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Abstract
We propose a lossless, single-rate triangle mesh topology codec tailored for fast data-parallel GPU decompres-
sion. Our compression scheme coherently orders generalized triangle strips in memory. To unpack generalized
triangle strips efficiently, we propose a novel parallel and scalable algorithm. We order vertices coherently to
further improve our compression scheme. We use a variable bit-length code for additional compression benefits,
for which we propose a scalable data-parallel decompression algorithm. For a set of standard benchmark models,
we obtain (min: 3.7, med: 4.6, max: 7.6) bits per triangle. Our CUDA decompression requires only about 15 % of
the time it takes to render the model even with a simple shader.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
techniques—Graphics data structures and data types I.3.1 [Computer Graphics]: Hardware architecture—Parallel
processing

1. Introduction

Compression methods have proven to be an effective way
to respond to the demand for even more detailed trian-
gle meshes emanating from medical data, numerical sim-
ulations, and computer-aided design models. In order to
quickly access triangles, efficient decompression is neces-
sary. Yet, the better part of existing decompression algo-
rithms relies on sequential techniques. These are unlikely
to scale well, as hardware architecture shifts towards many-
core systems. This trend helps in continuously increasing
computing power, but at the same time, data access power
cannot keep pace. Thus, compact representations remain an
effective means to handle bandwidth limitations. Many-core
chips increasingly find their way into mobile devices, which
additionally benefit from data-parallel decompression, as
they chronically suffer from memory space limitations.

While there is a whole body of sequential methods well
suited for decompressing triangle meshes on single-core
systems, far too little attention has been paid in efficient
data-parallel decompression on many-core architectures. To
unpack a triangle, most existing algorithms rely on previ-
ously unpacked triangles. As a consequence, they are inher-
ently sequential. Though they achieve compression rates of
1 bit per triangle (bpt), they contain recursive dependencies.
These dependencies are either hard to resolve or require far

too many synchronization points, which impedes efficient
parallel implementations.

In this paper, we propose a codec that significantly re-
duces the memory needed for triangle connectivity. Vertex
attributes, such as positions, normals, or colors, can be ef-
ficiently compressed and decompressed orthogonally to our
approach [PBCK05, MSS∗10, MSGS11]. As our algorithm
decompresses all triangles at once and not progressively,
it belongs to the class of single-rate compression methods.
Unlike previous approaches, our algorithm is fully paral-
lel and therefore enables real-time decompression. Thus, it
saves device memory and more triangle meshes fit in the
same amount of GPU memory than non-compressed trian-
gle meshes. This may additionally reduce the need for CPU-
GPU data transfers. Sequential methods reach high compres-
sion ratios with data structures, such as stacks, queues, or
trees. However, the use of these data structures in a data-
parallel algorithm would harm performance significantly.
Thus, we cannot simply port a sequential algorithm to a par-
allel system and expect close-to-optimal compression ratios
at high-performance decompression times. Instead, we de-
sign a novel codec that prefers higher decompression speed
at the cost of lower compression ratios. Yet, our algorithm
reaches (min: 3.7, med: 4.6, max: 7.6) bpt for a series of test
models. For the Welsh Dragon of Figure 1a with 2.2 M trian-
gles, we obtain a compression ratio of 26:1 for the topology.
While rendering the uncompressed Welsh Dragon with sim-
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(a) Welsh Dragon (b) Belts (c) Generalized triangle strips (d) Vertex order

Figure 1: For compression, we reorder triangles and vertices coherently. (a, b) We traverse the model breadth-first and create a
series of belts, shown in different colors. (c) Then, we create generalized triangle strips. (d) Vertices are ordered as guided by
the strips. Triangles visiting a vertex for the first time are in light shades. Dark shaded triangles revisit a vertex.

ple Blinn-Phong shading takes 6.5 ms, rendering the same
model including our decompression takes 8.1 ms, which is
an overhead of only 1.6 ms. For more complex shading, the
overhead amortizes quickly. We achieve these results by the
following contributions:

• We traverse the mesh breadth-first. Triangles visited in the
same breadth-level form a belt, indicated through different
colors in Figure 1b. The triangles are ordered coherently
in generalized triangle strips (Figure 1c).
• We present a novel data-parallel method for decoding

generalized triangle strips efficiently. Its thread allocation
scales linearly with the number of triangles.
• We coherently order vertices as guided by the triangle or-

der: If a triangle references a vertex firstly (bright triangles
in Figure 1d), one bit is enough for the vertex information.
We present an efficient data-parallel algorithm for recon-
stituting these vertices.
• For triangles that refer to an already referenced vertex

(dark triangles in Figure 1d), we compress its vertices
using a variable bit-length code. For decompression, we
present a fast data-parallel algorithm that scales well.

Compressing a model is fast enough to do it at load time. For
example, the Welsh Dragon requires 2.3 seconds for com-
pression. We alter triangle and vertex order (but not orienta-
tion) which is common practice for most compression meth-
ods. As a by-product, our coherent triangle order is also very
beneficial for GPU rendering. Frame-times turned out to be
very similar to those achieved by cache-oblivious orders.

2. Related Work

As the field of geometry compression is vast, we fo-
cus on single-rate, lossless connectivity coding of trian-
gle meshes, and refer to overview reports [GGK02, AG03,
PKJK05]. To reach the entropy for planar triangle graphs of

1.62 bpt [Tut62], connectivity coding methods conquer the
mesh and thereby encode the mesh elements. Depending on
the element type that guides the conquest, we distinguish
between face-based [GS98, Ros99], edge-based [Ise00], and
vertex-based [TG98, KPRW05] approaches. These methods
achieve about 2 bpt and paired with arithmetic or Huffman
coding obtain about 1 bpt. However, they unpack element af-
ter element and are therefore sequential. To our knowledge,
no data-parallel implementation has been described yet.

As meshes grow faster than main memory, several formats
have been proposed that allow out-of-core access [HLK01,
IG03]. Meshes are divided into clusters that are compressed
using existing sequential algorithms. Typically, each cluster
is about 103 vertices, and each triangle uses 1 – 2 bpt. This
immediately leads to a parallelization approach that unpacks
each cluster on one core independently. However, every clus-
ter comes with a certain memory overhead. Thus, the more
cores we have to keep busy, the more clusters we require, and
the worse the compression ratio becomes. In the limit case of
one triangle per cluster, clustering approaches yield no com-
pression at all. GPUs already have hundreds of cores and
will have even more in the future; hence these approaches do
not scale well. Moreover, as the underlying decompression
algorithms are quite involved, parallel threads are unlikely
to run in lockstep, which significantly degrades performance
on single-instruction-multiple-data (SIMD) architectures.

So called random access mesh compression techniques di-
vide the mesh into clusters. To access a vertex, the cluster it
is located in has to be determined with an indexing structure.
Then, the cluster is decompressed entirely. The methods are
designed for interactive out-of-core applications and reach
about 3 – 8 bpt. However, they all reuse sequential decom-
pression methods [YL07, CKLL09, CH09].

Only recently, compact data structures were pro-
posed [GLLR11a, GLLR11b] that allow true random access
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Figure 2: The array T stores triangles in the explicit repre-
sentation. Triangles of the same color belong to the same
belt. The initial belt is shown in blue. Black arrows show the
traversal order of the generalized triangle strip. The numbers
below the elements of T are the corresponding array indices.

and thus do not rely on sequential methods. They are primar-
ily designed to access neighborhood information in order to
enable efficient mesh operations. Thus, connectivity is com-
pressed only moderately to about 26 bpt.

For fast decompression, special hardware implementa-
tions have been proposed [Dee95,Cho97,CK07] that achieve
around 40, 20, and 8 bpt, respectively. However, all of them
use FIFO caches which prevent fast and scalable data-
parallel replications. Moreover, we are not aware of current
hardware exposing these compression techniques. Variable
bit-length codes were decompressed first on a GPU by Lind-
strom and Cohen [LC10] in the context of terrain rendering:
They group height maps in patches and then decompress the
values sequentially in a geometry shader. Their approach re-
quires carefully tweaking the chunk size to trade between
compression ratio and decompression speed. Dick and co-
workers [DSW09] unpack generalized triangle strips in a ge-
ometry shader for terrain rendering. They spawn one thread
for each strip, and each strip consists of 16 triangles at most.
However, for general meshes, efficiently finding strips of a
fixed length is hard and time-consuming.

3. Creating Generalized Triangle Strips

Triangle topology is often stored in an explicit representa-
tion: triangles are arranged in an array T, whose entries are
triples of vertices, as shown in Figure 2. T[i] refers to the
ith triangle, and T[i].v0, T[i].v1, T[i].v2 are its vertices. With
the term vertex, we exclusively mean the topological entity:
a vertex is an index that points into an array of positions or
other attributes like normals, colors, or texture coordinates.

Similar to other compression schemes, ours exploits data
coherency to reduce memory consumption. Therefore, we
order triangles such that T[i] and T[i+ 1] share an edge. A
generalized triangle strip is a sequence of triangles in which
every triangle shares an edge with its preceding triangle. Of
course, it is not always possible that all neighbors in T share
an edge. But the more neighboring entries share an edge the
better the compression ratio becomes. Additionally, it is cru-
cial for high compression ratios that strips are ordered co-
herently in memory. This will become apparent in Section 6.

Our algorithm for ordering triangles and strips consists of
two steps: In step one – named creating belts – we conquer

the triangles of a mesh breadth-first and create an ordered se-
quence of belts. A belt is an unordered set of triangles visited
in one breadth-first step. For example, in Figure 1b, the con-
nected triangles of common color belong to the same belt. In
the second step – called stripification – we order triangles of
each belt into generalized triangle strips.

CREATING BELTS: To simplify explanations, we use the
term triangle one-ring of a vertex, which is the set of trian-
gles incident to that vertex. As initial belt, we pick the tri-
angle one-ring of a seed vertex. In the example of Figure 2,
the initial belt is shown in blue and originates from the seed
vertex 0. We observe that the seed vertex has only minor in-
fluence on the compression ratio, so we choose it randomly.
For each connected component of a mesh, we need one seed
vertex. We iteratively add new belts by considering the union
of all triangle one-rings of vertices of the previous belt. All
triangles from that union which are not part of an existing
belt are added to the next belt. In Figure 2, the belt following
the blue belt contains all the green triangles. We continue
adding belts until the last triangle is added to the final belt,
shown in red in Figure 2. In Figure 1b, the connected trian-
gles of the same color are in a common belt.

STRIPIFICATION: The belts allow to easily order the tri-
angles into generalized triangle strips, shown with dashed
arrows in Figure 2. We start with the first belt and add one
of its triangles to the array of triangles T. Then, we consider
all its neighboring triangles in the same belt which are not
yet in T. We add one of them to T and put all others onto a
stack. In the same way, we iteratively consider the neighbors
of the recently added triangle. If the current triangle has no
neighbors left within the current belt, we start a new strip
using a triangle from the stack. Once the stack is empty, we
look for a triangle in the current belt that is not yet in T. If all
triangles of the belt are in T, we proceed to the neighboring
belt. To create strips across belt boundaries, we try to merge
strips from neighboring belts by choosing the first triangle of
a new belt such that it neighbors the most recently added tri-
angle. Figures 1c and 2 show the result of our stripification.

The triangles in the array T of Figure 2 are in general-
ized strip order. We use this ordering for compression in Sec-
tion 4. At the same time, the strips are arranged according to
the order guided by the breadth-first traversal. That means,
strips which are close on the mesh are also close in T. This
is done intentionally, since it improves compression ratio, as
shown in Section 6.

Further, we coherently order vertices. We index the ver-
tices in the order they are visited when added to T. If a vertex
is visited multiple times, it keeps the index it was assigned
first, as seen in Figure 2. By this, we order the vertices co-
herently which results in additional compression benefits, as
outlined in Section 5.
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Figure 3: The generalized triangle strip of Figure 2 stored
compactly in a strip-code array C and a vertex array V. The
numbers below the elements are their array indices.

4. Decompression of Generalized Triangle Strips

Obviously, generalized triangle strips can be stored com-
pactly: If triangles T[i] and T[i + 1] share an edge,
we do not have to store three vertices explicitly to
specify T[i + 1]: it is sufficient to store which edge
of the previous triangle T[i] is shared, and the vertex
of T[i + 1] that is not used in the previous triangle.

N
v0 v1

v2 v3

P
v0 v1

v2v3 We can always consistently or-
der the vertices of the triangles
such that only the adjacency
cases shown in the inset figure

occur for oriented manifold meshes. The current triangle
(v0,v1,v2) is marked red. Its descending triangle, shown in
blue, is either adjacent to the edge (v1,v2) or (v2,v0). To dis-
tinguish the two cases, we introduce the strip-codes N and
P, respectively. N is short for "next-edge", since (v1,v2) is
the edge after (v0,v1) with respect to the current triangle.
Likewise, P abbreviates "previous-edge". If T[i] and T[i+1]
do not share an edge, we introduce the strip-code R, as for
"restart". In that case, all three vertices have to be provided
explicitly to specify the triangle. The restart-code enables us
to handle non-manifold meshes as well. As depicted in Fig-
ure 3, it is sufficient to store one strip-code per triangle in
an array C and – depending on the strip-code – one or three
vertices per triangle in the vertex array V. This allows saving
up to two third of the vertex information over an explicit rep-
resentation. As we have three strip-code states – N, P, and R
– each triangle requires two bits for its strip-code.

However, current graphics hardware only supports simple
triangle strips. They are a special case of generalized trian-
gle strips: A strip-restart is encoded with a magic number in
the vertex array V, and the array of strip-codes is given im-
plicitly as C = (R,N,P,N,P, . . .). If we used simple triangle
strips, we could not choose between the two neighbors of a
triangle and would be forced to take the one predefined by
the implicit strip-codes. We could mimic the behavior with
adding restart-codes or degenerate triangles, but compres-
sion ratios would suffer.

Thus, we have to account for the lacking hardware sup-
port of generalized triangle strips by converting them into
the explicit representation T using CUDA. We only need the

arrays C and V on graphics hardware, that generally require
less space than T. Yet, the conversion is a lot more involved
than it is for simple triangle strips. To do so, we make use of
scan-operations [Ble90]. We define an exclusive scan as

A[i] :=

{
0, i = 0
op
(
A[i−1],A[i−1]

)
, i > 0,

(1)

and an inclusive scan as

A[i] :=

{
A[0], i = 0
op
(
A[i−1],A[i]

)
, i > 0,

(2)

where A is the input array, A is the scanned output array, and
op is a binary associative operation. Here, we use the maxi-
mum and the sum of two numbers. On many-core architec-
tures, a scan operation is parallelized efficiently. Algorithms
that make use of scans scale well, as their thread count is
O(|A|), where |A| is the number of elements in A. Our algo-
rithms make use of an optimized scan for CUDA [HOS∗11].

4.1. Data-Parallel Algorithm

At first sight, converting a generalized triangle strip to the
explicit representation appears to be a sequential process:
A triangle depends on its preceding triangle, which in turn
depends on its predecessor, and so forth. In this section, we
show how to express this recursiveness in terms of Equations
(1) and (2). Thereby, the challenge is to find appropriate as-
sociative operations. Only this allows a parallel implemen-
tation of our algorithm using scans. The outline of the final
algorithm is as follows: We use parallel scans to create two
helper arrays M and Q from the strip-code array C, as shown
in Figures 4a and 4b. We use the helper arrays to reconstruct
the explicit representation T in Figure 4c.

Next, we derive how to create the helper arrays M and
Q. To do so, we formalize the conversion from generalized
triangle strips to the explicit representation. For simplicity,
we neglect restart-codes R, first. We express the relation be-
tween current and previous triangle recursively:

T[i] =

{
(T[i−1].v0,T[i−1].v2,V[i+2]) , C[i] = P

(T[i−1].v2,T[i−1].v1,V[i+2]) , C[i] = N.
(3)

The parts depending on the previous triangles are colored
red. By the end of this section, all red parts will have disap-
peared, allowing to unpack each triangle independently and
thus in parallel with one thread per triangle.

We now rewrite Equation (3) to support restart codes.
Without restart-codes, i+ 2 always points to the third ver-
tex of the ith triangle. In the presence of restart-codes, that is
no longer the case, as each restart shifts the third vertex three
more vertices back in V. In the other cases, i.e., the current
triangle uses a P- or an N-code, the third vertex of the ith
triangle is just one element further in V. We use these two
properties to create a helper array M that points to the third
vertex of each triangle:

M[i] =

{
M[i−1]+1, C[i] 6= R (4)

M[i−1]+3, C[i] = R. (5)
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(c) T_Kernel

Figure 4: The mesh in (c) is converted from a generalized triangle strip stored compactly in C and V into the explicit represen-
tation T. The solid arrows indicate the data-parallel flow. Threads and array indices are enumerated consecutively by a thread
identification number tid. The different colors in the arrays match the colors of the triangles. The code in the white boxes is
executed for each triangle independently. The green boxes indicate data-parallel scans.

As the first triangle’s strip-code is always R, we initialize
M[0] = 2. The recursion of Equations (4) and (5) match the
definition of the inclusive scan using the plus-operation of
Equation (2), which can be computed efficiently on GPUs.
Figure 4a shows a flow chart including code for computing
M. The transformations before and after the scan require no
separate kernel, as they can be fused into one kernel. Hence,
the intermediate arrays M and M′ are of course not created
explicitly and are depicted only for explanation purposes.
The figure further demonstrates the computation of M by
continuing the example of the mesh in Figure 2 and 3.

With M, we enrich Equation (3) to support restart-codes:

T[i] =


(
T[M[i−1]].v0,T[M[i−1]].v2,V[M[i]]

)
, C[i] = P(

T[M[i−1]].v2,T[M[i−1]].v1,V[M[i]]
)
, C[i] = N(

V[M[i]−2],V[M[i]−1],V[M[i]]
)
, C[i] = R.

While the R-case does not have any recursive dependency,
the P- and N-cases require vertices of the previous triangle.
Fortunately, both contain the third vertex of the previous tri-
angle T[M[i− 1]].v2. But we know that the third vertex of
triangle i−1 is V[M[i−1]]. Using Equation (4), we simplify
this further to V[M[i]−1]:

T[i] =


(
T[M[i−1]].v0,V[M[i]−1],V[M[i]]

)
, C[i] = P(

V[M[i]−1],T[M[i−1]].v1,V[M[i]]
)
, C[i] = N(

V[M[i]−2],V[M[i]−1],V[M[i]]
)
, C[i] = R.

Now, only T[M[i− 1]].v0 and T[M[i− 1]].v1 depend on the
previous triangle. To get rid of that recursion, we introduce
the array Q whose entries point to those vertices in V, that

are already used in a triangle prior to the previous one:

T[i] =


(
V[Q[i]],V[M[i]−1],V[M[i]]

)
, C[i] = P(

V[M[i]−1],V[Q[i]],V[M[i]]
)
, C[i] = N(

V[M[i]−2],V[M[i]−1],V[M[i]]
)
, C[i] = R.

(6)

Next, we have to compute Q, where it is not enough to con-
sider each triangle and its strip-code C[i] isolated. Instead,
we need to compare the indices into V as given by Equa-
tion (6) of two successive triangles T[i−1] and T[i]:

C[i] = P C[i] = N

C[i−1] = P Q[i] = Q[i−1] Q[i] = M[i−1]−1
C[i−1] = N Q[i] = M[i−1]−1 Q[i] = Q[i−1]
C[i−1] = R Q[i] = M[i−1]−2 Q[i] = M[i−1]−1

Using these identities and M[i− 1] = M[i]− 1 (cf. Equa-
tion (4), as C[i] 6= R), we find that

Q[i] =


M[i]−3, C[i−1] = R and C[i] = P

Q[i−1], C[i−1] = C[i]

M[i]−2, otherwise.

(7)

Note that Q[i] = Q[i− 1] is the only recursive branch. We
need to find a way to propagate previous entries across Q:
From its definition, we see that Q is monotonic increasing.
That means, Q[i] ≥ Q[i− 1] or Q[i] = max(Q[i],Q[i− 1]).
Thus, we compute the array Q first, i.e.,

Q[i] =


M[i]−3, C[i−1] = R and C[i] = P

0 C[i−1] = C[i]

M[i]−2, otherwise.

(8)

Thereafter, we apply an inclusive max-scan to Q, which
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yields Q, as shown in Figure 4b. The operations prior to the
scan are fused into one kernel called Q_Scan, so no explicit
memory has to be reserved for Q.

With the temporary arrays M and Q, Figure 4c shows an
example and the code for T_Kernel that computes the ex-
plicit representation T using one thread per triangle. Also
both M_Scan and Q_Scan scale with the number of tri-
angles. Existing parallelization approaches [DSW09] subdi-
vide the strips into chunks with equal number of triangles.
Each chunk is assigned to one thread. However, they have to
artificially insert restart codes which lowers compression ef-
ficiency. The more triangles that are in one chunk the better
the compression, but at the same time the worse the degree
of parallelism. It is hard to find a good trade-off, and, once
found, it might only be suitable for a specific architecture. In
contrast, our approach does not have this drawback, as each
triangle is assigned to a different thread.

4.2. Restart Emulation

Each strip-code C[i] needs two bits to encode one of the three
states R, P, and N. We can save one bit on each code when
we remove the R-state and simulate it by inserting four de-
generate triangles. However, this increases the amount of tri-
angles. In some cases, restart emulation has a positive effect
on compression ratio, while for a mesh with many restart
codes it degrades compression ratio (see Section 7.1).

In any case, restart emulation simplifies conversion to the
explicit representation: We remove all R-branches from the
kernels in Figure 4. Moreover, M[i] = i + 2 always holds.
This saves bandwidth, as no kernel needs to access M. More-
over, we omit M_Scan in Figure 4a. However, after decom-
pression, degenerate triangles populate T. This does not im-
pose a major problem, as we feed the triangles into the GPU
pipeline which removes degenerate triangles automatically.

5. Incremental Vertices

With generalized triangle strips, it is possible to achieve a
compression ratio of at most 3:1, as every triangle requires
at least one vertex to be specified. We will now improve
on this by compressing the vertex array V. As explained
in Section 3, vertices are numbered in the order they are
visited when generating triangle strips. Thus, many neigh-
boring entries of V are consecutive (see, for example, V of
Figure 5). We use incremental vertices for further memory
savings: we store one bit for every vertex k in an array INC,
which indicates if the vertex is incremented with respect to
the previously incremented vertex (INC[ j] = 1) or revisited
(INC[ j] = 0). Whenever a triangle needs to revisit a vertex,
the vertex is stored in U. In Figure 1d, all triangles in bright
shades have incremental vertices.

Figure 5 demonstrates how to compute V from U and INC
efficiently in parallel. An exclusive add-scan over INC di-
rectly yields the entries of V in case the vertex is a simple

exclusive add-scan

INC 0 1 9876555432

V[tid]=U[tid-INC[tid]];

V[tid]=INC[tid];
if(INC[tid]==1)

else

32U
0 1

V 52 30 1 2 3 4 6 7 8 9

1 1 1111100111INC
0 1 2 3 4 5 7 8 9 10 116tid

(a) INC_Scan

(b) V_Kernel

INC 0 1 9876555432

1 1 1111100111INC
0 1 2 3 4 5 7 8 9 10 116tid

Figure 5: From the arrays INC and U, we compute the vertex
array V using a data-parallel scan (a) and a kernel (b).

increment. In the case of a vertex reuse, i.e., INC[ j] = 0, we
have to properly index into U as shown in the code of Fig-
ure 5. Both kernels scale with the number of cores as they
use O(|V|) threads.

Existing sequential mesh compression techniques use a
similar approach (“add-operation” [TG98], “new-vertex op-
eration” [GS98]), however, no parallelization is yet given.
The number of elements in U is approximately 50 % the size
of V: Leaving out restart triangles, |V| is the number of trian-
gles. From the Euler characteristics, we know that the num-
ber of triangles is about twice the number of vertices for low-
genus triangle meshes. Hence, 50 % of the entries in V refer-
ence revisited vertices. Those are added to U, and therefore
|U|= 50% · |V|. For our test meshes, U is with 51 % – 55 %
the size of V slightly larger, which is due to restart codes.

6. Data-Parallel Word-Aligned Code

The strip generation algorithm of Section 3 puts the strips
into an order that conforms with the ordering of the belts.
Hence, neighboring belts are close within the triangle array
T. If a vertex is not part of the previous triangle and not an in-
cremental vertex, it must re-reference a vertex from the cur-
rent or the previous belt. In Figure 1d, these are the triangles
in dark shades. Thus, neighboring elements of U do not dif-
fer much in value. So it is customary to use a delta code for
further compression, i.e., D[k] = U[k]−U[k− 1]. We could
store the values of D using dlog2 (maxD−minD+1)e bits
per element. While this would already give good compres-
sion ratios, we further compress D[k] with a scheme similar
to entropy encoding. We do not store the values of D[k] in
the two’s complement. Instead, we map the signed values to
unsigned values using a zigzag pattern, i.e., 0, −1, 1, −2, 2,
. . . , as done by Lindstrom and Cohen [LC10]. In this repre-
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Selector a b c d e f g h i

bitsPerCode 1 2 3 4 5 7 9 14 28
numCodes 28 14 9 7 5 4 3 2 1

Table 1: A Simple-9 codeword holds numCodes[s] codes,
where each code uses bitsPerCode[s] bits.

sentation, the smaller the absolute value of a number is the
more leading zero bits it has.

We make use of this property and apply Anh’s and Mof-
fat’s Simple-9 technique [AM05]. Instead of storing all bits
of a code D[k], we omit leading zero bits and pack the re-
maining bits into codewords. Every codeword has a fixed
size of 32 bits: 4 bits for a selector and 28 bits for data bits.
The data bits are partitioned uniformly into codes of equal
bit length. The 4 selector bits encode what partitioning is
used, i.e., the code length and the number of codes per code-
word, as shown in Table 1. To create a codeword S[l], we use
a fast greedy approach: we collect values from D, remove
leading zero bits, and tightly pack the trailing bits in the data
bits of S[l]. If no more space is left in S[l], we proceed to the
next codeword. For example in Figure 6, D[0] uses 9 bits and
D[1] uses 14 bits. So we allocate 14 bits for both, completing
the 28 bits we can have per codeword. Thus, we store them
in S[0] together with the selector h. Next up is D[2] through
D[5], all encoded using 7 bits in S[1], and so forth. For our
test models, S compresses on average 2.7:1 with respect to
D that uses dlog2 (maxD−minD+1)e bits per element.

To decompress a Simple-9-compressed array, we propose
an efficient data-parallel three-pass algorithm. We unpack
every codeword D[k] individually as it is independent from
all other codewords. The only thing we need to know is
where to output the unpacked codes D[k]. Figure 7 shows
the first two passes of our algorithm. First with S_Scan,
we find to every code S[l] the location S[l] of its first code
in the array of unpacked codes D. Second, in D_Scatter,
we spawn one thread for each codeword and scatter all un-
packed codes of the codeword into D. In the final third pass,
U_Scan, we undo the zigzag mapping and use an inclusive

14 7 7 5 6 13 109 4 5 3 1 2

h

D

f h eS

Figure 6: For Simple-9 compression, we remove leading ze-
ros of the elements of D. The numbers shown in D indi-
cate the number of the remaining bits. The elements of D
are packed into the data bits of the codeword array S. Every
codeword contains 28 data bits and a 4-bit selector, indicated
by the lower-case letters.

add-scan over D to invert the delta encoding. This gives us
the array of reused vertices U.

All passes of the algorithm offer a high degree of paral-
lelism and scale well with the number of threads: The first
two passes spawn O(|S|) threads and the third pass uses
O(|U|) threads.

7. Results and Discussion

We test our algorithms on the models of Table 2. The heat-
map colors on the images represent the belt traversal order,
starting with blue for the first seed vertex. The compression
algorithm compresses all models at a constant rate of about
922 thousand triangles per second (±10%, depending on the
model). We provide the option to encode strip restarts either
explicitly or by degenerate triangles, as explained in Sec-
tion 4. This influences both compression ratio and decom-
pression times. Therefore, in most tables we discriminate
between explicit restart codes (columns R) and emulation of
restart codes (columns deg.).

We list bits per triangle (bpt) in column compression rate

(b) D_Scatter

h f h eS

D

0 2 6 8S

sr=(n-1-k)*b;

c=S[tid];

for(k=0;k<n;k++){

// read compressed code
s=c>>28; // get selector cf. Tab. 1: a≡0,..., i≡8
b=bitsPerCode[s];

n=numCodes[s];

m=(1<<b)-1;

D[S[tid]+k]=cw;}

// look-up bits per code
// look-up # codes

// and-mask to zero bits above b

// # bits to shift right

// write unpacked code word
cw=(c>>sr)&m; // mask out code word

tid=0 tid=1 tid=2 tid=3

tid=0 tid=1 tid=2 tid=3

h f h eS

(a) S_Scan

s=S[tid]>>28;
S′[tid]=numCodes[s];

tid 210 3

0 2 6 8S

2 4 2 5S′

exclusive add-scan

Figure 7: We unpack the Simple-9-compressed array S to D.
(a) We apply a parallel add-scan over the number of codes in
the selector bits of S to create S. (b) To restore the unpacked
data D, we use one thread for each codeword S[i].
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models compression decompression speed
rate

mesh triangles restart val. 6 R deg. R deg. rate render
codes [%] [bpt] [bpt] [ms] [ms] [Gtps] [ms]

Fan Disk 12,946 193 80 4.92 4.16 0.33 0.26 0.05 3.83
Bunny 69,664 1,146 75 5.02 4.36 0.36 0.32 0.22 3.31
Rocker Arm 80,354 1,637 65 5.27 4.61 0.38 0.35 0.23 4.71
Horse 96,966 1,930 66 5.22 4.65 0.24 0.30 0.33 2.17
Dinosaur 112,384 3,235 58 5.88 5.42 0.34 0.34 0.33 2.21
Igea 268,686 4,429 66 5.03 4.35 0.53 0.38 0.71 4.18
Armadillo 345,944 9,620 53 5.63 5.19 0.60 0.54 0.64 2.76
Isis 374,309 3,877 64 4.66 3.84 0.47 0.42 0.89 2.25
Angel 474,048 15,669 60 6.04 5.74 0.68 0.62 0.76 4.28
Hand 654,666 24,704 53 6.23 6.00 0.78 0.64 1.03 3.07
Dragon 869,928 49,744 33 7.40 7.59 0.98 0.93 0.94 6.07
Buddha 1,087,436 61,873 32 7.42 7.61 1.12 0.98 1.11 3.24
Welsh Dragon 2,210,673 19,823 87 4.53 3.72 1.81 1.56 1.42 6.49
Neptun 3,316,916 40,800 84 4.76 4.01 2.52 2.13 1.56 4.86
Asian Dragon 7,219,045 66,286 89 4.67 3.87 5.05 4.20 1.72 11.1

Table 2: We use a set of standard models to benchmark our algorithms. We list the number of triangles, restart codes, and the
percentage of valence-six vertices (val. 6). We list compression rate in bits per triangle (bpt) for the algorithm using explicit
restart codes (R) and the one using degenerate triangles (deg.). Decompression speed is given in milliseconds (ms) for both R-
and deg.-case. Additionally, we provide the decompression rate in billion triangles per second (Gtps) for the deg.-case. Timings
to render the models without compression but with our triangle and vertex order are shown in the last column.

of Table 2. Our compression algorithms achieve compres-
sion ratios of as low as 3.7 bpt. When using degenerate trian-
gles, we observe a median compression ratio of 4.6 bpt. Only
the models Dragon and Buddha need more than 7 bpt. Simi-
lar to other compact representations [GLLR11a,GLLR11b],
we observe that the more valence-six vertices a mesh pos-
sesses the better the compression ratio becomes. For exam-
ple, 33 % of the vertices of the Dragon have valence six,
whereas for the Welsh Dragon, 87 % of the vertices have va-
lence six. The number of valence-six vertices indicates how
regular a surface is meshed. Thus, the more regular a mesh is
the better it compresses. When stored in the commonly used
explicit representation (i.e., with three indices per triangle,
as in the array T) on the GPU, most of our models con-
sume 96 bpt. Small models can be stored with 48 bpt, since
OpenGL supports 16-bit index buffers. Hence, we achieve
compression ratios from 8:1 up to 21:1, and a median of
14:1. Note that for the models Dragon and Buddha the use
of explicit restart codes pays off, since they require relatively
many restart-codes.

7.1. Compression Rate

In Table 3, we representatively investigate the model with
the lowest (Welsh Dragon) and highest (Buddha) bpt, and a
model with a medium number of triangles and an average
bpt (Armadillo). We analyze the compression rate achieved
after each stage of our algorithm.

The row explicit shows the bpt achieved with the explicit

representation using 3 · dlog2(number of vertices)e bpt. We
use the input number of triangles as reference for computing
bpt values. Therefore, the use of degenerate triangles bloats
the storage per triangle for the explicit representation.

The row strips shows the benefits of using generalized tri-
angle strips, as explained in Section 4. It cuts the cost by
a factor of 2.5 – 2.8 which comes close to the strict upper
bound of 3. However, this is an optimistic upper bound, as
it ignores the overhead of one bit (deg.) or two bits (R) for
each strip-code. Note that only the Welsh Dragon benefits
from the use of degenerate triangles. This is because less
than 1 % of all strip-codes are restarts. The Armadillo (3 %)
and the Buddha (6 %) have a higher restart code frequency.
Thus, they do not profit from degenerate triangles.

Welsh Dragon Armadillo Buddha

R deg. R deg. R deg.

explicit 66 68.4 54 60 60 73.7
strips 24.4 23.8 21.0 21.1 24.3 25.8
inc. 14.4 13.9 13.1 13.2 15.4 17.0
S-9 4.5 3.7 5.6 5.2 7.4 7.6

Table 3: Compression rates in bpt for three models achieved
for the explicit representation (explicit), after creating gener-
alized triangle strips (strips), after using incremental vertices
(inc.), and after Simple-9 compression (S-9).
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R deg.

kernel/scan time pct. time pct.

strips
M_Scan 0.27 ms 14 % 0.00 ms 0 %
Q_Scan 0.31 ms 16 % 0.28 ms 14 %
T_Kernel 0.45 ms 23 % 0.41 ms 21 %

inc.
INC_Scan 0.26 ms 13 % 0.26 ms 13 %
V_Kernel 0.20 ms 10 % 0.20 ms 10 %

S-9
S_Scan 0.07 ms 4 % 0.07 ms 4 %
D_Scatter 0.20 ms 10 % 0.20 ms 10 %
U_Scan 0.18 ms 9 % 0.18 ms 9 %

total 1.94 ms 100 % 1.61 ms 83 %

Table 4: We break down the decompression times of the
Welsh Dragon into sub-timings of the kernels and scans.

The row inc. shows the result achieved by incremental
vertices, as explained in Section 5: A triangle that refer-
ences a vertex firstly can infer the vertex by incrementing
a counter. If a triangle references an already visited vertex,
it has to store the vertex explicitly. This further improves the
compression by a factor of about 1.6. When using degener-
ate triangles, the compression benefit is a little lower: In that
case, each restart code is emulated by four extra degenerate
triangles. At least two of them re-reference a vertex and thus
we have to store them explicitly.

Row S-9 shows the additional benefits when compressing
the re-referenced vertices using delta codes and Simple-9, as
explained in Section 6. It improves compression by roughly
8 – 10 bpt. In contrast to the previous rows, Armadillo com-
presses better when using degenerate triangles: As the val-
ues of D become small, they require only few bits per vertex.
Thus, emulating restart codes with four degenerate triangles
becomes less expensive and this outweighs the initial benefit
of using explicit restart codes.

7.2. Decompression Speed

We implement our decompression algorithm using CUDA
4.0 and use CUDPP [HOS∗11] for scan operations. The en-
tries in the column decompression speed of Table 2 are mea-
sured on an Nvidia GeForce 580 GTX including CUDA-
OpenGL context switches and buffer mapping times. We
further provide the triangle rate in billion triangles per sec-
ond (Gtps) and observe up to 1.72 Gtps. Rendering timings,
shown in column render, exclude decompression timings,
but are measured using the vertex and triangle order of Sec-
tion 3. During rendering, we did not observe any difference
between the versions with explicit restart codes and degen-
erate triangles, as degenerate triangles are removed by the
pipeline at no extra cost. We used a resolution of 1920x1200
using OpenGL 4.2 and a simple Blinn-Phong shading model.
Under these circumstances, our decompression for the deg.-
case makes only (min: 6 %, avg: 15 %, max: 30 %) of the

total rendering cost. Hence, our algorithm is well suited for
decompressing models every frame. When using more so-
phisticated shaders, the ratio between rendering and decom-
pression times increases. This makes the use of triangle de-
compression even more attractive. In almost all cases, we
observe that decompression is faster with degenerate trian-
gles than with restart codes.

Table 4 lists detailed timings spent on the different parts
of our algorithm at the example of the Welsh Dragon model.
Note that the total timings are slightly higher than the one
listed in Table 2, as the additional timing code comes with
some overhead. The row strips details the timings for un-
packing the strips (Section 4). The most noteworthy differ-
ence between the two methods is that M_Scan is not re-
quired when using degenerate triangles. With the array M
given implicitly, Q_Scan and T_Kernel are less complex,
and thus take less time to compute. However, most of the
speed-up is attributed to the reduced bandwidth consump-
tion, as the kernels and scans do not have to load M. The
timings for the use of incremental vertices (row inc., cf. Sec-
tion 5) and Simple-9 (row S-9, cf. Section 6) take equally
long for both methods. This is not surprising, as degenerate
triangles do not significantly enlarge their workloads. As the
computational density is low for all our kernels and scans,
our algorithm is bandwidth bound. To hide memory latency,
we need as many CUDA threads as possible. This is the rea-
son why large meshes decompress faster than small meshes,
as shown in Table 2: the larger the mesh is the more threads
we can use, and thus, the better the decompression speed is.

7.3. Impact of Vertex and Triangle Order

We achieve the reported compression ratios by ordering tri-
angles and vertices coherently. In most cases, applications
do not rely on a particular triangle order. If they do, our
decompression also works; however, the compression ratio
may be worse. The rendering speed of graphics hardware
depends on both triangle and vertex order. For good per-
formance, it is recommended to use cache oblivious lay-
outs [Kil08]. Table 5 shows that frame-times achieved with
our order are similar to the order computed with OpenCCL, a
library that creates cache oblivious mesh layouts [YLPM05].
This comes not unexpectedly, as performance of GPUs with
unified shader architecture increases if triangles and vertices
are ordered coherently (see [Kil08], Section 7.2).

Welsh Dragon Armadillo Buddha

Our order 6.48 ms 2.73 ms 3.24 ms
OpenCCL 6.84 ms 2.96 ms 3.14 ms

Table 5: We compare the pure rendering times without de-
compression achieved with our triangle and vertex order
against the one of OpenCCL.
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7.4. Runtime Memory Consumption

Besides the memory space for the input arrays S, INC, and
C, our algorithm needs space for 3 · |T| vertices to store
the outputted explicit representation. While our prototype
implementation explicitly reserves memory for all tempo-
rary arrays for debugging purposes, a production application
would need temporary memory of only |V|: There is suffi-
cient space in the output array T for the temporary arrays
S, D, and U, used for unpacking word-aligned codes. After
computing V, the temporary space from word-aligned-code
decompression can be reused for M and Q.

7.5. Application Fields

Our approach works well with out-of-core algorithms: Re-
member our median compression ratio is at 4.6 bpt. This is
almost 21 times smaller than required for the uncompressed
explicit representation, which has 96 bpt. Thus, 21 times
more triangle topology fits in GPU memory, which dramat-
ically decreases the necessity for expensive CPU-to-GPU
memory transfers.

We compare our compression scheme with degen-
erate triangles against the explicit representation using
parts of the David model from the Digital Michelangelo
Project [LPC∗00]. The mesh consists of 28 sub-meshes
shown in different colors in Table 6. In total, there are 191
million triangles. In the explicit representation, we need 32
bits per index. This amounts for 2.13 GiB of data for trian-
gle topology. Using our approach with degenerate triangles,
we obtain 5.91 bpt, resulting in 0.131 GiB for the topol-
ogy, which is 6 % the size of the explicit representation. For
both compressed and non-compressed versions of the David
mesh, we quantize vertex positions with 16 bits per compo-
nent and we use 16-bit octahedron normals [MSS∗10] to fit
all geometry into a single 64-bit word per-vertex, instead of
6 · 32bits = 192 bits. We convert the per-vertex attributes to
floating-point numbers in the vertex-shader with only a few
instructions, so the overhead is negligible. Thus, the vertex
attributes consume 0.715 GiB instead of 2.15 GiB. When
using our topology compression scheme, all data fits in the
GPU memory of our test-system. During rendering, we de-

compressed non-
compressed

compression ratio 5.91 bpt 96 bpt
frame-time 248 ms 298 ms

GPU memory 1.41 GiB 1.39 GiB
system memory 0.0315 GiB 1.53 GiB

Table 6: The 28 sub-meshes of David (right) are shown in
different colors. It consists of 191 million triangles. We com-
pare our topology compression scheme with degenerate tri-
angles against the non-compressed explicit representation.

compress one sub-mesh at a time and draw it directly after
decompression. Then, we proceed with the next sub-mesh,
until all sub-meshes are processed. This way, the memory for
the temporary arrays (see Section 7.4) has to fit the largest
sub-mesh only. Table 6 shows that using our compression
scheme is 20 % faster than using the non-compressed ex-
plicit representation. This is because the compressed ver-
sion requires a minimum amount from the off-GPU system
memory. As opposed to the non-compressed version, no data
needs to be swapped between CPU and GPU. Unlike our
CUDA decompression, rendering is asynchronous to trans-
ferring data from CPU to GPU. If we were able to use some
of the CUDA cores for decompression and others for ren-
dering, our algorithm would benefit even more in terms of
rendering speed.

7.6. Comparison

Clearly, our algorithms do not achieve bit rates of sequen-
tial algorithms that reach around 1 bpt. We need about five
times more space for topology. However, our algorithms tar-
get many-core systems and thus scale well with future hard-
ware as opposed to sequential methods. Our algorithms are
designed for on-the-fly unpacking of triangle topology at
render time or for faster GPU upload of topology data. The
performance that is needed in this setup is achieved with an
unpacking scheme that exploits parallelism even on highly
parallel processors. Our algorithms unpack triangle topology
at roughly the same rate as a GPU can render it. Compres-
sion times, even for complex meshes, are in the range of sec-
onds, so compression can be done at loading time. While our
algorithms do not achieve bit rates of sequential algorithms,
they still compress topology data to less than 10 %.

We compare our timings and memory consumptions with
two recent papers [CH09,GLLR11b]. Note that both of these
papers have a very different focus. They compress more data
(e.g., also neighboring information or vertex data) and allow
random access to single triangles, features that are not sup-
ported by our algorithm. For our applications, these types
of functionality are not necessary. Instead, we need high de-
compression speed and good scalability behavior.

In 2009, Courbet and Hudelot [CH09] described a method
to compress triangles down to 3 bpt using a sequential algo-
rithm. They report access times of 1µs per vertex. Our max-
imum of 1.7 billion triangles per second is equal to an ac-
cess time of 0.2 ns per vertex. Though hardware has become
faster since then and the reported timings include fetching
3d positions, we do not anticipate that this may compen-
sate for four orders of magnitudes in speed. Most recent data
structures [GLLR11b] are designed for compactness and to
quickly access neighborhood information, a feature we do
not support. Hence, they require about 26 bpt, i.e., five times
more memory than we do. They report CPU access times
from their non-optimized compact version of about 20 ns,
i.e., our algorithm is two orders of magnitudes faster. The
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authors briefly describe a geometry-shader-based GPU im-
plementation, yet they give no timings. So it remains unclear
how their GPU implementation compares with ours.

8. Conclusion and Future Work

In this paper, we presented a data-parallel algorithm for fast
decompression of triangle topology. We decompress at a rate
of 1.7 billion triangles per second and we compress to about
5 bpt. To achieve these results, we proposed an algorithm
to order triangles and vertices coherently. We contributed
a method that decompresses generalized triangle strips in a
data-parallel fashion. Further, we proposed a data-parallel
algorithm for decompressing word-aligned codes. To our
knowledge, no prior triangle decompression algorithm runs
with a comparable high degree of parallelism as the algo-
rithm presented here.

In the future, we want to extend our approach to com-
press vertex attributes, such as positions, normals, and tex-
ture coordinates. While our belt traverser is simple, fast, and
already yields low bit-rates, we believe that we can still im-
prove bit-rates without changing the GPU decompression al-
gorithms. For example, an order guided by the Fiedler vec-
tor [IL05], or generated by stripification algorithms [GE04]
might produce better compression results, however, at a
higher effort than our approach. Moreover, we need to see
how that order interplays with the incremental vertices and
our word-aligned code.

Appendix: CUDA Implementation

In this section, we detail how our approach works on CUDA,
which is crucial for obtaining the reported decompression
performance. Many of our kernels (M_Scan, Q_Scan,
INC_Scan, S_Scan U_Scan) involve scans, so the per-
formance of the overall system heavily depends on a fast
implementation of a data-parallel scan. Table 4 reveals that
over 50 % of the overall decompression time is due to a
scan. Luckily, scans are a very common operation in Com-
puter Graphics (e.g., [PO08, HZG08, LGS∗09, LHLK10])
and many (open-source) libraries provide scan implementa-
tions [HOS∗11, Mic10, HB11]. Most important for the scal-
ability of our algorithm is that a scan scales linearly with
the available bandwidth on current GPUs [MG09]. Scan im-
plementations are based on algorithms proposed by Blel-
loch [Ble90], and Hillis and Steele [HS86]. For a detailed
description of a CUDA scan implementation, we have to re-
fer to the relevant articles [HSO07, SHG08, BOA09].

We did not implement a scan ourselves and used the
highly optimized CUDPP library [HOS∗11]. We follow the
suggested thread allocation and the distribution of array ele-
ments to threads. However, we carried out two minor mod-
ifications. First, we added support for reading from bit-
streams. We tightly pack the elements without fragmentation

in a uint4 and use logical bit operations to extract the indi-
vidual elements. This applies to C (one bit without, two bits
with R-codes per element) and INC (one bit per element).
The second modification is to support transform scans. It is
defined similar to a regular scan of Equation 1 with a little
modification, i.e., we transform A[i−1] using a function f :

A[i] :=

{
0, i = 0
op
(
A[i−1], f (A[i−1])

)
, i > 0.

(9)

A similar definition applies for the inclusive scan of Equa-
tion 2. The code boxes in Figure 4a, 4b, and 7a show the
respective definitions of the functions f . Instead of mod-
ifying CUDPP to support transform scans, we could have
launched a separate kernel call prior to every scan. However,
this would dramatically increase the bandwidth pressure and
thus degrade performance significantly, as every array ele-
ment would require an extra read and write to global mem-
ory. The remaining scan-kernels require no transformations.

Each input and output element in T_Kernel (Figure 4c)
and V_Kernel (Figure 5) is assigned to one thread, and
so memory access is coalesced for C and INC. Also
T_Kernel accesses V in a linear manner, resulting in high
data throughput. We got the best results with 512 threads per
block. D_Scatter is the only kernel that has to access data
sequentially, however, only for writing. Each thread reads
one 32-bit words of S and writes up to 28 words to D. In
experiments, 64 threads per block give the best results.
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