four extra degenerate triangles.
At least two of them re-reference a vertex and thus we have to store them
explicitly.

Row Simple-9 shows the additional beneĕts when compressing the re-
referenced vertices using delta codes and Simple-9, as explained in Sec-
tion 5.6. It improves compression by roughly 8 – 10 bpt. In contrast to the
othermodels, Armadillo compresses better when using degenerate triangles:
As the values ofD become small, they require only few bits per vertex. us,
emulating restart codes with four degenerate triangles becomes less expen-
sive and this outweighs the initial beneĕt of using explicit restart codes.

5.8.2 Decompression Speed

We implement our decompression algorithm using CUDA 4.0 and use
CUDPP [SHG08] for scan operations. e entries in the column Decom-
pression Speed of Table 5.3 are measured on an Nvidia GeForce 580 GTX
including CUDA-OpenGL context switches and buffer mapping times. We
further provide the triangle Rate in billion triangles per second (Gtps) and
observe up to 1.72Gtps. Rendering timings excluding decompression tim-
ings are shown in column render. We did not observe any difference between
the versions with explicit restart codes and degenerate triangles, as degener-
ate triangles are removed by the pipeline at no extra cost. We used a reso-
lution of 1920x1200 using OpenGL 4.2 and a simple Blinn-Phong lighting
model. Under these circumstances, our decompression for the degenerate-
case makes only (minimum: 6%, average: 15%, maximum: 30%) of the total
rendering cost. Hence, our algorithm is well suited for decompressing the
models every frame. When using more sophisticated shading and lighting,
the ratio between rendering and decompression times increases. is makes
the use of triangle decompression even more attractive. Decompression is
mostly faster when using degenerate triangles rather than explicit restart
codes.
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R Deg.
Kernel/Scan Time Pct. Time Pct.

Strips
M_Scan .ms % .ms %
Q_Scan .ms % .ms %
T_Kernel .ms % .ms %

Inc. INC_Scan .ms % .ms %
V_Kernel .ms % .ms %

Simple-9
S_Scan .ms % .ms %
D_Scatter .ms % .ms %
U_Scan .ms % .ms %

Total .ms % .ms %

Table 5.5: Detailed Decompression Timings. Decompression timings, shown in columns
Time and measured on the Welsh Dragon, are broken down into timings spent in each
kernel or scan (column Kernel/Scan). The major rows, Strips, Inc., and Simple-9, correspond
to the three main stages of our algorithm, outlined in Sections 5.4, 5.5, and 5.6. The row
Total sums all timings. We distinguish between the algorithm using restart codes (column
R) and the algorithm emulating restart codes (Deg.). Further, for each kernel and scan,
we list the percentage (columns Pct.) relative to the overall decompression time of the
algorithm using restart codes.

Table 5.5 lists detailed timings spent on the different parts of our algorithm
at the example of the Welsh Dragon model.

Note that the Total timings are slightly higher than the one listed in Table 5.3,
as the additional timing code comes with some overhead. e row Strips de-
tails the timings for unpacking the strips (Section 5.4). e most notewor-
thy difference between the two methods is that M_Scan is not required when
using degenerate triangles. With the array M given implicitly, Q_Scan and
T_Kernel are less complex, and thus take less time to compute. However,
most of the speed-up is attributed to the reduced bandwidth consumption,
as the kernels do not have to load M.

e timings for the use of incremental vertices (row Inc., cf. Section 5.5) and
Simple-9 (row Simple-9, cf. Section 5.6) take equally long for both methods.
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Welsh Dragon Armadillo Buddha

Our Order .ms .ms .ms
OpenCCL .ms .ms .ms

Table 5.6: Rendering Times with our Layout and OpenCCL. We compare the rendering
times achieved with our triangle and vertex order against the one of OpenCCL, a library
that creates cache oblivious mesh layouts.

is is not surprising, as degenerate triangles do not signiĕcantly enlarge
their workloads.

As the computational density is low for all our kernels, our algorithm is
bandwidth bound. erefore, we need as many CUDA threads as possible
to hide memory latency. is is the reason why large meshes have a higher
decompression rate than small meshes, as shown in Table 5.3: the larger the
mesh the more threads we can use, and consequently, the better the decom-
pression performance.

5.8.3 Impact of Vertex and Triangle Order

Weachieve the reported compression rates by ordering triangles and vertices
coherently. In most cases, applications do not rely on a particular triangle
order. If they do, our decompression also works; however, the compression
rate may be worse. e rendering speed of graphics hardware depends on
both triangle and vertex order. For good performance, it is recommended
to use cache oblivious layouts [Kil08]. Table 5.6 shows that frame-times
achieved with our order are similar to the order computed with OpenCCL,
a library that creates cache oblivious mesh layouts [YLPM05]. is comes
not unexpectedly: GPU performance increases the more coherently trian-
gles and vertices are ordered [Kil08].
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5.8.4 RuntimeMemory Consumption

Besides the memory space for the input arrays S, INC, and C, our algorithm
needs space for  · |T| vertices to store the outputted explicit representa-
tion. While our prototype implementation explicitly reserves memory for
all temporary arrays for debugging purposes, a temporary memory of only
|V| needs to be allocated: ere is sufficient space in the output array T for
the temporary arrays S, D, and U, used for unpacking word-aligned codes.
e computation of the incremental vertices requires the mentioned extra
space ofV. Aer computingV, the temporary space fromword-aligned code
decompression is no longer required and is reused for M and Q.

5.8.5 Alternative Stripifcation Methods

In Section 5.3 we have presented an algorithm for creating generalized tri-
angle strips. e algorithm is designed to produce high compression ratios
using our codec.

Existing algorithms for creating generalized triangle strips have different op-
timization criteria: One class of algorithms strives to minimize the number
of strips [GE04, PS06]. Another one seizes to output strips that render fast
on graphics hardware [ESV96, XHM99, Ste01, Nvi03, DGBGP06]. Others
optimize the speed of the strip creation process [RBA05].

However, none of these criteria necessarily results in good compression rates
using our codec. In fact, early tests during development showed that the tri-
angle order created by publicly available implementations [Nvi03, RBA05]
yielded signiĕcantly worse compression rates than our stripiĕcation algo-
rithm.

5.8.6 Application Fields

Our approach works well with out-of-core algorithms, as it reduces the need
of CPU-to-GPU memory transfers. Remember, our median compression
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S Vertices Triangles

1 ,  , 
2 , ,  , , 
3 , ,  , , 
4 , ,  , , 
5 , ,  , , 
6 ,  , 
7 ,  , 
8 , ,  , , 
9 , ,  , , 
10 , ,  , , 
11 , ,  , , 
12 ,  , 
13 , ,  , , 
14 , ,  , , 

S Vertices Triangles

15 ,  , 
16 , ,  , , 
17 ,  , 
18 , ,  , , 
19 , ,  , , 
20 ,  , 
21 ,  , , 
22 , ,  , , 
23 , ,  , , 
24 , ,  , , 
25 ,  , , 
26 , ,  , , 
27 , ,  , , 
28 ,  , , 

Table 5.7: Mesh Details of David’s Head. The columns Vertices and Triangles list the num-
ber of vertices and triangles of the sub-mesh S.

rate is at 4.6 bpt. is is almost 21 times smaller than required for the un-
compressed explicit representation, which has 96 bpt. us, we can ĕt 21
timesmore triangle topology data on theGPU, which dramatically decreases
the necessity for transferring data from CPU to GPU.

We compare our compression scheme with degenerate triangles against the
explicit representation using parts of the David model from the Digital
Michelangelo Project [LPC∗00]. e mesh consists of 28 sub-meshes shown
in different colors in Figure 5.14. In total, there are 191 Million triangles.
For details on the meshes David’s head consists of, see Table 5.7.

In the explicit representation, we need 32 bits per index. is amounts for
2.13GiB of data for triangle topology. Using our approach with degenerate
triangles, we obtain 5.91 bpt, resulting in 0.131GiB for the topology, which
is 6% the size of the explicit representation.
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Figure 5.14: Head of Michelangelo’s David. The 28 sub-meshes of David are shown in
different colors.

For both compressed and non-compressed versions of the David mesh, we
quantize vertex positions with 16 bits per component andwe use 16-bit octa-
hedron normal vectors (see Chapter 4) to ĕt all geometry into a single 64-bit
word per-vertex, instead of  · bits =  bits. We convert the per-vertex
attributes to Ęoating-point numbers in a vertex program with only a few in-
structions, so the overhead is negligible. us, the vertex attributes consume
0.715GiB instead of 2.15GiB.

When using our topology compression scheme, all data ĕts in GPUmemory
of our test-system. During rendering, we decompress one sub-mesh at a
time and draw it directly aer decompression. en we proceed with the
next sub-mesh, until all sub-meshes are processed. is way, the memory
for the temporary arrays (see Section 5.8.4) has to ĕt the largest sub-mesh,
only. Table 5.8 shows that with our compression scheme, performance is
increased by 20% over the non-compressed explicit representation.
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Compressed Non-Compressed

Compression Rate . bpt  bpt
Frame-Time  ms  ms

GPUMemory . GiB . GiB
SystemMemory . GiB . GiB

Table 5.8: Timings and Memory Consumption of David’s Head. We render David’s head
(see Figure 5.14 and Table 5.7 for details) using our decompression algorithm (column
Compressed) and in the explicit representation (column Non-Compressed). We measure
Compression Rate and Frame-Time, as well asmemory reserved on the GPU (rowGPUMem-
ory) and CPUmemory reserved by the graphics driver (row SystemMemory).

is is because the compressed version requires a minimum amount from
the off-GPU system memory. As opposed to the non-compressed version,
no data needs to be swapped between CPU andGPU. Unlike our CUDA de-
compression, data transfers from CPU to GPU run asynchronously to ren-
dering. If we were able to use some of the CUDA cores for decompression
and others for rendering, our algorithm would beneĕt even more in terms
of rendering speed.

5.8.7 Comparison

Our algorithm is designed for on-the-Ęy decompression of triangle topol-
ogy during rendering or for faster GPU upload of topology data. e per-
formance we aim for are only obtainable through highly parallel algorithms.
Our algorithms decompress triangle topology at about the same rate they
can be rendered.

Compression times — even for complex meshes — are in the range of sec-
onds. Hence, compression can be done at loading time. On the downside,
our algorithm does not achieve bit rates of sequential algorithms that reach
around 1 bpt; yet it still compresses topology data to less than 10%.

We compare our timings andmemory consumptions with two recent papers
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[CH09,GLLR11b]. Note that both of these papers have a very different focus.
ey compress more data, such as also neighboring information or vertex
attributes, and allow random access to single triangles. ese are features
that are not supported by our algorithm. For our applications, these types of
functionality are not necessary. Instead, we need high decompression rate
and good scalability behavior.

In 2009, Courbet and Hudelot [CH09] described a method to compress tri-
angles down to 3 bpt. Decompression deploys a sequential algorithm. ey
report access times of 1 μs per vertex. Our maximum of 1.7 billion triangles
per second is equal to an access time of 0.2 ns per vertex. ough hardware
has become faster since then and the reported timings include fetching 3D
positions, we do not anticipate that this may compensate for four orders of
magnitudes in speed.

Most recent data structures [GLLR11b] are designed for compactness and
to quickly access neighborhood information, a feature we do not support.
Hence, they require about 26 bpt, i.e., ĕve times more memory than we do.
ey report CPU access times from their non-optimized compact version of
about 20 ns, i.e., our algorithm is two orders of magnitudes faster. e au-
thors brieĘy describe a GPU implementation, yet they give no timings. So it
remains unclear how a GPU implementation compares with our approach.
However, it is obvious that decompression rates in the order of GPU render-
ing or GPU upload times are unreachable.

5.9 Conclusion and Future Work

In this chapter, we presented a data-parallel algorithm for fast decompres-
sion of triangle topology. We decompress at a rate of 1.7 billion triangles
per second and we compress to about 5 bits per triangle. To achieve these
results, we proposed an algorithm to order triangles and vertices coherently.
We contributed a method that decompresses generalized triangle strips in
a data-parallel fashion. Further, we proposed a data-parallel algorithm for
decompressing word-aligned codes. To our knowledge, no prior triangle de-
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compression algorithm runs with comparable high degree of parallelism as
the algorithm presented here.

In the future we want to extend our approach to compress vertex attributes,
such as vertex positions, normal vectors, and texture coordinates. One ap-
proach is to use linear combinations of neighboring vertex positions to pre-
dict a vertex position [TG98, CH11]. e residual, i.e., the difference vector
between the predicted and the actual position, is small. erefore it can be
compressed using a variable bit-length code. is can be recast in terms of a
recursion equation that can be solved with a data-parallel scan [Ble90a].

While our belt traverser is simple, fast, and already yields low bit-rates, we
believe that we can still improve bit-rates without changing the GPU de-
compression algorithms. For example, an order guided by the Fiedler vec-
tor [IL05] might produce better compression results, however, at a higher
compression effort than our approach. Another alternative would be to
study how existing stripiĕcation algorithms can bemodiĕed to ĕt our codec.
We need to make sure, that the resulting triangle interplays well with the in-
cremental vertices and our word-aligned code.

As far as we know, we are the ĕrst to present a data-parallel decompression
algorithm for Simple-9. It belongs to the class of word-aligned codes. Word-
aligned codes are used to compress inverted index data structures that speed
search queries in information retrieval systems [BCC10]. It is interesting to
explore how our data-parallel Simple-9 decompressor can help to accelerate
queries in search engines.

Moreover, Anh and Moffat [AM05] suggest other word-aligned codes that
may yield better compression rates. It is therefore intriguing to derive data-
parallel algorithms for other classes of word-aligned codes.

187





CHAPTER 6

Conclusion and Outlook

In this thesis, we have demonstrated how to compress vertex positions, unit
vectors, and triangle topology at compression ratios from about 2:1 up to
26:1. All our methods decompress geometry in real-time on the GPU and
impact performance only little.

is is only possible by speciĕcally designing decompression methods that
ĕt GPU data parallelism. Our compressionmethods signiĕcantly reduce the
geometry memory requirements. is does not only allow for more geome-
try to ĕt on a GPU. It further decreases the need of continuously transferring
data over the notoriously slow bus that connects CPU and GPU. Even in the
event of an inevitable bus transfer, transmitting compressed data effectively
increases bandwidth. Moreover, compressed geometry leaves more GPU
memory to other data, such as textures or frame buffers. Ultimately, all this
contributes to increase the level of realism of real-time computer generated
images.

In Chapter 3, we introduced a novel view-dependent approach for represent-
ing vertex positions. To save memory, we interactively adapted the level-of-
precision of vertex positions. We proposed data structures and algorithms to
process and represent reduced precision positions compactly and efficiently
on the GPU. We presented ways that select precision to meet high image
quality requirements.

Further, we thoroughly discussed unit vector representations in Chapter 4.
We provided error analysis for various representations and quantization
methods, including the commonly used Ęoating-point unit vector represen-
tation. A major result is that in terms of memory consumption, parameter-
ization methods — particularly octahedron projection — outperform other
unit vector representations. Moreover, they are fast and easy to decompress
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and induce no performance overhead in GPU applications.

Finally, in Chapter 5, we proposed a codec for triangle connectivity that
combines high compression ratios with high decompression speed. We pro-
posed a novel data-parallel algorithm for decompressing generalized tri-
angles strips and word-aligned codes. Our scheme decompresses triangle
meshes several times faster than the triangle mesh can be rendered by the
GPU.

We studied the compression of geometric entities that are contained in al-
most all triangle meshes. erefore, many applications can beneĕt from our
results. As our unit vector compression is completely independent from the
underlying topology, it can not only be applied for triangles, but also for
other types of primitives. e same holds for AP. With the increasing im-
portance of hardware tessellation, it is interesting to see how our attribute
compression methods interplay with higher order primitives.

Our algorithms can be used as standalonemethods and combined with each
other to achieve additional compression beneĕts. e compression ratios
of our unit vector compression scheme, AP, and our topology compression
method do not inĘuence each other. erefore, the compression beneĕts
add up. However, CAP may negatively impact the compression rate of our
topology coder. is is because both compression schemes alter the order of
the vertices in different ways.

Hence, for future work, it is interesting to study the mutual inĘuence of the
two approaches. Another promising endeavor is to explore the combina-
tion of LOP with LOD methods. Moreover, based on our ĕndings on unit
vector compression, it is intriguing to see how normal maps and unit vec-
tor compression in deferred shading approaches can beneĕt fromour results.
Finally, data-parallel topology compression gave surprisingly high compres-
sion ratios while enabling real-time decompression. e novel algorithmic
concepts behind our approach should also be applicable for fast per-vertex
attribute decompression using delta-codes.
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Acronyms

LUT look-up table

FPUV Ęoating-point unit vector

PP parallel projection

SPP sextant parallel projection

SCP spherical coordinate projection

CP cube projection

WCP warped cube projection

OP octahedron projection

WOP warped octahedron projection

LOD level-of-detail

LOP level-of-precision

PM progressive mesh

AP adaptive precision

CAP constrained adaptive precision

CAD computer-aided design

NURBS non-uniform rational B-splines

PSNR peak signal-to-noise ratio

bpt bits per triangle

SIMD single instruction, multiple data
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GPU graphics processing unit

CPU central processing unit

API application programming interface

GLSL OpenGL shading language

CUDA compute uniĕed device architecture

3D three-dimensional

2D two-dimensional
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