
Preprint — Artical in Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

Adaptive Level-of-Precision for GPU-Rendering

Quirin Meyer1 Gerd Sussner2 Günter Greiner1 Marc Stamminger1

1Computer Graphics Group, University Erlangen-Nuremberg, 2RTT AG
The definitive version is available at http://diglib.eg.org and http://www.blackwell-synergy.com.

Abstract
Video memory is a valuable resource that has grown much slower than the rendering power of GPUs over the
last years. Today, video memory is often the limiting factor in interactive high-quality rendering applications.
The most often used solution to reduce memory consumption is to apply level-of-detail (LOD) methods: only a
simplified version of the mesh with less vertices and triangles is kept in memory. In this paper we examine a simple
orthogonal compression approach that is mostly neglected: adapting the level-of-precision (LOP) of vertex data.
The main idea is to quantize vertex positions according to the current view distance, and adapt precision by adding
or removing single bit planes. We provide an analysis of the resulting image error, and show that visual artifacts
can be avoided by simply constraining the quantization for critical vertices. Our approach allows both random
access on vertex data as well as quickly switching between LOP. In experiments we found that our approach
compresses vertex positions by about 70% on average without loss in rendering performance or image quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

1. Introduction

Today’s GPUs process more than a billion triangles per sec-
ond, so scenes with enormous geometric detail can be ren-
dered interactively. This is particularly useful in high-quality
rendering applications such as point-of-sale presentations or
product design reviews, where highly detailed construction
data is to be rendered faithfully. Including variants and ani-
mations, a scene can easily contain several million vertices.
Also in computer games, where assets are much more op-
timized for a low vertex count, geometry becomes more
and more complex to increase realism. Adding normal and
tangent vectors, texture coordinates and maps, and index
buffers, GPU memory quickly becomes the limiting fac-
tor. There has been intensive research on texture compres-
sion, but much less on the compression of geometry data
for GPUs. The most efficient geometry compression tech-

fine level

vertices

pr
ec

is
io

n

(a) (b)

coarse
level

vertices

pr
ec

is
io

n

coarse
level

vertices

pr
ec

is
io

n

vertices

pr
ec

is
io

n

fine level

Figure 1: (a) LOD methods vary the number of vertices. (b)
Simultaneously, our level-of-precision (LOP) methods vary
the numerical accuracy.

niques utilize sequential decompression, which is typically
too slow for real-time rendering. An alternative are level-of-
detail (LOD) methods, where a simplified version of a mesh
with a reduced number of vertices and triangles is rendered.
Typically, the simplification level is adapted to the current
view distance by adding or removing vertices. This happens
continuously, or by swapping a discrete set of simplifica-
tions. These approaches save video memory if only a single
simplified version of the mesh is present on the GPU.

In this paper we focus on another, simple possibility to
save video memory, which is largely ignored, but has high
potential: level-of-precision (LOP). Conventionally, numer-
ical precision of vertex positions is constant. However, de-
pending on the viewing distance, lower precision, i.e. a
smaller number of bits per vertex, is acceptable, as the quan-
tized vertices are projected into the same sub-pixels. This
idea is depicted in Figure 1: An LOD method (a) only stocks
a subset of all vertices in video memory. If the LOD is
adapted, vertices are removed and added, so the working
set in video memory increases or shrinks. However, we can
adapt the precision of vertex data simultaneously (b). For a
coarse LOD, a low numerical precision is acceptable. In this
paper, we consider LOP for vertex positions only, but other
vertex attributes such as shading normals or texture coordi-
nates can be compressed in a similar way.

c© The Eurographics Association 2011.

http://diglib.eg.org
http://www.blackwell-synergy.com

Q. Meyer & G. Sußner & G. Greiner & M. Stamminger / Adaptive Level-of-Precision for GPU-Rendering

Adaptive
Precision

Adaptive
Precision

Constrained

Floating
Point
Vertices

11.8 ms

27 %

16.6 ms

36 %

19.1 ms

100 %

Figure 2: Comparing AP and CAP with floating-point ver-
tex buffers. The timing values indicate the frame time.
The percentage value represents the relative memory usage
over floating-point vertex buffers. While AP causes render-
ing artifacts, CAP achieves quality indistinguishable from
floating-point vertices, saves memory, and renders faster.

Adapting precision by simply cutting off trailing bits has
the advantage that both compression and decompression are
very efficient. Compression requires little preprocessing and
can be performed on-the-fly, precision can be adapted effi-
ciently, and decompression can be done in a vertex shader
without negative impact on performance (in fact rendering
from a compressed buffer is usually faster due to the reduced
memory bandwidth). We will refer to this simple approach
as Adaptive Precision (AP) in the following.

In our experience, AP often delivers surprisingly good re-
sults, but for highly detailed meshes shading artifacts oc-
cur when quantization becomes too coarse. We analyze this
shading error due to vertex quantization, and show that we
can constrain the error by restricting quantization for each
vertex to a minimum bit number. As a result, vertices can
have different quantization levels, which make decompres-
sion and compression a bit more complicated. However,
it turns out, that also this Constrained Adaptive Precision
(CAP) approach can be implemented efficiently, and very
well handles shading, texture, and depth errors.

Figure 2 summarizes our results. AP allows for significant
memory savings and high performance. Yet, artifacts are vis-
ible at large viewing distances (top row). With CAP, these
artifacts disappear (middle row) while still keeping memory
consumption and frame times low, and the rendering is in-
distinguishable from the original mesh (bottom row).

Both our approaches generate significant memory savings
on their own, but we do not consider them as a real LOD-
method (e.g., for coarse quantization, triangles degenerate to
lines or points, and could be sorted out to reduce work load).
Instead, we consider LOP to be best used in combination to
further compress the vertex positions of a simplified mesh.
LOP is extremely simple, very easy to integrate, and gives
significant memory saving with only very little extra effort.

2. Previous Work

A widespread multi-resolution approach is the progressive
meshes (PMs) technique [Hop96]. It is particularly suited
for view-dependent refinement [Hop97]. In a preprocess
Sander and Mitchel [SM05] create a discrete set of meshes
with decreasing numbers of vertices and triangles using
PMs. However, during runtime, vertex buffers of succes-
sive level-of-details need to reside on the GPU to allow for
smooth LOD transitions. A first GPU implementation of
continuous PMs consume 57 % more memory than an in-
dexed face set [HSH09]. Derzapf et al.’s GPU implemen-
tations of PMs require 50 % the data of an indexed face
set [DMG10b, DMG10a].

Vertex cluster techniques [RB93, Lin00] reduce the geo-
metric complexity by partition the object’s bounding geom-
etry into uniform cells. All vertices of one cell are replaced
by a single vertex representative. A GPU implementation for
cluster creation exist [DT07] but they are not used to reduce
the memory footprint during rendering.

Vertex quantization reduces complexity by discretizing
the vertex coordinates to a grid that uniformly samples the
mesh’s bounding geometry. While early approaches deter-
mine the sample spaces, i.e., the number of bits, by empiri-
cal tests [Dee95], Chow [Cho97] proposes an iterative algo-
rithm and assigns individual quantization levels for each ver-
tex based on geometric criteria. However, shading error con-
siderations are not examined. Computer graphics APIs like
OpenGL 4.1 or Direct3D 11 support different quantization
levels for vertices. However, the precision is fixed and cannot
be altered dynamically. Purnomo et al. [PBCK05] quantize
all vertex attributes to fit into a given bit-budget. The number
of bits allocated by each attribute is optimized in a prepro-
cess using a screen-space error metric. They decompress the
attributes in a vertex shader however vertex precision may
not be refined dynamically.

Vertex quantization has excessively been applied in the
context of geometry compression [AG05]. They are often
combined with variable bit-length codes. However, as the
decompression algorithms are of sequential nature, they are
difficult to implement on a parallel GPU architecture. GPU
implementations exist only for special cases, such as terrain
rendering [LC10] where geometry is represented by scalar
valued height-maps rather than vector valued vertices.

Approaches to progressively transmit bits of vertex com-
ponents [LK98] are designed for either on-disk storage or
network transmissions and not for GPUs. Hao et al. [HV01]
analyze the numerical error imposed by vertex transform op-
erations and determine the accuracy in bits at which these
operations have to be carried out, but do not leverage their
result for reducing the memory footprint.

LOD-methods typically consider geometric error, assum-
ing that a small geometric error also results in little render-
ing error. Appearance preserving LOD approaches optimize

c© The Eurographics Association 2011.

Q. Meyer & G. Sußner & G. Greiner & M. Stamminger / Adaptive Level-of-Precision for GPU-Rendering

for the apparent rendering error [GH97, KSS98]. One key
observation is that geometric error in highly curved surface
regions translates to a large apparent error [Lin03, Cho97],
so meshes should be preferably coarsened in flat regions.

3. Level-of-Precision

In order to adapt the precision level, we first quantize each
coordinate using a 24-bit fix-point representation, which cor-
responds to unsigned floating-point precision [ILS05]. For
each vertex only the b most significant bits of each compo-
nent are tightly packed in video memory, where b defines
the currently used precision. We refer to it as the current bit
level. During rendering, the bits are unpacked for each vertex
and converted back to floating-point. When more precision is
required, additional bits are uploaded and merged with those
already in video memory. Likewise, superfluous bits are re-
moved if less precision is sufficient. For simplicity all vertex
components, i.e., x, y, and z, use the same number of bits.
Bits having the same bit-index i within the components of a
vertex buffer are said to be on the ith bit plane.

Of course, a reduced LOP introduces apparent deviations
in the rendered image. We look at a particular image sample,
and identify three sources of error for its computed color:

• Coverage error: the coverage of the sample changes, i.e.,
the sample sees the wrong object. This error is most obvi-
ous along silhouettes.
• Attribute error: due to the modified vertex positions,

wrong attribute values are used for shading. E.g., for
highly varying shading normals, a highlight can wrongly
appear or disappear at the sample. Similarly, a texture can
be accessed at an offset position, yielding a wrong color.
• Depth error: the z order of nearby objects changes, so that

a more distant object penetrates a closer one at the sample.

In Section 4 we introduce our Adaptive Precision (AP) al-
gorithm: We select one common bit level for all vertices of
a vertex buffer, such that the screen-space error is less than
half a pixel. If the vertices of the buffer move, they are coars-
ened or refined by removing or adding bit planes. This allows
balancing coverage error and memory savings efficiently.

However, particularly for highly-detailed models, at-
tribute and depth errors occur once the bit level of the ver-
tex buffer underflows a certain limit. As this generally only
affects a small fraction of the vertices, we constrain those
critical vertices, and select a minimum bit level for each
of them. This minimum bit level may not be under-flown
when precision is coarsened for the remaining vertices of the
buffer. This approach – referred to as Constrained Adaptive
Precision (CAP) – is discussed in Section 5.

4. Adaptive Precision

To save video memory, we choose the precision of the ver-
tices, such that the coverage error is below a predefined

4 3

· · ·
vx

0 vy
0 vx

1 vy
1

· · ·
vx

0 vy
0 vx

1 vy
1

Per-Buffer Bit Level

Adaptive Precision
Buffer

Model

Figure 3: 2D example of a vertex buffer stored in an adaptive
precision buffer. The bits are represented by the colored bars.
The 2D grid represents the possible quantization locations
for the vertices. We dynamically adapt the number of bits
of a vertex component by a screen-space criterion. To save
memory, the bits are stored tightly without fragmentation.

threshold, e.g., half a pixel. We then store only the bits that
are required for this precision in an adaptive precision buffer.

The bits of the vertices are stored tightly packed, i.e.,
without internal fragmentation. All elements use the same
number of bits, or the same per-buffer bit level. We deter-
mine it as the precision of the one bounding-box vertex clos-
est to the camera. If the object moves, we adapt the precision
by adding or removing entire bit planes to all the elements
in the buffer: we temporarily unpack the vertex components,
add or remove bits, and then pack them tightly again. Fig-
ure 3 illustrates the principle for an adaptive precision buffer
with 3 and 4 bits per component. With this representation
we obtain efficient random access, e.g., in a vertex shader
(Section 6.2), during rendering.

Note that we have to provide video memory space to tem-
porarily unpack the vertex buffer. If the model is too big it
needs to be partition into smaller sub-models [Sha08]. When
adapting the bit-level we process the vertex buffers of the
sub-models sequentially.

If two adjacent vertex buffers use different bit levels, ini-
tially identical boundary vertices may be quantized to dif-
ferent positions, and unwanted cracks can occur (Figure 4
left). To avoid this, we compute a per-vertex bit level af-
ter vertex decoding, using the distance of the vertex to the
camera. This per-vertex bit level is smaller or equal than the
per-buffer bit level, and we zero out the superfluous least sig-

Figure 4: Removing cracks. When two vertex buffers possess
different bit levels cracks may occur (left). We compute bit
levels at vertex level and zero-out superfluous bits, and thus
close the cracks (right).

c© The Eurographics Association 2011.

Q. Meyer & G. Sußner & G. Greiner & M. Stamminger / Adaptive Level-of-Precision for GPU-Rendering

Figure 5: Shading error caused by a displaced vertex. The
pixel raster grid is shown in blue.

nificant bits. This makes boundary vertices identical in both
vertex buffers, and cracks are avoided (Figure 4 right).

5. Constrained Adaptive Precision

For highly detailed models at large viewing distances, at-
tribute and depth errors become apparent when using AP. A
solution would be to disallow the removal of bit planes be-
low a certain bit level for all vertices. This, however, would
dramatically limit the memory gains. Instead, we assign a
minimum bit level that may not be under-flown for every
vertex individually. During rendering, we generally use the
per-buffer bit level, that avoids coverage errors, but if that is
not precise enough to avoid attribute and depths errors for a
particular vertex, we use its per-vertex minimum bit level. To
this end we solve two problems: In a preprocess, we identify
the minimum bit level for each vertex (Sections 5.1 and 5.2).
At run-time, a fast and memory efficient data-structure (Sec-
tion 5.3) has to account for the minimum per-vertex bit level
of constrained adaptive precision data.

5.1. Attribute Error

An illustrative example for attribute error resulting from
moving vertices due to reduced LOP is shown in Figure 5.
In a region of high curvature a vertex is displaced to the left.
As a result, the triangles on its right exhibiting a glossy high-
light are significantly enlarged. Even if the displacement is
far less than a pixel (pixel grid marked in blue), the aver-
age color of the pixel changes significantly. As a result the
entire pixel color becomes much brighter, even with high-
quality anti-aliasing. A similar effect is also visible in the
upper right of Figure 2, where along the highly curved rims
strong disturbing variations in brightness become visible.

For the cause of this artifact, consider the two meshes pro-
jected onto a pixel grid in the top row of Figure 6. Due to
quantization, the center vertex is moved to the right by less
than a pixel (second row). We now look at the resulting shad-
ing error in image space, at the target position of the vertex
(dashed line of last row). For the original mesh, the sample
sees the interpolated normal (orange vector). Since the nor-
mal attribute remains unchanged when the vertex is moved,
the sample sees the original vertex normal (red vector) when
rendering the quantized mesh. This difference between the
two normals is low for the low curvature mesh on the left,
and high for the high curvature mesh on the right.

Note that the vertex normal is an attribute, which is com-
puted for the original mesh and then remains unchanged af-

ter quantizing vertices. This means that if due to quantization
T-vertices or even fold-overs appear, the normals used for
lighting is neither undefined nor flips. Thus the only source
for rendering errors is that wrong arguments are used for the
shader call as described above. Fold-overs are generally no
problem in our scenario. Noteworthy exceptions are trans-
parent surfaces rendered with alpha-blending, because here
the overlapping triangles result in increased opacity.

Next, we quantify the error shown in Figure 6. We con-
sider a triangle with vertices~v0,~v1, and~v2. With each vertex
an attribute vector~ai is stored (shading normal, texture coor-
dinate, etc.). During rasterization, barycentric interpolation
is used for determine the attribute of a raster sample

~abary(β,γ) = (1−β− γ)~a0 +β~a1 + γ~a2 =~a0 +A
[

β

γ

]
,

where (1 − β − γ,β,γ) are the barycentric coordinates
at the raster sample and A =

[
~a1−~a0 ~a2−~a0

]
.

The pixel shader f uses this interpolated at-
tribute to compute the sample’s color f (~abary(β,γ)).

~v0
~v1

~v2

~ev

~eu

Φ

Next, we bound the difference in the
sample’s color due to the quantization
movement of one vertex. Without loss
of generality, we consider ~v0. We as-
sume that~v0 moves along the tangent

plane spanned by the triangle. In order to correctly measure
the movement of ~v0, we have to express it in coordinates
(u,v) that are defined in a basis {~eu,~ev} that is orthonormal
in world space (see inset):[

u
v

]
=

[
‖~v1−~v0‖ ‖~v2−~v0‖cosφ

0 ‖~v2−~v0‖sinφ

][
β

γ

]
= M

[
β

γ

]
,

where φ is the triangle’s angle at~v0. Using M, we can com-
pute the attribute value at (u,v) as

~aorth(u,v) =~abary

(
M−1

[
u
v

])
=~a0 +AM−1

[
u
v

]
.

pixel grid

pixel grid

pixel grid

vertex
quantization

shading
normal error

mesh

Figure 6: Moving a vertex of a flat (left) and curved mesh
(right) results either in weak (left) or strong (right) variation
of the shading normal.

c© The Eurographics Association 2011.

Q. Meyer & G. Sußner & G. Greiner & M. Stamminger / Adaptive Level-of-Precision for GPU-Rendering

When moving ~v0 by some offset (u,v), the attribute ~a0 =
~aorth(0,0) is used at the target position, instead of the cor-
rectly interpolated value~aorth(u,v), which causes the error

E = ‖ f (~aorth(u,v))− f (~a0)‖.

Linearly approximating f (~aorth(u,v)) by a Taylor expansion
using the Jacobian J f of f

f (~aorth(u,v))≈ f (~a0)+J f AM−1
[

u
v

]
,

gives us an error estimate

E ≈
∥∥∥∥J f AM−1

[
u
v

]∥∥∥∥≤ ∥∥J f
∥∥︸ ︷︷ ︸

k f

∥∥∥AM−1
∥∥∥︸ ︷︷ ︸

Et

∥∥∥∥[u
v

]∥∥∥∥︸ ︷︷ ︸
∆x

.

As vector and matrix norms, we use the Euclidean and spec-
tral norm, respectively. ∆x is the magnitude by which a ver-
tex moves due to quantization. Et measures, how fast the
attribute varies over the triangle, so it only depends on the
triangle and its attributes. k f depends on the shader, and de-
fines the maximum slope of the shader result with respect
to the attribute ~a. If ~ai are normals used as input to a Phong
shader, k f equals the specular coefficient times the specular
exponent. If ~ai are texture coordinates, k f is the maximum
slope of the texture signal.

Up to now, we only considered a single triangle, but we
want error bounds per vertex v. We thus compute the max-
imum value for all surrounding triangles of a vertex v, and
call this value Ev. Putting everything together, we bound the
shading error when moving vertex v by ∆x by

k f Ev ∆x≤ ε,

where ε is the maximum color intensity error. To be below
that error, we limit the magnitude ∆x by which the vertex
moves due to quantization. This immediately leads to a per-
vertex minimum bit level b, by setting ∆x = 2−b and solving
for b. A visualization of our error analysis considering the
normal attribute is shown in Figure 7. For another result of
the constrained quantization refer to Figure 2.

5.2. Depth Error

A reduced LOP can also result in depth errors as illustrated
in Figure 8. The blue and the red curve in (a) and (b) depict

0%

10%

20%

30%

1 >92 3 4 5 6 7 8 91

>9

(a) (b)

Figure 7: Per-vertex minimum number of bits determined by
our shading error analysis. (a) The vertices are color-coded
by their minimum bit level. (b) Histogram of the relative
amount of vertices for each minimum bit level.

(a) (b) (c) (d)

Figure 8: Depth artifacts. (a, b) The blue and the red curve
depict two objects that change their order once their bit level
decreases. (c, d): The button and its labeling are two different
objects. While AP cannot handle correct ordering of the ob-
jects (c), constraining the bit level of depth-critical vertices
using CAP removes depth artifacts (d).

two different objects. At the higher bit level, the blue object
is entirely in front of the red one (a). When the bit level de-
creases, the objects intersect (b), resulting in depth artifacts
(c). By constraining the minimum bit levels of those depth-
critical vertices, we can guarantee a correct order of the ob-
jects and avoid rendering artifacts (d). For now we use a sim-
pleO(n2) algorithm to determine depth-critical vertices and
fix their minimum bit level to a user defined value.

5.3. Binned Adaptive Precision Buffers

With CAP we essentially need to store an individual number
of bits per vertex. However, explicitly storing a bit level with
every vertex would result in additional memory overhead.
Instead, we use a binned adaptive vertex buffer: we sort the
vertices into bins according to their per-vertex minimum bit
levels. During runtime we add necessary bit planes to bins
with a bit level smaller than the view-dependent per-buffer
bit level, and tightly pack the bits, as illustrated in Figure 9.

Our data structure allows easy random access: To unpack
the jth vertex we determine the bin b−1 it resides in, using a
small look-up table containing the first vertex index of each
bin, VertexId, and its corresponding bit index, BitId. We
then read 3 ·b bits from the bit index 3 ·b ·(j−VertexId[b−
1])+ BitId[b− 1]. The look-up table has a small and con-
stant size: the maximum number of bits per component,

4 bits

1 bit
2 bits
3 bits

0
0

1 3 4
2 10 16

Needs at least

vx
0 vy

0 vx
1 vy

1 vx
2 vy

2 vx
3 vy

3 vx
4 vy

4

v0 v1 v2 v3 v4

BitId

VertexId

P

U

Figure 9: 2D example of a binned adaptive precision buffer.
The vertices of the original vertex buffer U are sorted by their
bit level in ascending order. Only bits above the minimum bit
level are initially packed into the binned adaptive precision
buffer P. The table VertexId marks the bit level boundaries
and the entries of BitId hold their bit indices.

c© The Eurographics Association 2011.

Q. Meyer & G. Sußner & G. Greiner & M. Stamminger / Adaptive Level-of-Precision for GPU-Rendering

e.g., 24 in our case. Therefore, we can hard-code a binary
search in a few instructions without branches. Note that bin
b goes from VertexId[b] to VertexId[b + 1]− 1, and if
VertexId[b] = VertexId[b+1], the bin is empty.

Similar to adaptive precision buffers, we are able to adjust
the per-buffer bit level: We temporarily unpack all the ver-
tices and add or remove entire bit planes. However, we need
to take care that we keep the minimum bit level for each bin.
Finally, we adjust VertexId and BitId and tightly pack the
vertices again, as shown in Figure 10.

6. Data-Parallel Implementation

GPU vertex buffers stored in (binned) adaptive precision
buffers have several advantages: They contain only the pre-
cision that is currently needed, saving precious GPU mem-
ory. When a bit is added, only the associated bit plane has to
be supplied, which reduces the amount of data transferred to
the GPU. Further, removing a bit does not even require any
CPU-GPU data transfers at all. First, we explain the main
operations for (binned) adaptive precision buffers. Then we
describe how easily they are integrated into shader programs.

6.1. Data-Parallel Precision Adaption

To adapt the precision, we unpack the adaptive precision
buffer into a temporary buffer. For each element we use one
thread, gather multiple system words from the adaptive pre-
cision buffer, and combine them to one unpacked element.
Bits not specified by the current bit level are set to zero (Fig-
ure 11a). Similarly, we use one thread per system word to
tightly pack the elements of the temporary buffer again (Fig-
ure 11b). If required, the remove-bit operation zeros out ad-

(a) Per-Buffer Bit Level 2 (b) Per-Buffer Bit Level 1

(c) Per-Buffer Bit Level 3

P

0 0 3 4
181200

0 0 0 4
24000

Add Bits

Remove
Bits

4 bits

1 bit
2 bits
3 bits

Needs at least

P

P

v0 v1 v2 v3 v4 v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

0 1 3 4
0 2 10 16

VertexIdVertexId

BitId

VertexId

BitId

BitId

Figure 10: 2D example of precision adaption for a binned
adaptive precision buffer. (a) Every vertex of the binned
adaptive precision buffer P has at least 2 bits. (b) When
lowering the per-buffer bit level only red bits may be re-
moved. (c) When increasing the per-buffer bit level from 2
to 3 bits red and orange vertices receive new bits. Note how
VertexId and BitId adapt with changing bit levels.

U

P

Thread
0

Thread Thread
1 2

U

P

Thread Thread Thread Thread
0 1 2 3

(a) (b)

Figure 11: Unpack and unpack operation. The adaptive pre-
cision buffer P has bit level 3; the system word size is 4. (a)
By gathering from P, the ith thread unpacks one element to
U[i]. (b) Elements from the unpacked buffer U are gathered
by the ith thread and written to P[i].

ditional bits before packing. If we wish to add a bit, we up-
load the new bit plane into a separate GPU buffer, and each
thread merges its new bit with its unpacked element.

The operations for binned adaptive precision buffers op-
erate in the same way. The most noteworthy differences are
that we need to provide the look-up tables VertexId and
BitId for packing and unpacking, and take care of the per-
vertex minimum bit level in each bin.

6.2. Graphics Pipeline Integration

Adaptive precision buffers containing vertex positions can
be integrated into the programmable stages of the GPU
pipeline efficiently, e.g., in the vertex shader: Attribute and
index buffers are bound as usual. The adaptive precision
buffer with vertex positions is bound as texture. In each
vertex shader thread, we unpack the x, y, and z compo-
nents from the adaptive precision buffer and convert them
to floating-point numbers. Afterwards, the vertex shader pro-
ceeds as usual. For binned adaptive precision buffers we pro-
vide VertexId and BitId as uniform variables.

7. Results and Discussion

To evaluate our AP (Section 4) and CAP (Section 5) algo-
rithms, we use two indexed triangle sets: an industry model
of a car (compare Figure 2) and the triangulated model
of Michelangelo’s David from the Digital Michelangelo
Project [LPC∗00]. Each vertex comes with one additional
shading normal. The car consists of 7.3M vertices scattered
across 1981 sub-models, whose sizes range from 4 to 330k
vertices. The original David data set is assembled from 150
sub-models and consists of nearly 1 billion polygons. We
decimate them using vertex quantization [GH97] to fit into
one GiB including per-vertex normals. After decimation, the
model has 20M vertices. All experiments are carried out on
an Nvidia GeForce GTX 480 with 1.5GiB video memory at
a resolution of 1280×720 with 16×MSAA using OpenGL
4.1. We reserve temporary memory required for bit level
adaption to fit the largest sub-model. Bit level adaption is
implemented using vertex shaders and transform feedback.
We set the error-tolerance to half a pixel. For CAP we em-

c© The Eurographics Association 2011.

Q. Meyer & G. Sußner & G. Greiner & M. Stamminger / Adaptive Level-of-Precision for GPU-Rendering

Table 1: Frame times in milliseconds and relative memory
consumption for our test scenes at different average bit lev-
els. The scenes are position relative to the camera such that
bit levels demanded by our screen-space criterion go from
6 to 11 bits (column BL). Columns AP and CAP refer to
the algorithms of Section 4 and 5, respectively. Percentage
values in parenthesis denote the memory usage relative to
standard vertex buffers containing three floating-point val-
ues per vertex. For comparison, timings in columns UC are
measured with uncompressed floating-point vertex buffers.

Car David

BL AP CAP UC AP CAP UC
6 10.8 (19%) 14.9 (29%) 18.5 24.2 (19%) 28.8 (24%) 75.9
7 11.0 (22%) 15.6 (30%) 18.9 24.2 (22%) 28.4 (26%) 75.3
8 11.7 (25%) 16.7 (32%) 19.1 24.2 (25%) 29.8 (28%) 70.1
9 13.9 (28%) 19.3 (34%) 20.9 24.7 (28%) 41.2 (32%) 59.2
10 17.2 (31%) 21.5 (36%) 22.0 32.0 (31%) 40.8 (34%) 40.3
11 18.0 (34%) 20.7 (38%) 19.5 31.6 (34%) 32.7 (38%) 31.7

pirically choose k f to avoid shading artifacts and turn off our
depth-error constraint.

7.1. Rendering Performance and Memory Usage

We list rendering performance and memory usage at various
bit levels in Table 1. Note that timings for bit-level changes
are discussed separately in the next section. As the bit level
depends on the distance of the model to the camera, we vary
it such that the average bit level of all sub-models ranges be-
tween 6 and 11 bits. We compare the time per frame between
AP, CAP, and uncompressed vertex buffers with single pre-
cision floating-point elements (columns UC). Note that the
frame-times in columns UC of the David model are higher
the further the object is away from the camera. This is be-
cause more and more triangles compete for the same pixels,
which stresses the GPU’s z-buffer. For models filling the en-
tire screen, an average of 10 bits in precision is required. This
reduces memory consumption for vertices to one third, while
still maintaining high rendering performance. Note that due
to the reduced bandwidth requirements AP is always faster
than regular floating-point vertex buffers. As depicted in Fig-
ure 2, shading artifacts are visible for AP, but can be avoided
using CAP. Even though memory access is more complex
for CAP frame times are generally faster than standard ver-
tex buffers, while still saving more than 60% memory.

7.2. Changing Bit Levels

In Figure 12, we separate the timings for the car model into
the time spent for rendering (blue curves) and for adapting
bit levels (red curves). The latter include the time for pack-
ing, unpacking, resizing buffer objects, and uploading addi-
tional bits. We test both AP (left column) and CAP (right
column) using two typical camera motions for object visu-
alization: For a rotation of the car around its vertical axis
(top row) we observe an average per-buffer bit level of 9.4
to 9.8 per frame. Further, in a dolly motion, we move the
car towards the camera and then back again (bottom row).

Here, the average per buffer bit level varies from 6.0 to 10.9.
Generally, AP exhibits higher performance than CAP. This
is due to the fact that more data is transferred, and both pack-
and unpack operations are more sophisticated.

During the rotational motion only a few vertex buffers
require bit level adaption, making the impact of bit level
changes negligible. The dolly motion also reveals that
changing bit levels is a rare event, and it does not affect
the overall performance much. However, peaks appear, when
many small buffers change their levels during one frame,
causing substantial setup overhead. For the car model these
rare peaks make up about 50% of the total frame time. When
applying the same dolly motion to the David model, which
possesses fewer vertex buffers, bit level adaption consumed
at most 32% of the frame time. Whenever bits are added, the
time spent for uploading them only accounts for about one
tenth of the entire add-bit operation.

7.3. Quality

To evaluate image quality, we render the back lid of the car.
It has strong creases which are particularly sensitive to shad-
ing errors. We subtract the images generated with AP (a) and
CAP (b) from the reference image generated with floating-
point vertex buffers, and display the intensity differences as
heat map in Figure 13. For AP we observe intensity errors
along creases. By constraining the bit level using the prepro-
cess of Section 5.1 and CAP, we are able to reduce those
significantly, while still keeping memory requirements low.

The car model exhibited perceivable popping artifacts at
bit level changes when using AP. These artifacts disappeared
when using CAP and our attribute error analysis from Sec-
tion 5.1. In contrast to the car, David was less sensitive to
popping artifacts when using AP only, and no shading prob-
lems were encountered, either. Given that AP requires less
memory and renders faster than CAP, it is preferable for

AP dolly motion

0 5 10 15 20
Animation time [s]

AP rotational motion

Animation time [s]

0 5 10 15 20

CAP dolly motion

Animation time [s]

CAP rotational motion

0 2 4 6 8 10 0 2 4 6 8 10
Animation time [s]

Ti
m

e
[m

s]

0

5

10

15

20

25

0

5

10

15

20

25

Ti
m

e
[m

s]

Figure 12: Time for changing bit levels (red curve) and ren-
dering (blue curve). The top row shows the result for a rota-
tional motion, the bottom row for a dolly motion.

c© The Eurographics Association 2011.

Q. Meyer & G. Sußner & G. Greiner & M. Stamminger / Adaptive Level-of-Precision for GPU-Rendering

(a) (b)

Error

0%

≥ 6.25%

Figure 13: Heat-map coded difference images of renderings
generated with our algorithms and the ground truth using
floating-point vertices. The error is measured with respect to
the maximum intensity value of each pixel. (a) AP: PSNR
29dB, Mem. 28% (b) CAP: PSNR 39dB, Mem. 38%.

similar types of models, or when shading, texture, or depth
errors are tolerable.

8. Conclusion and Future Work

We presented a level-of-precision approach for the compres-
sion of vertex position data in GPU memory. We introduced
Adaptive Precision (AP), handling coverage error, and Con-
strained Adaptive Precision (CAP), reducing shading, tex-
ture, and depth error. Both representations generally render
faster than standard floating-point vertex buffers. Our meth-
ods allow for refining and coarsening the level of precision
by adding or removing bit planes interactively. For our test
scenes, we typically save between 62 and 81% of the vertex
data at little or no loss in rendering fidelity.

We have tested our level-of-precision approach on ver-
tex positions only. Vertex attributes must be considered sep-
arately: For instance, normal vectors should not be stored
with varying precision, because this would result in chang-
ing color values. Static compression methods are preferable
[MSS∗10]. For texture coordinates a compression scheme
similar to the one for vertices might be reasonable, but we
have not examined this yet.

Our approach can be applied on top of classical LOD-
approaches. It works directly for discrete LOD, but a con-
tinuous adaption of the precision level only makes sense if
few discrete LOD are used. Our method can also be ap-
plied in combination with PMs. Using half-edge collapses
every vertex split only requires uploading a single new ver-
tex, which makes a simple integration of LOP possible. CAP
requires that newly integrated vertices are inserted at the cor-
rect positions, which means to rearrange the adaptive preci-
sion buffers. Moreover, adaptive LOP is not limited to polyg-
onal meshes: terrain, point-based, and parametric surfaces
rendering are applications which we want to investigate.

References
[AG05] ALLIEZ P., GOTSMAN C.: Recent advances in compres-

sion of 3D meshes. In Advances in Multiresolution for Geometric
Modelling. Springer, 2005, pp. 3–26.

[Cho97] CHOW M. M.: Optimized geometry compression for
real-time rendering. In Proc. of VIS’97 (1997), pp. 346–354.

[Dee95] DEERING M. F.: Geometry compression. In Proc. of
SIGGRAPH’95 (Aug. 1995), pp. 13–20.

[DMG10a] DERZAPF E., MENZEL N., GUTHE M.: Parallel
view-dependent out-of-core progressive meshes. In Proc. of
VMV’10 (2010), pp. 25–32.

[DMG10b] DERZAPF E., MENZEL N., GUTHE M.: Parallel
view-dependent refinement of compact progressive meshes. In
Proc. of EGPGV’10 (2010), pp. 53–62.

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the GPU. In Proc. of I3D’07 (2007), pp. 161–166.

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification
using quadric error metrics. In Proc. of SIGGRAPH’97 (1997),
pp. 209–216.

[Hop96] HOPPE H.: Progressive meshes. In Proc. of SIG-
GRAPH’96 (1996), pp. 99–108.

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. In Proc. of SIGGRAPH’97 (1997), pp. 189–198.

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In Proc. of I3D’09
(2009), pp. 169–176.

[HV01] HAO X., VARSHNEY A.: Variable-precision rendering.
In Proc. of I3D’01 (2001), pp. 149–158.

[ILS05] ISENBURG M., LINDSTROM P., SNOEYINK J.: Lossless
compression of predicted floating-point geometry. Computer-
Aided Design 37, 8 (2005), 869–877.

[KSS98] KLEIN R., SCHILLING A., STRASSER W.: Illumina-
tion dependent refinement of multiresolution meshes. In Proc. of
CGI’98 (1998), pp. 680–687.

[LC10] LINDSTROM P., COHEN J. D.: On-the-fly decompres-
sion and rendering of multiresolution terrain. In Proc. of I3D’10
(2010), pp. 65–73.

[Lin00] LINDSTROM P.: Out-of-core simplification of large
polygonal models. In Proc. of SIGGRAPH’00 (2000), pp. 259–
262.

[Lin03] LINDSTROM P.: Out-of-core construction and visual-
ization of multiresolution surfaces. In Proc. of I3D’03 (2003),
pp. 93–102.

[LK98] LI J., KUO C.-C.: Progressive coding of 3D graphic
models. Proc. of the IEEE 86, 6 (1998), 1052 –1063.

[LPC∗00] LEVOY M., PULLI K., CURLESS B., RUSINKIEWICZ
S., KOLLER D., PEREIRA L., GINZTON M., ANDERSON S.,
DAVIS J., GINSBERG J., SHADE J., FULK D.: The Digital
Michelangelo Project: 3D scanning of large statues. In Proc. of
SIGGRAPH ’00 (2000), pp. 131–144.

[MSS∗10] MEYER Q., SÜSSMUTH J., SUSSNER G., STAM-
MINGER M., GREINER G.: On floating-point normal vectors.
Computer Graphics Forum 29, 4 (2010), 1405–1409.

[PBCK05] PURNOMO B., BILODEAU J., COHEN J. D., KUMAR
S.: Hardware-compatible vertex compression using quantiza-
tion and simplification. In Proc. of Graphics Hardware’05 (July
2005), pp. 53–62.

[RB93] ROSSIGNAC J., BORREL P.: Multi-resolution 3D approx-
imations for rendering complex scenes. In Geometric Modeling
in Computer Graphics. Spinger, 1993, pp. 455–465.

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6 (2008), 1539–1556.

[SM05] SANDER P. V., MITCHELL J. L.: Progressive buffers:
View-dependent geometry and texture for LOD rendering. In
Proc. of SGP’05 (July 2005), pp. 129–138.

c© The Eurographics Association 2011.

