
Eurographics Symposium on Rendering 2010
Jason Lawrence and Marc Stamminger
(Guest Editors)

Volume 29 (2010), Number 4

On Floating-Point Normal Vectors

Quirin Meyer1, Jochen Süßmuth1, Gerd Sußner2, Marc Stamminger1 and Günther Greiner1

1Computer Graphics Group Erlangen, 2Realtime Technology AG

Abstract
In this paper we analyze normal vector representations. We derive the error of the most widely used representa-
tion, namely 3D floating-point normal vectors. Based on this analysis, we show that, in theory, the discretization
error inherent to single precision floating-point normals can be achieved by 250.2 uniformly distributed normals,
addressable by 51 bits. We review common sphere parameterizations and show that octahedron normal vectors
perform best: they are fast and stable to compute, have a controllable error, and require only 1 bit more than the
theoretical optimal discretization with the same error.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology and
Techniques—Graphics data structures and data types;

The definitive version is available at http://diglib.
eg.org and http://www.blackwell-synergy.
com.

1. Introduction

In Computer Graphics, 3D normal vectors are omnipresent;
in particular they are used for shading and lighting. However,
storing a unit normal as three floating-point numbers ex-
hibits a high redundancy for two reasons. First, all unit nor-
mals form the unit sphere, which is a 2-manifold, and thus
two parameters theoretically suffice for uniquely identify-
ing each unit normal. Second, the dynamic range of floating-
point numbers results in a non-uniform distribution of nor-
mals across the sphere.

Our work is motivated by high-quality rendering of au-
tomotive CAD data. In this setting, models easily contain
millions of vertices with associated normals. The highly tes-
sellated models are very prone to artifacts due to normal dis-
cretization (Fig. 3). It is therefore desirable to store normals
in a more compact form while causing as little precision loss
as possible.

A common approach is to distribute N normals across the
sphere as uniformly as possible using an optimization pro-
cess, and to store the resulting normals in a look-up table
(LUT). A normal is represented by the index of the closest

normal in the LUT, which has to be searched. This is only
feasible for a rather small number of normals, e.g. N = 216,
and even with simple Blinn-Phong lighting, strong visual ar-
tifacts may be observed (Fig. 3c).

We address the problem differently. Ultimately, a normal
needs to be transformed into a component-wise representa-
tion. Therefore, we first examine the angular precision of
this representation. Based on this analysis, we suggest to use
octahedron-normal vectors (ONVs), which have a control-
lable error, thus possibly being as precise as the component-
wise floating-point representation. ONVs are fast and simple
to compute and the component-wise representation can be
reconstituted stably. In brief, our main results are as follows:

• A uniform sampling of a sphere with the accuracy of sin-
gle precision floating-point normals requires 51 bits.

• We analyze various common sphere discretizations, and
• show that ONVs are the best choice. They require only

one bit more than the theoretical optimum discretization
and can be computed very efficiently.

2. Previous Work

Although normals play a central role in Computer Graphics,
it has not yet been theoretically assessed how many normals
are required for producing artifact-free renderings. Deer-
ing [Dee95] deduces from empirical tests that 217 normals

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

http://diglib.eg.org
http://diglib.eg.org
http://www.blackwell-synergy.com
http://www.blackwell-synergy.com

Q. Meyer & J. Süßmuth & G. Sußner & M. Stamminger & G. Greiner / On Floating-Point Normal Vectors

are sufficient for rendering and proposes to encode normal
vectors by dividing the sphere into 48 spherical triangles. A
normal is then represented using 18 bits, where 6 bits are
used to address the spherical triangle containing the normal
and 2×6 bits to encode the spherical coordinates within one
such triangle. Oliveira and Buxton [OB06] compute a set of
representative normals by recursively subdividing a Platonic
solid. Following Deerings argumentation, they store the gen-
erated normals in a 16-bit LUT. Griffith et al. [GKP07] gen-
eralize the aforementioned method for arbitrary convex base
polyhedrons and suggest a method based on a barycentric
parameterization of the base polyhedrons’ faces. Górski and
coworkers [GHB∗05] propose to unfold a rhombic dodeca-
hedron into the plane using the HEALPix projection for dis-
tributing 12N2 points as uniformly as possible on a sphere,
such that the points lie on 4N−1 circles of latitude.

3. Analysis of Floating-Point Normal Vectors

In Computer Graphics, the main application for normals is
lighting. Lambertian reflectance is contained in almost any
lighting model. Using Lambertian reflectance, the error ∆C
of the computed pixel intensity when using a quantized nor-
mal~q instead of the exact normal~n is

∆C = |〈~n,~l〉 · cd−〈~q,~l〉 · cd |.

As the value of the diffuse color cd is at most 1 and ‖~l‖= 1,
we bound the error using the Cauchy-Schwarz inequality to

∆C ≤ ‖~n−~q‖.

If the display color depth is d, we require ∆C < 2−d so that
the intensity error is negligible. Using ∆C as the radius of
a disk, we can estimate how many such disks, assuming a
perfect packing, can be distributed over the unit sphere, i.e.:

N =
4π

2−2dπ
= 22(d+1). (1)

Thus, for d = 8 bits per color channel, N = 218 equally
spaced normals are sufficient for Lambertian reflectance.
However, when using lighting models with higher variation,
artifacts arise as shown in Fig. 3. As a remedy, one could
increase the number of normals but then, by altering BRDF
parameters, we can easily construct an example that shows
quantization errors, again.

Thus, we can only answer the question of how many nor-
mals are required, when considering the specific problem
for which they are used. If such estimations cannot be de-
rived, one ends up storing the components explicitly as three
floating-point numbers. Since this is also the format all other
representations of normal vectors have to be converted to at
some point, the component representation can be considered
the gold standard. Any other representation — in order to be
lossless — should be as accurate.

In the following, we derive the angular accuracy of the

component-wise representation of normals using floating-
point numbers. A normalized IEEE-754 floating-point num-
ber [IEE08] consists of a sign bit s, a signed inte-
ger e for the exponent, and a bit string of length m
with elements ai for the mantissa. It maps to the real
value (−1)s · 2e ·

(
1+∑

m−1
i=0 2−i−1 ·ai

)
. This representa-

tion results in varying sampling densities, i.e. in the in-
terval [2i,2i+1) the sampling rate is twice as high as in
the interval [2i+1,2i+2). As the components of a normal
are not limited to a single interval, floating-point nor-
mal vectors (FPNVs) are highly non-uniformly distributed.
However, the higher reso-
lution contained in some
areas is lost when nor-
mals are transformed into
areas of lower resolution:
In the inset figure, the
solid red and green vec-
tors are located in a region
of high floating-point res-
olution. By rotation with
the same angle they get
mapped onto the dashed vectors into a region with lower
precision, coarsening the angular precision. This is due to
the finite storage of floating-point numbers and not due to
the finite precision of floating-point operations. As the extra
resolution is destroyed by an operation as simple as a cam-
era transformation, even if it were computed at infinite pre-
cision, it is not exploitable. Thus, the error measurement for
the angular precision of FPNVs is the largest angular dis-
tance between a real-valued direction vector and its nearest
floating-point vector in the lattice of floating-point numbers.

Normal vectors are computed from direction vectors by
normalizing them. As soon as the direction vector is com-
puted, discretization errors occur. Thus, we analyze the an-
gular error of floating-point direction vectors. When con-
verting a real-valued vector into a floating-point vector, it
is rounded to the closest vertex of the containing cell of
the 3D floating-point lattice. For floating-point vectors, the
maximum error caused by quantization is the distance from
the center of the cell to one of its vertices. However, for
floating-point direction vectors, we are interested in the an-
gular quantization error

∆S = arccos
〈~v,~c〉
‖~v‖‖~c‖ , (2)

where~c is the center and~v is a vertex of the cell. Let a block
be the set of cells which have the same resolution. We will
show that the angular quantization error has its maximum in
a “lower-left cell” of a diagonal block and~v is one of the ver-
tices [2i+ε,2i,2i]T , [2i,2i+ε,2i]T , or [2i,2i,2i+ε]T , where
ε is the size of the cell. We consider the 2D case and without
loss of generality we can assume that the cell is located in a
block above the diagonal. We move this cell to a “lower-left
cell” of a diagonal block in two steps (Fig. 1):

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Q. Meyer & J. Süßmuth & G. Sußner & M. Stamminger & G. Greiner / On Floating-Point Normal Vectors

Figure 1: The discretization error of a point in the center of
a cell increases when moving the cell towards the diagonal.

1) We translate the cell within the block of constant resolu-
tion vertically to the lower bound of the block.

2) Then we move it horizontally to the right, until we reach
the diagonal, hereby scaling the width linearly from the
initial width to the width of the final cell.

Both motions increase the angle between the cell center~c(t)
and a cell vertex~v(t). This can be seen by analyzing the ra-

tional function ∆S(t) =
〈~v(t),~c(t)〉2

‖~v(t)‖2‖~c(t)‖2 . In fact, a detailed anal-
ysis reveals that this function has a negative derivative. Thus,
it is decreasing, and since

√
· is increasing and arccos is de-

creasing we conclude that the angle between ~c(t) and ~v(t),
which is given by arccos

√
∆S(t), is increasing. The argu-

mentation directly carries over to 3D.

This observation shows that for the standard floating-point
representation the maximum discretization error ∆

max
S for the

angle is given by (2) with ~c = (1/2+ ε/2,1/2+ ε/2,1/2+ ε/2)
and~v = (1/2+ ε,1/2,1/2):

∆
max
S = arccos

√
1− 8ε2

9+12ε+12ε2 =
2
3

√
2ε+O(ε3).

Thus, for FPNVs with m-bit mantissae we have

∆
max
S =

√
2

3
2−m +O(2−3m). (3)

Using this formula we can give a lower bound for the min-
imum number of normals that are necessary to sample the
unit sphere with the same resolution as the standard FPNV
representation. By dividing the area of the unit sphere by the
area of a disk with radius ∆

max
S , we obtain 4π

(∆max
S)2π

= 9
2 ε

2 =

18 ·22m. Hence, one needs⌈
log2(18 ·22m)

⌉
= 2m+5 (4)

bits to encode normals having the same accuracy as three
floating-point numbers with mantissa length of m. Conse-
quently, d50.2e= 51 bits are needed for a normal discretiza-
tion to be as accurate as single precision FPNVs.

4. Common Sphere Parameterizations

When trying to satisfy the error of single precision FPNVs
with LUT methods, a table size of about 24 Petabytes is re-
quired. Subdivision methods would alleviate this problem,
however, at high computational costs, as more than 20 sub-
division steps are needed to achieve the same precision.

Another possible approach is to use sphere parameteriza-
tions: with a parameterization we compute the three com-
ponents of a normal from two parameters. For example, a
3D point on a unit sphere may be retrieved from two angles
using spherical coordinates (SC). Similar to the considera-
tions of Sec. 3, it can be shown that the maximum error of
this parameterization is

∆
max
SC = arccos

(
cos2

(
π · ε

2

))
=

√
2

2
πε+O(ε3). (5)

However, spherical coordinates require trigonometric func-
tions which are expensive to compute. Another straight-
forward approach, typically used for tangent space normal
maps [ATI05], is parallel projection (PP): Given x and y,
the z component of a point [x,y,z]T on the unit sphere can
be computed by |z| =

√
1− x2− y2. An additional sign bit

has to be stored to address both hemispheres. One dis-
advantage is, that not all values of [x,y] ∈ [−1,1]2 map
to a point on the sphere. More importantly, computing z
becomes very instable for points close to the equator, as
limx2+y2→1 ‖∇s(x,y)‖ =∞, where the maximum error is:

∆
max
PP = arccos

(
1−
√

2
2

ε

)
=

4
√

2
√

ε+O(ε2). (6)

To alleviate this effect, the sphere can be divided into sex-
tants by reconstructing the largest component of [x,y,z] from
the two smaller ones. We refer to this approach as sextant
parallel projection (SPP). This comes at additional branch-
ing cost during reconstruction and three extra bits for identi-
fying the sextant. This results in a maximum error of

∆
max
SPP = arccos

(
2
3
−
√

3
3

ε+
1
6

√
4+
√

192ε−6ε2
)

=

√
2

2

√
3ε+O(ε2). (7)

Another option is to use a cube map (CM), i.e. projecting
the normal onto the cube [−1,1]3 and omitting the coordi-
nate, whose absolute value equals 1. The maximum error for
this parameterization is:

∆
max
CM = arccos

(
2√

2ε2 +4

)
=

√
2

2
ε+O(ε3). (8)

Like the SPP parameterization, the disadvantage is that we
need three bits to encode six sextants, hence two states re-
main unused.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Q. Meyer & J. Süßmuth & G. Sußner & M. Stamminger & G. Greiner / On Floating-Point Normal Vectors

(a) (b) (c) (d)

Figure 2: Unwrapping an octahedron. The apex of the green
pyramid (a) is projected to the bottom plane of the pyramid
(b). The faces of the red pyramid are folded up onto the same
plane (c), yielding a 2D unwrapping of the octahedron (d).

5. Octahedron Normal Vectors

The aforementioned parameterizations are either expensive
to compute, numerically instable, or do not fully utilize
the given bit budget. We propose to use octahedron-normal
vectors (ONVs) instead [PH03,ED08]. They can be obtained
by projecting an FPNV onto the octahedron by normalizing
it using the 1-norm. Then the octahedron is unwrapped to
a square according to Fig. 2 and the parameters [u,v] in the
plane are stored in fixed-point format. Given the parameters
[u,v] of an encoded normal, a normal~n′ = [x,y,z]T on the oc-
tahedron can be reconstituted using the following equations:

z = 1−|u|− |v|

[x,y]T =

{
[u,v]T if z≥ 0
[σ(v)− v,σ(u)−u]T if z < 0

(9)

where σ(t) = 1 for t ≥ 0 and σ(t) = −1 otherwise. The
original normal ~n is obtained by normalizing ~n′ using the
2-norm. This computation is fast, as it involves only a few
basic operations and it is numerically stable, with only fixed-
point computations being used. Also note that in contrast to
parallel-projection parameterizations, every element of the
domain [−1,1]2 maps to a valid normal.

The maximum angular error ∆
max
ONVdomain

for ONVs can
be derived as the angle between [1/3,1/3,1/3]T and [1/3 +
ε/2,1/3+ ε/2,1/3− ε]T , where ε is the sample spacing.

∆
max
ONVdomain = arccos

√
2

2+9ε2 =

√
2

2
3ε+O(ε3) (10)

We can reduce this error even further: the
Voronoi cells of the points in the parameter domain,
when projected onto the
sphere (inset figure left), do
not correspond to the Voronoi
cells of the ONVs projected
onto the sphere (inset figure
right). Hence, rounding in the
parameter domain does not
generally guarantee that a normal is quantized to the closest
ONVs with respect to the angular distance. Thus, instead of
rounding in the parameter domain, we round in the range.

First we compute the parameter domain cell in which the
original normal maps to by inverting (9). Then we choose
from its four corner vertices that one, whose normal has the
smallest angular distance. One can show that this reduces
the error to 2/3 ·∆max

ONVdomain
, i.e. the theoretical error ∆

max
ONVrange

for ONVs is

∆
max
ONVrange =

√
2ε+O(ε3). (11)

From Eqs. (3) and (11) follows that we need 52 bits for
ONVs to be as precise FPNVs at 96 bits. Detailed derivations
of the error bounds in Sec. 3 – 5 are presented in [MSS∗10].

6. Results and Discussion

In Sec. 4 we derived theoretical bounds for the maximum
error of various common sphere parameterizations depend-
ing on the domain’s sample spacing ε. The maximum error
for naïve parallel projection is O(

√
ε) and thus PP is much

worse than other parameterizations with an error of O(ε).
Yet, for normal maps, this parameterization makes sense,
since in a normal map, normals predominantly point into z
direction. The formulae (5, 7, 8, 10, 11) reveal that the er-
rors (up to third order) for SC, SPP, CM, and both ONVs
are all linear in ε, with CM having the smallest factor. This
suggests that CM are the best choice. However, CM have to
index six faces by a three bit mask. Thus, given a bit budget
of b bits, only b− 3 bits may be used effectively to sample
the domain, which results in a larger sample distance ε.

In Tab. 1, we give the sampling distances ε(b) and error
bounds ∆

max(b) for a given bit budget b for FPNVs and the
aforementioned parameterizations. Note that CM perform
better than ONVs when quantized in the domain. However,
when quantizing in the range, ONVs outperform the oth-
ers. Quantizing in the range only reduces the average error
of CM, the maximum error ∆

max
CM remains unchanged. Thus,

from a theoretical point of view, ONVs are the best choice.

In the third row of Tab. 1 we compare the maximum quan-
tization error for a fixed bit budget of 48 bits. For compari-
son, Griffith’s "Spherical Covering 2" [GKP07] uses a com-
plicated subdivision method requiring 21 subdivisions or a
Petabyte large LUT to obtain an error of 1.38 · 10−7 when
using 48 bits. Note that ONVs come close to this number at
only a fraction of that cost. Moreover, the error of FPNVs
using 96 bits (5.62 · 10−8) is only a factor of 3 better than
ONVrange (1.69 ·10−7) using only half the storage.

Fig. 3 shows a qualitative comparison of the tested pa-
rameterizations at a bit budget of 16 bit. We use a finely tes-
sellated model of a car body. The tessellation is depicted in
Figure 3b. Figures 3c and 3h show that the visual quality of
ONVs is indistinguishable from the one achieved by Griffith.

Looking at the number of bits required to store normals
with a given maximum angular error, ONVs are very close
to the theoretical optimum. Comparing the error ∆OPT of

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Q. Meyer & J. Süßmuth & G. Sußner & M. Stamminger & G. Greiner / On Floating-Point Normal Vectors

(a) Total (b) Ground truth (c) Griffith (d) PP (e) SPP (f) SC (g) CM (h) ONV

Figure 3: Effect of various sphere parameterizations on a finely tessellated model of car body using Blinn-Phong per-pixel
lighting. The entire model is shown in (a) and a close-in a up of the highlight in (b) using single precision FPNVs. The
remaining images use normals quantized to 16 bits, under different parameterizations.

Method FPNV PP SPP SC CM ONVdomain ONVrange

ε(b) 2 ·2−
b
3 2 ·2−

b−1
2

√
2 ·2−

b−3
2 1 ·2−

b−1
2 2 ·2−

b−3
2 2 ·2−

b
2 2 ·2−

b
2

∆
max(b)

√
32
3 ·2

b
6 ·2−

b
2 21+ b

4 ·2−
b
2 2

√
6 ·2−

b
2 2π ·2−

b
2 4 ·2−

b
2 3

√
2 ·2−

b
2 2

√
2 ·2−

b
2

∆
max(48) 4.60 ·10−4 4.88 ·10−4 2.92 ·10−7 3.74 ·10−7 2.38 ·10−7 2.53 ·10−7 1.69 ·10−7

Table 1: The maximum error for various parameterizations for a given bit budget b. The resulting maximum sample spacing ε in
the parameter domains and the maximum angular error ∆

max are shown in the first and second row, respectively. The maximum
error for 48 bits per normal is listed in third row.

a perfectly distributed sphere packing of N = 2bopt normals
with the error of ONVs

∆OPT = 21− bopt
2 = 2

√
2 ·2−

bONV
2 = ∆ONVrange

and solving for bONV reveals that we always need only one
bit more than the theoretical optimum.

ONVs are perfectly suited for per-vertex normal compres-
sion on graphics hardware, as they do not require compli-
cated branching or expensive arithmetic functions. On our
hardware, only 17 assembly instructions are required for de-
compression. In engineering applications, large, finely tes-
sellated models are very common and memory space may
run short. Yet, accurate normals are required for lighting and
reflectance computations. Using ONVs at 48 bit offers a sim-
ple approach to reduce the space required for normal vectors
by 50%, while still having random access on the normals at
very little costs and precision loss. Note that such settings
are memory bandwidth limited rather than compute-bound.
In our applications, running on current hardware, we can
even observe a speed-up of approximately 5%, due to the re-
duced memory transfers. Moreover, integration into existing
shader-programs is trivial, as only the access to the normals
has to be encapsulated by a function.

7. Conclusion and Future Work

In this paper we presented the angular error inherent to
FPNVs. Based on these observations, we analyzed the most
popular sphere parameterizations. ONVs turned out to be the
best choice from a practical and theoretical point of view:
they are simple to implement and require only a few instruc-
tions. Given a fixed bit budget, their error is at most twice

the error of an optimal (theoretical) bin packing of a sphere.
Others methods, e.g. LUT and subdivision methods, exhibit
even less redundancy, however, at very high costs for either
reconstituting or storing the normals. This effort could save
at most one bit per vertex normal over our ONVs. At 3 times
the error inherent to FPNVs, ONVs save 50% memory.

As our method is orthogonal to generic compression
methods, we plan to explore the combination of ONVs with
standard compression techniques. We will also investigate
the suitability and quality of ONVs for tangent-space nor-
mal maps, especially using texture compression [ATI05].

References
[ATI05] ATI: Radeon X800: 3Dc White Paper. Tech. rep., 2005.

3, 5
[Dee95] DEERING M. F.: Geometry Compression. In Proc. of

SIGGRAPH ’95 (1995), pp. 13–20. 1
[ED08] ENGELHARDT T., DACHSBACHER C.: Octahedron En-

vironment Maps. In Proc. of VMV ’08 (2008), pp. 383–388. 4
[GHB∗05] GÓRSKI K. M., HIVON E., BANDAY A. J., WAN-

DELT B. D., HANSEN F. K., REINECKE M., , BARTELMANN
M.: HEALPix: A Framework for High-Resolution Discretiza-
tion and Fast Analysis of Data Distributed on the Sphere. The
Astrophysical Journal 622, 2 (2005), 759–771. 2

[GKP07] GRIFFITH E. J., KOUTEK M., POST F. H.: Fast Normal
Vector Compression with Bounded Error. In Proc. of SGP ’07
(2007), pp. 263–272. 2, 4

[IEE08] IEEE: IEEE Standard for Floating-Point Arithmetic.
IEEE Std 754-2008 (2008), 1–58. 2

[MSS∗10] MEYER Q., SÜSSMUTH J., SUSSNER G., STAM-
MINGER M., GREINER G.: Quantization Errors of Popular
Normal-Vector Representations. Tech. rep., Inf. 9, Univ. of Er-
langen, 2010. In Preparation, Available at www9.cs.fau.de.
4

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

www9.cs.fau.de

Q. Meyer & J. Süßmuth & G. Sußner & M. Stamminger & G. Greiner / On Floating-Point Normal Vectors

[OB06] OLIVEIRA J. F., BUXTON B. F.: PNORMS: Platonic De-
rived Normals for Error Bound Compression. In Proc. of VRST
’06 (2006), pp. 324–333. 2

[PH03] PRAUN E., HOPPE H.: Spherical Parametrization and
Remeshing. In Proc. of SIGGRAPH ’03 (2003), pp. 340–349.
4

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

