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GPU Work Graphs

Welcome to our GPU Work Graphs Course here at SIGGRAPH 2025 in
Vancouver.
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Before we start, allow us to introduce ourselves. We are Bastian Kuth from
Coburg University, Max Oberberger from AMD, and | am Quirin Meyer, also
from Coburg University.
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We are teaching a course here today at SIGGRAPH on Work Graphs.

Coburg University and AMD have been jointly focusing on the practical
exploration of Work Graphs since January 2023 with funding from the state of
Bavaria.

In the last two and a half years, Work Graphs has been dominating our work
life, and we would like to tell you briefly what we and others have done so far
with this new technology.
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While we were conducting our research, Work Graphs occurred as preview
with sample code, Vulkan support was added, and AMD published multiple
Work Graphs samples.
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https://gpuopen.com/learn/gpu-work-graphs/gpu-work-graphs-intro/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloWorkGraphs
https://gpuopen.com/gpu-work-graphs-in-vulkan/
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work_graphs_learning_sample/
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At the Game Developer Conference (GDC) 2024, we presented our first demo
using Work Graphs. We published our research results at High Performance
Graphics (HPG) 2024.
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https://www.youtube.com/watch?v=QQP6-JF64DQ
https://gpuopen.com/events/amd-at-gdc-2024/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
https://gpuopen.com/download/publications/Real-Time_Procedural_Generation_with_GPU_Work_Graphs-GPUOpen_preprint.pdf
https://gpuopen.com/download/publications/Real-Time_Procedural_Generation_with_GPU_Work_Graphs-GPUOpen_preprint.pdf
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DX 12 Mesh Nodes & Blog Posts
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-
getting_started/

= Vulkan Mesh Nodes
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Our research makes use of Mesh Nodes, which were made available in the
third quarter of 2024. We also wrote several blog posts teaching about work
graphs and mesh nodes.

You can find a video of our demo, which highlights some of the benefits of
Work  Graphs  here:  https://gpuopen.com/learn/gdc-2024-workgraphs-
drawcalls/
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https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://gpuopen.com/learn/gpu-workgraphs-mesh-nodes-vulkan/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
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Our GDC demo and our HPG paper raised some excitement, so we got invited
to teach a Master Class at the Graphics Programming Conference in Breda,
Netherlands in 2024. This is where we released our Work Graph Playground
App for the first time. We are going to use this app in this course, too. In case
you brought your laptop, you can join us experimenting with our Work Graph
Playground App.
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https://gpuopen.com/gpc-2024/

Work Graph Playground App

1. Go to: https://wgpa.short.gy/
github.com/GPUOQOpen-LibrariesAndSDKs/WorkGraphPlayground

2. Download the Latest Release

3. Unzip WorkGraphsPlayground.zip

4. Open Folder wOr‘kGraphsPlaygroV

5. Run WorkGraphPlayground.exe

. Testing adapter "Microsoft Basic Render Driver": Failed
6. Optional: DownloadWarpAdapter.bat to create D3D12 device.
WARP adapter does not support D3D feature level 12.2
and work graphs.
See readme.md#running-on-gpus-without-work-graphs-

If you need Software Emulation

support for instructions on installing latest WARP
adapter or run DownloadWarpAdapter.bat if you are using
pre-built binaries.

No device with work graphs support was found.

CO ke AMDQ1
8 ofappiied sciencesondorts  together we advance_

To install the app as a binary, follow these steps. We encourage you to do this
right away. In ca. half an hour, you are invited to actively use it.

If your GPU does not support Work Graphs, use the WARP (i.e., software
emulation) adapter. Use the DownloadWarpAdapter.bat batch script to
download the corresponding DLL.

You can build it from source, too, by following the instruction in the GitHub
repository.
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Besides the app, we created a demo for GDC 2025, where we generated

vegetation directly on the GPU with Work Graphs.
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https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736
https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736
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Our demo is full of research findings that we were able to share at HPG 2025
just a couple of weeks ago.

You can watch a recording of Bastian’s talk at HPG here:
https://www.youtube.com/watch?v=SPWDLMc-9h4&t=26050s

The full paper is available here:
https://diglib.eg.org/bitstream/handle/10.2312/hpg20251168/hpg20251168.pdf
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In June, we celebrated two years of work graphs when including the preview
phase. The official announcement of Work Graphs dates back only less than
one and a half year. So, it is a rather new technology.

Our goal in this course is that we teach you how to use Work Graphs and that
you can use it for your own applications.
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Here is a brief overview of the topics that we will cover today.
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You have just seen some applications demonstrating the power of Work
Graphs. Before going into details, we want to first answer the main question:

Why even Work Graphs?

That comes with questions concerning alternative approaches and why you
should prefer Work Graphs over them. But before that, we provide a summary
of GPU concepts that are important for Work Graphs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Introduction & Foundations
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We believe that those concepts are important for Work Graphs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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| can best explain these concepts using a brief history of the GPU evolution.

The demand for greater flexibility has driven the evolution of GPU
programmability throughout the past decades. Early register combiners
allowed rudimentary fragment processing [Kilgard 1999], and later vertex
processing became programmable [Lindholm et al. 2001]. In 2002, the DirectX
9.0 Shader Model 2.0 is considered to be the first programmable hardware
vertex- and pixel-shader pipeline. Two years later, Shader Model 3.0 added
dynamic control flow [Akenine-Moller 2018]. Geometry shaders [Blythe 2006]
followed with programmable per-primitive processing. Hardware tessellation
[Andrews and Barker 2006] allowed for fast on-chip geometry amplification
[Niessner et al. 2016]. The introduction of compute-shaders [Peercy et al.,
Nvidia 2007] exposed a hardware-oriented programming model - the
beginning of GPGPU. It allowed the GPU to execute high-performance
graphics and non-graphics applications, as shown for example in the GPU
Gems 3 book [Nguyen 2007]. Also, modern GPU ray tracing [Haines and
Akenine-Moller 2019] on hardware originates back to compute-shader-based
ray-tracing implementations [Parker et al. 2010]. With indirect execution or
execute indirect, the sizes of draw-calls and dispatches are taken from GPU
memory, allowing for GPU-driven work creation. Amplification and mesh
shaders [Kubisch 2018] provide a single-level, non-recursive amplification
pipeline for rasterization workloads, following the programming model of
compute shaders.

Work Graphs [Microsoft 2024] increase GPU programmability by providing
multi-level, self-recursive amplification of both compute and rasterization
workloads.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.
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We find those milestones sufficient to explain the basic concepts of GPU

pipelines...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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and we start off with Shader Model 2 which introduced programmable
vertex and pixel shading.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Here is a simplified version of the pipeline. The blue and yellow boxes are the
different pipeline stages.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Given a triangle mesh with vertices, shown as circles. The black edges
connect the vertices to form triangles. The vertex coordinates are 4D
coordinates shown as column vectors.

They are input to the pipeline, shown on the right.

As output, you get pixel graphics, as shown in the pixel grid on the lower left of
the slide.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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The vertex coordinates are stored in an array called vertex buffer.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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And the vertex indices are stored in what is called an index buffer.
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Let’s recap what happens when we input a vertex- and an index buffer into the
pipeline.

First, each element of the index buffer is fed into the input assembler.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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The input assembler then gathers the elements from the vertex buffer and
makes them available at its outputs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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The input assembler can operate on each element independently. This
enables GPUs to have a high degree of parallelism.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Then the vertices are fed into the next stage: the vertex shader.
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Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(b@) { I Input Assembler
float4x4 m; * *
} -1 -1
0 0
struct VertexIn { 0 0
float4 p : POSITION; 1 1
¥
Vertex Shader
struct VertexOut {
float4 q : SV_POSITION;
¥
VertexOut VS_main(VertexIn i) {
VertexOut o; Rasterizer

0.q = mul(Const.m, i.p);
return o;

}

Output Merger
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UNIVERSITY
2 of applied sciences and arfs

AMDQO
together we advance_

In the vertex shader, you as a programmer can write shader code, as shown

on the left.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(bo) { | Input Assembler
float4x4 m; *
} =il 1
struct VertexIn { 0 0
float4 p : POSITION; 1 1
¥

Vertex Shader

struct VertexOut {
float4 q : SV_POSITION;
¥

VertexOut VS_main(VertexIn i) {
VertexOut o;
0.q = mul(Const.m, i.p);
return o;

}

Rasterizer

Output Merger
w SRSy AMDQ1
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You define a struct, describing the output of the input assembler. At the same
time, it serves as input to the vertex shader. For each vertex that the input
assembler outputs, the GPU launches one vertex shader thread.

Let’s do an example with the first vertex.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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buffer Const : register(be) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;
¥

struct VertexOut {
float4 q : SV_POSITION;
¥

Programmable Vertex & Pixel Shader Pipeline

VertexOut VS main(VertexIn i

VertexOut o;

0.q = mul(Const.m, i.p);

return o;

}

| Input Assembler
-1 -1
0 0
0 0
1 1
Vertex Shader
Rasterizer

Output Merger
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The vertex inside the yellow box serves as input to one vertex shader thread.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(b@) { I Input Assembler
float4x4 m; * *
} -1 -1
0 0
struct VertexIn { 0 0
float4 p : POSITION; 1 1
¥
Vertex Shader
struct VertexOut {
float4 q : SV_POSITION;
¥
VertexOut VS_main(VertexIn i) { 1
VertexOut o; 0 Rasterizer
0.q =|mul(Const.m, i.p) j=— 0
return o; 1
}
Output Merger
COBURG AMDD
- QO ... togetherwescvance.

With that input, the vertex shader thread carries out the operations a
programmer specified...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Programmable Vertex & Pixel Shader Pipeline

buffer Const :
float4x4 m;

register(bo) {

}

struct VertexIn {
float4 p : POSITION;

¥

struct VertexOut {
float4 q : SV_POSITION;
¥

VertexOut VS_main(VertexIn i) {
VertexOut o;

return o;

}

H

| Input Assembler
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Vertex Shader
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... and writes the output, that a programmer defined with the struct shown in

the blue box.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(b@) { I Input Assembler
float4x4 m; * *
} =il 1
struct VertexIn { 0 0
float4 p : POSITION; 1 1

¥
Vertex Shader
struct VertexOut {

float4 q : SV_POSITION; -
¥

VertexOut VS_main(VertexIn i) {
VertexOut o; Rasterizer
0.q = mul(Const.m, i.p);
return o;

}

Output Merger
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The result is then made available at the vertex shader output.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(be) { I Input Assembler
float4x4 m; *
}

struct VertexIn {
float4 p : POSITION;
¥

struct VertexOut {
float4 q : SV_POSITION;
¥

VertexOut VS_main(VertexIn i) {
VertexOut o;
0.q = mul(Const.m, i.p);
return o;

}

Rasterizer

Output Merger
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All other vertices undergo the same fate: They pass through the same vertex
shader code, however, using different inputs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Programmable Vertex & Pixel Shader Pipeline

VertexOut VS_main(VertexIn i) { l

Input Assembler
VertexOut o; * *
0.q = mul(Const.m, i.p); -1 -1
return o; I 0 ‘ 0 ‘

} 0 0
1 1
v
Single Instruction d
—0.5 —0.5]
0 0
0 -
T 1 |
Multiple Data Rasterizer

Output Merger
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This is a very important concept. The same piece of code is executed on
different data items.

In other words, a single instruction operates on multiple data. Hence the name
Single Instruction, Multiple Data...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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... or short SIMD.

SIMD is the underlying parallel computing model of GPUs and it is very
important for their performance. Since Work Graphs run on a GPU, they make

use of the SIMD model.

Side note: In the context of GPUs, the massively parallel underlying computing
model is sometimes also referred to as SIMT (Single Instruction, Multiple

Threads).

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Programmable Vertex & Pixel Shader Pipeline
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From an abstract perspective, the vertices attributes, as the D (data) in SIMD,
are Work Items...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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... that flow through a pipeline.

In a pipeline, one stage acts as a producer, and the subsequent stage as a
consumer. A stage can consume and produce items at the same time.

The items that flow through the pipeline are called work items.

From that point of view, the graphics pipeline is already providing a data-flow-

oriented model which is also used in Work Graphs, however, in a much more
sophisticated way.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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But going back to what you are already familiar with: Our vertex-pixel-shader
pipeline.

The vertex shader has just transformed the vertices.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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The rasterizer then gathers three-tuples of vertices and discretizes the

triangles into fragments.

This can be considered work amplification. Consider a triangle an input data
item. We amplify that input data item to a much larger number of output items,

i.e., our fragments.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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But the rasterizer can also reduce work entirely, for example by removing
triangles that do not produce fragments.
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}

Output Merger
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The pixel shader is again a program using the SIMD model. Each fragment is
its input work item ...
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float ¢ = v.q.y + 0.5;
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}

Output Merger
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... and gets executed by one thread on the GPU ...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

41



Programmable Vertex & Pixel Shader Pipeline

[ Input Assembler |

Vertex Shader

| Rasterizer |

float4 PS main(VertexOut v) : SV_TARGET { CEC B W W W W

float ¢ = v.q.y + 0.5;
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}
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... which computes its output color ...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

42



Programmable Vertex & Pixel Shader Pipeline

[ Input Assembler |

Vertex Shader

Rasterizer |

Pixel Shader

Output Merger J

(doYi AMDQ1
43 of applied sciences and ot tOgether we advance_

Each fragment shader thread then passes its output data item to the output
merger.
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The output merger then merges the fragments with the existing ones to form
the final image.
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This concludes our talk about the vertex- and pixel-shader pipeline from 2002.

We have seen that some concepts that we will use for Work Graphs already
existed back then.
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The pipeline has two programmable stages and several configurable fixed-

function stages.
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The vertex shader is SIMD on vertices; the fragment shader is SIMD on
fragments. In 2006, D3D10 introduced geometry shaders, another
programmable stage. That stage uses SIMD on triangles and other primitives.

The hardware designers observed that all programmable stages use the same
underlying SIMD principle.
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To provide a common abstraction, they created the unified shader model.

Each thread maps onto a shader core. Multiple shader cores are grouped into
a work group processor. For example, on the AMD RDNA™ 3 architecture, we
have 128 shader cores per work group processor.

The shader cores of a work group processor can communicate over a shared
memory, which has 128 KiB on AMD RDNA™ 3 GPUs.
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Several such work group processors are on a GPU. On The AMD Radeon™
RX 7800 XT, we have 30 work group processors.

The work group processors share a common Graphics Memory. Today, that is
several GiBs large.
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Output Merger |

Now with such an abstract model of the GPU, it was just obvious to define new
shader types. This gave rise to compute shaders.
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Compute shaders require a GPU abstraction.

That contain threads, which access a common group shared memory. Threads
are mapped onto shader cores and group shared memory maps to shared
memory.

Threads are clustered into thread groups. On GPU hardware, a thread group
is executed on a work group processor.
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In a compute shader program, the SV_GroupThreadID semantic provides a
3D index in a grid of up 1024 threads of a thread group.
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Output Merger |

To locate a thread group, the SV_GroupID semantic provides the programmer
with a 3D index into the grid of thread groups.
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uint3 gid : SV_GroupID) {
const uint t = gtid.x + gid.x * 128;
C[t].u = A[t].u + B[t].u;
C[t].v = A[t].v * B[t].v;
¥
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Compute shaders are programmed using shader programs that adhere to the
SIMD model.
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When knowing the thread-group size (in this example 128 threads),
SV_GroupThreadID and SV_GroupID can be used to uniquely identify a
thread. We use such a unique ID to index into memory (in this example a
StructuredBuffer) to perform our computations.
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So, we got our fourth concept “Compute Shaders.”
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But how do compute shaders interact with the graphics pipeline?
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// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

e Dispatch  =====p |/O
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In this example, a compute shader gets dispatched from the CPU. On the
GPU, the threads of the compute shader process a list of instances coming

from graphics memory.

As an example, we assume that the compute shader’s task is to cull instances
outside the view frustum. The compute shader writes only the visible instances

back to graphics memory.
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// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);
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Compute Shader Vertex Shader

// Process Geometry with Graphics Pipeline Geometry Shader
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Next, the graphics pipeline renders only the visible instances. It reads them
from graphics memory and generates a 2D image. That one is written back to
graphics memory.
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0] cpPU

GPU

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);

commandList->DrawIndexedInstanced(...); e
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

e Dispatch  =====p |/O
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Then, we dispatch another compute shader. This could, for example, do some
post-processing on the image. Therefore, we read all the pixels, transform
them, and write them back to graphics memory.
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But there are two problems. The first problem is: The barriers. They are
required to avoid read/write hazards between pipelines. A pipeline must finish
its entire computation before any other pipeline can even start. This is assured
by barriers.

This can leave many work group processors idle, especially when a pipeline
computation is about to finish.
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// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);
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The second problem is: The communication between pipelines happens over
graphics memory, which can become a limiting factor.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

62



Graphics Pipeline — 2009 Compute Shaders
0] cpPU GPU

GiB GPU Memory TiB
ca. 64=~ Bandwidth ¢ 175

| Input Assembler
Compute Shader Vertex Shader
Geometry Shader
Graphics [ Rasterizer |
Memory
Pixel Shader
| Output Merger

GiB
ca. 59%

Interconnect
Bandwidth

COBURG
(doYi AMDQ
63 of applied sciences and orts to@ether we advance_

Here are some numbers: In comparison to other memory buses we have in
our system, 1 TiB/s between the work groups processor of a GPU and
graphics memory seems huge.
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However, as we can see in this plot, over the last years, the growth in GPU
Compute Performance has outpaced the growth in GPU Memory Bandwidth.

Source: Image adapted from https://github.com/amirgholami/ai_and_memory_wall/blob/main/imgs/pngs/hw_scaling.png

From the paper: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. Al and Memory Wall. RiseLab Medium Blog Post, University of Califonia Berkeley,

2021, March 29.

Available on https://github.com/amirgholami/ai_and_memory_wall/blob/main/README.md

MIT License

Copyright (c) 2021 Amir Gholami

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
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So even with a bandwidth of 1 TiB/s to graphics memory...
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... inside the cores, we have the shared memory which is much faster. In fact,
it has a very low latency compared to graphics memory.

However, it is much smaller in memory capacity.
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So back in 2009, I/0 was, of course, already a problem. To save I/O, hardware

tessellation was introduced in 2009.
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It contains two more programmable stages, hull shader and domain shader,
and a fixed-function hardware tessellator.
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Hardware tessellation allows to amplify geometry from a couple of control
points to a larger number of triangles. But the rather rigid tessellation patterns
do not offer the desired degree of freedom on topology.
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This is why in 2018, mesh shading was added to the pipeline. Mesh shading is

important for Work Graphs, too.
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// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);
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So, what problem does mesh shading solve? Consider a compute shader that
creates or transforms geometry. However, the compute shader must write its

output to graphics memory.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

71



Graphics Pipeline — 2018 Mesh Shading
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// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);
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Then, the graphics pipeline can read from graphics memory. Therefore, we
have one memory write and one memory read, which we could save.
Remember, graphics memory access is rather expensive.
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commandList->SetPipelineState(...);
commandList->DispatchMesh(...);
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The idea of mesh shading is to directly feed the rasterizer from the compute
shader. This saves the extra graphics memory access.
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This gives us a third pipeline: the Mesh Shading Pipeline.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

74



Graphics Pipeline — 2018 Mesh Shading
GPU

[outputtopology("triangle")]]

[[numthreads (128, 1, 1)]]

void main(

uint3 gtid : SV_GroupThreadID,
&int3 gid : SV GroupID,

out vertices float3 smallVertexBuffer[256],
out indices uint3  smallIndexBuffer[256])

Meshlet

Mesh Shader

A
| Small Vertex Buffer |
Small Index Buffer

L

{ Rasterizer J

Pixel Shader

| Output Merger |

CD SRveRSTY AMDQ
of applied sciences and arfs together we advance_

Like a compute shader, you launch a grid of mesh shader thread groups. So,
in the code, we have our SV_GroupThreadID and SV_GroupID semantics.
Each mesh shader thread group can have up to 128 threads. We can output
triangles (or other primitives) to a small vertex and index buffer with up to 256
vertices and triangles each. A mesh shader output is like a small mesh.

Therefore, it is commonly called a meshlet.
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GPU

[outputtopology("triangle")]

[numthreads (128, 1, 1)]

void main(
uint3 gtid : SV_GroupThreadID,
Luint3 gid : SV _GroupID, ]
out vertices float3 smallVertexBuffer[256],
out indices uint3  smallIndexBuffer[256])

Mesh Shader

Meshlets

0o

I
(Y

l

Rasterizer

Pixel Shader

Output Merger |

- 0o
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together we advance_
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With multiple mesh shader thread groups,

we can output multiple meshlets.
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Mesh Shader

Rasterizer
Pixel Shader
Output Merger
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If you want to render a larger model, you first decompose it into multiple

meshlets in a preprocess.
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Mesh Shader

[ Rasterizer J

Pixel Shader

Output Merger |
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And then run a mesh shader thread group for each meshlet.
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Mesh Shader

.
i

Rasterizer
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Pixel Shader

| Output Merger |
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The mesh shader thread groups then transform these meshlets and pass them
over to the rasterizer.
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Optimization and best practices

Mesh Shader

L. GPU Concepts for Work Graphs
L. SIMD
L Work Item

More info:
Mesh shaders on AMD RDNA™ graphics cards £4 Compute Shaders
https://gpuopen.com/learn/mesh_shaders/mesh_shaders-indg

L. Mesh Shaders

L2 Work Amplification, Work Reduction

CDS%%S?.W AmDE |
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Mesh shading is a super light-weight version of work graphs.

For more information see this blog post series:

https://gpuopen.com/learn/mesh shaders/mesh shaders-index/

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

80


https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/

Graphics Pipeline — 2018 Mesh Shading

2 GPU Concepts for Work Graphs
? Why Work Graphs?
L Rasterizer |

Output Merger |
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But now that we have mesh shading, we have all concepts together that we
need for work graphs.
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? Why Work Graphs?

Mesh Shader

L Rasterizer J

Pixel Shader

Output Merger |
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The question now is: why do we even need Work Graphs?
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Geometry Shaders (D3D10) | Execute Indirect (D3D12)]

Mesh Shading
.

Shader Model 2 Hardware Tessellation (D3D11)
Programmable

Vertex/Pixel
Shader Pipeline

Input Assembler |

Compute Shader Vertex Shader

Hull Shader

Tessellator

Domain Shader
Geometry Shader

Rasterizer

Pixel Shader
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To answer that question, let’s first look what another addition to the pipelines

attempt to solves: | am speaking of “execute indirect.”
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Compute

Pipeline

Graphics

Pipeline
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Suppose you have a compute pipeline and a graphics pipeline.
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Graphics Pipeline

Graphics Memory

—» Dispatch =% GPU I/O Barrier Ot AMDZ1
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And you kick of your compute pipeline from the CPU.

The GPU then does some computation using the compute pipeline. To that
end, it reads data from graphics memory and writes its results back to graphics
memory.

To make sure that everything is written into graphics memory, we must include
a barrier.

Only after we have reached the barrier, we can kick off the graphics pipeline.

So, we must wait. The graphics pipeline can then read the data from memory
and produce the pixels output. After that we need another barrier.

These barriers can become a severe performance problem, because your
system must wait actively.
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CPU

Consumer
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The situation gets even more severe when the producer (i.e., the compute
kernel) produces a varying number of data entries.

As an example, imagine a scene with tens of thousands of objects. The task of
the producer is to cull invisible objects. After the producer kernel has run, it
outputs 5000 visible objects to data. There, it writes N = 5000.
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Time
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CPU
~
\
[ X
\
GPU
Graphics Memory
\'| Data
i ) ier NS Fence =9 GPU-CPU /O . o= cosure
—» Dispatch =» GPU I/O Barrier . Fence —» GPUCPUIO cymes,  AMDA

The consumer then renders the 5000 objects. But to do so, the CPU must
configure the draw call and it must know that number N.

So, the CPU must read N from the GPU. Therefore, we must include a fence
that synchronizes CPU and GPU. Only after that fence can the CPU read the
number N and properly configure the draw call.
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With that handle to the data and the number of objects, the CPU can dispatch
5000 draw calls to the visible objects.

Note that producer and consumer need to agree up-front on the handle to data
(&Data).
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With “execute indirect”, we also get a handle to where the number N is stored.
Let’s see why that can improve things.
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The producer gets both handles: &N and &Data. As before, it writes out the
visible objects (Data) and the number of visible objects (N).
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Now the CPU knows the location of the handles on the GPU but not the actual
values behind it. So, there is no need to transfer the actual values.

And therefore, no need for fence.
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All the CPU needs to do is call the consumer with handles as parameters
instead of the actual values.
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However, we still need the barriers, since the producer and consumer still
communicate over graphics memory.
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m Time & Execute Indirect Problems
@ 0000000000000 00O0COCOCOCOOO ooooooooooooooo> OBarriers
CPU m 8 ——

Producer Consumer

Graphics Memory

N=0

—=> Dispatch =» GPU I/O Barrier [R§ Fence —» GPU-CPU I/O CO,  AMDD

esondors  together we advance_

Additionally, if N = 0, there would not be any reason for the CPU to dispatch

the Consumer. But the CPU has no idea about N being 0, so it must dispatch
the draw call no matter what.

That is not dangerous, but we have the overhead of a launch including the
barrier.
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m Time & Execute Indirect Problems
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Another problem with execute indirect is, that we have to reserve memory for
what could end up in data. Going back to the culling example, we could end up
rendering all objects or zero objects. Since we do not know that up front, we

must always be prepared for the worst case and thus potentially waste
memory.
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We must always account for the worst-case scenario. If not, we could run into
dangerous memory overflow situations.
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So those are all existing execute-indirect problems.
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Mesh Shader
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Could we solve those with mesh shaders? | have not yet mentioned the
amplification shader stage of the mesh-shading pipeline.

An amplification shader can control the number of mesh shader thread groups
to launch directly on the GPU. In essence, this is a little consumer-producer

pipeline. So, for very simple scenarios, mesh shading, can solve some of the
issues.
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But mesh shading is graphics only. It has no compute support.
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It breaks, if you want something like self-recursions, as for example with
recursive subdivision.
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The mesh-shading pipeline has only one or two programmable stages. Long
chains are therefore not possible...
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... or even multiple different shader chains.
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Diverging branches in a shader chain such as with the classify-and-execute
pattern (see later in the Material Shading section of this course) is also not

possible.
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Those problems give us good reasons to define Work Graphs to solve all

these problems.
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2 GPU Concepts for Work Graphs
2 Why Work Graphs?

[ Mesh Shading Problems [0 Execute Indirect Problems
2 Compute Shader Problems [£2 Graphics Only [ Barriers
[ Barriers [ Self-Recursion .. Empty Launches
|| Save I/O .1 Long Chains [ Wasted Memory
[ Parallel Paths |2 Worst-Case Allocation
.1 Classify-and-Execute

Work Graphs can solve all these problems.

COBURG
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We will show you that Work Graphs can help you solve these problems.

Note: To some extent having, multiple compute queues can deal with these
problems, too. Likewise enhanced barriers (https://microsoft.qithub.io/DirectX-
Specs/d3d/D3D12EnhancedBarriers.html) help with better managing barriers.
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Work Graph Playground App

1. Go to: https://wgpa.short.gy/
github.com/GPUOpen-LibrariesAndSDKs/W orkGraphPlayground

2. Download the Latest Release

3. Unzip WorkGraphsPlayground.zip

4. Open Folder WOr'kGr‘aphsPlaygr‘ouV

5. Run WorkGraphPlayground.exe

0 X Testing adapter "Microsoft Basic Render Driver": Failed
6. Optional: DownloadWarpAdapter.bat o create D3D12 device.
If you need Software Emulation WARP adapter does not support D3D feature level 12.2

and work graphs.

7. Open Editor in Folder WorkGraphsPlayground [l ak e L Ul
support for instructions on installing latest WARP

adapter or run DownloadWarpAdapter.bat if you are using

pre-built binaries.

No device with work graphs support was found.

CO ke AMDQ1
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This is now a reminder to download the latest Work Graph Playground App,
because in the next section we are going to use it.

So prepare yourself by opening the folder WorkGraphsPlayground in your
code editor.
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Work Graph Playground App

[0 = «

iy oo

 WORKGRAPHPLAYGROUND

P WorkGraphPlayground 8 BODED - ° x

WorkGraphs.hlsl X

tutorial-0 > = Hello

kGraphs.hisl >

p— 21 // OUT OF OR IN CONNECTION WITH THE SOFTWARE O
22 // THE SOFTWARE.
© twtorial-0
n
HelloWorkGraphs his! 0 sinclude “Comon.h®
% screenshotpng P
> tutorial-1 26 / Start of tutorial = al
> tutorial-2 27 *elcome to the first Work Graphs tutorial: H |
S tikorals 28 *In-this tutorial, you familiarize yourself w
S 5 (el 29+ and see your first work graph in action =
N Er [
D Qi3 31+ The Work Graph Playground app supports “hot- ‘-
> tutorial-6 32 % whenever you save any of the tutorial shader
€ Commonh 33 % rebuilds the work graph. This will accelerat
D3D12Coredl .
d3d125DKLayersdl 35 % Now, follow the tutorial below to see this i
wnloadWarpAdapter bat 6
ounlosdWarpadsprerbat 25
Sxccnedl 38 // This attribute lets us turn any void functio
G 39 [Shader("node”)]
license.txt P
@ readme.md 41 * Each tutorial uses one work graph. In all ou
WorkGraphPlaygroundexe 42 % The CPU-side of the-Work Graph-Playground  in
43 % Inall our tutorials, the CPU aluays passes
43+ Peek into WorkGraph: :Dispatch in WorkGraph.c
45 % Mark the node as entry node by "NodeIsProgra
a6 v
47 [NodeIsProgramentry]
P
49 % We only need a single thread for now, so-we
S0+ Other launch mode types are discussed in mor
s v
52 [NodeLaunch(*thread")]
53
v 54 * In Work Graphs, nodes are identified by "nod
J ourume 55 % If you skip the array index, it is set to ze
Ml > riveune ° !

X @& Launchpad @0 A 0D 1 % In25Col1 Spacesd4 UTF-8 CRIF () HiSL &

107

1 ok eaph Plarground o x

open
tutorials/tutorial-@/HelloHorkGraphs.hlsl
o = 1

Useful Command Line Options

1. Software Emulation of the GPU
O0g6scéiistAdiiyes

2. Print out Debug Information (Requires Graphics Tools)

OOéniéténacugliyés

COBURG
(doti AMDQ
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All you need to do, is edit the HLSL shader files in your editor.
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g = &« O WorkGraphPlayground 8- D80 - o x
EXPLORER HelloWorkGraphs.hlsl X 1]
v WORKGRAPHPLAYGROUND tutorials > tutorial-0 > HelloWorkGraphs.hlsl > ...

21 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR =

v tutorials
. 22 // THE SOFTWARE.
v tutorial-0 .
HelloWorkGraphs.hlsl 24 #include "Common.h"
& screenshot.png 25

tutorial-1 26 = == Start of tutorial ===
tutorial-2 27 * Welcome to the first Work Graphs tutorial: H

el 28 *.In this tutorial, you familiarize yourself w
29 *.and see your first work graph in action.
30 *

Aliselie e 31 * The Work Graph Playground app supports "hot-

>
>
>
> tutorial-4
>
>
G

tutorial-6 32 * whenever you save any of the tutorial shader
Common.h 33 * rebuilds the work graph. This will accelerat
D3D12Core.dll 34 *

108 d3d125DKLayers.dll 35 * Now, follow the tutorial below to see this i fhvance_

So please open tutorials/tutorial-0/HelloWorkGraphs.hisl|
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J =
EXPLORER

v WORKGRAPHI
“ tutorials
v tutorial-C
Hellow
& screens
v tutorial-1
Records
Records
& screens
> tutorial-z
> tutorial-3
> tutorial-4
> tutorial-5
> _tutorial-6

> Fold all block

]QD]—DX

Fold All Block Comments
Fold

Chat: Next Code Block
Chat: Previous Code Block
Toggle Block Comment
Fold All

Fold All Except Selected

Crl |+ K | Cul |+ #| recently used £2% ) ees
Ctrl + Shift + B similar commands
Ctrl + Alt + PageDown SOFTWARE OR ===
Ctrl + Alt + PageUp
Shift + Alt + A
Ctrl + K Ctrl + O

Ctrl + K Ctrl + - emmmmmmma

Ctrl + K Ctrl + 8 :utorial: H

Fold All Regions
Fold Level 4 Ctrl + K Ctrl + 4 yourself w
Fold Level 5 Ctrl + K Ctrl + 5 iction.
Ask GitHub Copilot: Fold all block Ctrl + Alt + |
, o , ports "hot-
32 * whenever you save any of the tutorial shader
33 * rebuilds the work graph. This will accelerat
34 *
35 * Now, follow the tutorial below to see this i

dvance_

We provide detailed explanation of the tutorial template and the tutorial tasks.
As we will explain a selection of these tasks in this course, you may wish to
fold these block comments for easier viewing.

In Visual Studio Code, this can be done with the “Fold All Block Comments”

command.
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’O = = >’ WorkGraphPlayground 8 ps 0D B8O -
EXPLORER HelloWorkGraphs.hlsl X
v WORKGRAPHPLAYGROUND tutorials > tutorial-0 > HelloWorkGraphs.hlsl > ...
) co [/ LLMDLILLIT, WHLIIILR LY AN AT LUN UF U RACT
S 21 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
V/ tutorial-0 22 // THE SOFTWARE.
HelloWorkGraphs.hlsl 23
=2 screenshot.png 24 #include "Common.h"
Vv tutorial-1 25
By o o o s e e o e e e 1a] i
Records hls| 26 D e Start of tutorial ========

38 // This attribute lets us turn any void functio

RecordsSolution.hlsl 39 [Shader("node") ]

& screenshot.png A0 > [EES
> tutorial-2 47 [NodeIsProgramEntry]
> tutorial-3 48 > it
> tutorial-4 52 [NodeLaunch("thread")]
> tutorial-5 el

110 : 57 [NodeId("Entry", ©)]
> tutorial-6 :

dvance_

This should hide the large blocks of comments that might disturb you during

the course.
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3 File Edit Selection View Go - « P WorkGraphPlayground

Records.hlsl ~ RecordsSolution.hisl X

 WORKGRAPHPLAYGROUND tu | rdl
¥

[Shader("node")]
[NodeLaunch("thread")]
void DrawRectangle(
/% [Task-3]:
«

Declare a node input for the "Dra

* Similar to "PrintBox", "DrawRecta
. thus you must declare your input
Jf

/* [Task 3]:
2 Use the DrawRect function provide
* Use the data of your input record
e

// DrawRect(...);

Playground.exe

175
176
177

8 goDBEeO - -

rv29 w0 -

[Shader("node")] -
[NodeLaunch("thread")]
void DrawRectangle(
// [Task 3-Solution]:
ThreadNodeInputRecord<DrawRectangleRecord> inputRec

)
{
// [Task 3 Solution]:
// We again store the input record to a local varii
const DrawRectangleRecord record = inputRecord.Get\
// ... and use the data contained in the record to
DrawRect(record.topleft, record.bottomRight, 1, rec
}

. dvance_

We also provide a sample solution for each tutorial. You can even open both
your and our solution in a code-diff editor to compare them.
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GPU Work Graphs HLSL Cheat Sheet
By Max Oberberger, Quirin Mever
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Additionally, for quick reference, we also provide a cheat sheet for you to look
up common Work Graphs syntax.
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AMD 1
Developer Community

Connect with us

& Discord

fa gpu-work-graphs

discord.q

You can also join the gpu-work-graphs channel on the AMD Developer
Community Discord server at https://discord.gg/amd-dev, to connect with the
course instructors or other course participants.
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GPU Work Graphs — Course Agenda

Introduction & Foundations 14:00 — 14:30
Concepts 14:30 — 15:30
Nodes
Records
Launches
Break
Advanced Work Graphs 15:45 - 16:45
Material Shading
Recursion & Synchronization
Procedural Generation
Under the hood

Wrap-Up 16:45—-17:00 convre AMDR
CO D | totien e stvance.

Here is a brief overview of the topics that we will cover today.
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Work Graph Concepts

We begin our dive into Work Graphs with the three basic concepts that are key
for Work Graphs: nodes, records, and launches. We now start with nodes.
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Work Graphs

Command list

Dispatch Dispatch Dispatch

CO ke AMDQ
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Before work graphs, any work that we wish to carry out on the GPU had to be
submitted as individual commands as part of a command list. For this course,
we focus on compute work loads, thus, the commands shown here are all
dispatches. The emphasis with these command lists is really on the list part,
as the GPU would process these command one after the other, thus limiting
our options for any type of dynamic decision making on the GPU. In the
“Introduction & Foundations” part of this course, we have seen the hassle with
fences, barriers, empty launches, and CPU-GPU communication.

116
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Command list

Dispatch Graph
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With Work Graphs, we can replace these different dispatch commands with a
single new command: DispatchGraph.
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Node Node Node Node
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Inside this DispatchGraph command, we no longer have a single compute
kernel, but rather a series of connected compute kernel called “nodes”. These
nodes are programmed in a similar way to regular compute kernel/compute
shaders using the HLSL programming language and we will dive into the
specific syntax in a bit.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

118



Work Graphs

Directed
Acyclic
Graph
Node
Node Node
Node Node
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The graph topology of a work graph is, however, not limited to a single long
chain of nodes but instead can be classified as a directed acyclic graph (DAG).

As the name “Work Graphs” might suggest, the execution model of this graph
is centered around work flowing along the edges of the graph from one node
to the next. Thus, edges of our graph are directed. Each node can have
multiple in- and out-going edges, as shown here.

Note that while the graph depicted here has a single root node on the far left,
work graphs can have multiple such root nodes.

Additionally, cycles* are not allowed in the graph. Therefore, there exists a
fixed execution order, shown here going from left to right.

*Note: Work Graphs do allow trivial cycles going from one node to itself. More
on this in the “Advanced Work Graphs” section.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

119



Work Graphs

Node
Node J—r Node
1 Node | 1) Node Max Depth:
32 Nodes
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The longest chain of nodes from the first producer node (in graph theory often
referred to as source node) to the last consumer node (also referred to as leaf
node), is limited to 32 nodes. The Work Graphs specification refers to this as
the maximum graph depth.
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Record
Node
[ ]
Node Node
Node Node
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As mentioned before, the execution model is based on work flowing along the
edges of the graph. These work items are referred to as records.
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Each node can produce one or more records for one or more other nodes,
which then consume these records, thus creating a producer-consumer
relationship between nodes.
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An inner node, i.e., with both in- and out-going edges, is both a consumer and
a producer at the same time.
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These producer-consumer chains repeat until the leaf nodes are reached.
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In contrast to other GPU graph programming models, such as CUDA graphs,
the records of a work graph are not dispatches to a particular node/compute
kernel. Meaning, if a producer node sends a record to a consumer node, the
consumer node is not immediately dispatched by the work graph runtime.

125
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Instead, you can imagine that there is a virtual queue attached to each node.
Incoming records are queued up and execution of the node is deferred. It is,
however, guaranteed that each incoming record will eventually be processed
by the consumer node.

126
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Once the work graph runtime deems enough work is available in the queue,
the node is executed. This deferred approach allows the work graph runtime to
more efficiently use the available GPU resources.
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Dispatching the graph is done by sending records (e.g., from the CPU) to an
entry node. These initial records are often referred to as entry work.

A graph dispatch can contain entry work for multiple nodes. Entry work can
also target inner nodes, i.e., nodes that are also targeted by other nodes as

well.

129
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[Shader("node")]
[NodeIsProgramkEntry]
[NodeLaunch("thread")]
[NodeId("Entry", 0)]
void EntryFunction() {

}
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Now, let’s have a look at the HLSL syntax for declaring a work graph node.

At its core, a work graph node is an HLSL void-function with additional
attributes. In our case, we named our function EntryFunction, as it will be
the entry node to our graph. First, to be able to compile this function as a work
graph node, we need to annotate it with a [Shader("node™)] attribute.

Next, we mark this function as an entry function with the
[NodeIsProgramentry] attribute.

Work Graphs support multiple launch modes, which determine how incoming
records are processed. We set the launch mode with the [NodeLaunch(...)]
attribute. We cover the available node launches in greater detail later. For now,
we opt for the "thread" launch mode. In this launch mode, you write the code
of your node function from the perspective of a single thread. The Work
Graphs runtime will, of course, attempt to batch multiple threads of the same
function together in a thread group to increase SIMD efficiency.

Lastly, we can optionally assign a unique node id to our node with the
[NodeId(...)] attribute. A node id is a pair consisting of an identifier string
and an optional index. We uncover what the index is used for, when we
discuss Material Shading in the Advanced Work Graphs section.

If we omit the [NodeId(...)] attribute, the D3D12 runtime will automatically
assign a node id based on the node function name. In our example, this auto-
generated node id would be [NodeId("EntryFunction", ©)], as we named
our function EntryFunction.
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HelloWorkGraphs.hlsl dxc.exe DXIL Shader

dxc.exe -T vs_ 6 0 -E VSMain ...
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With our shader code complete, we can focus on compiling it for use in a work
graph.

When we compile regular shaders, i.e., none Work Graph shaders like
compute-, vertex- or pixel-shaders, we compile HLSL files to a single DXIL
shader by specifying the shader type (e.g., vs_... for vertex shaders or
ps_... for pixel shaders) and a shader entry point (i.e., the name of e.g., our
vertex shader function).
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HelloWorkGraphs.hlsl

dxc.exe DXIL Library

dxc.exe -T 1lib 6 8
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To compile our source file for use with Work Graphs, we need to compile it as
a DXIL library, by setting the target to 1ib_. ..

DXIL libraries can contain multiple nodes, thus we do not need to specify an
entry point. Instead, all functions that we annotated with the
[Shader("node")] attribute are included in the compiled library.
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We can then assemble one or more of these DXIL libraries into a work graph.
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The D3D12 runtime takes the nodes in the DXIL libraries and validates
connections between them.

The graph compilation fails if missing nodes (i.e., producers without a
matching consumer node) or topological errors (e.g., cycles) are detected.
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However, in our example from before, we only have a single node, named
“Entry”.
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Hello Hork Graphs?t
Oopen

to start this tutorial
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This node is part of the first tutorial in our Work Graph Playground App.

The “Entry” node prints a “Hello Work Graphs!” message along with
instructions for accessing the tutorial.

In the Work Graphs Playground App, you do not have to worry about
compilation, as this is fully taken care of by the app. All you need to do to
follow along with the tutorial is to run the WorkGraphsPlayground.exe and
open tutorials/tutorial-e@/HelloWorkGraphs.hlsl in an editor of your
choice.
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Entry Worker
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With just a single node, however, we cannot show the true capabilities of work
graphs, thus we want to create a second node. Here, we opt to call this node
“Worker”.
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[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Worker", )]
void WorkerFunction() {

}
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To specify the “Worker” node, we write another HLSL function called
WorkerFunction. We again add the same [Shader("node")] and
[NodeLaunch("thread")] attributes.

To name our node “Worker”, we add a matching [NodeId("Worker", 0)]
attribute.

You will find this code already in the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl on line 114.
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Hello Hork Graphst

open
tutorials/ tutorial-8sHelloHorkGraphs.hlsl

to start this tutorial

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg
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Nothing exciting is happening so far. If you look at the code in the
WorkerFunction, you would expect a

Hello <your name> from the "Worker" node!
to show up somewhere on screen, but it isn’t.

So why is our WorkerFunction not yet working?
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Entry ===  Worker
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So far, we have only declared both the “Entry” and “Worker” function, but
crucially, we have not set up the connection between them.
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void EntryFunction(

[MaxRecords (1) ]
[NodeId("Worker")]
EmptyNodeOutput nodeOutput

)
}
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To fix this, we need to go back to our EntryFunction and declare a node
output. Node outputs are part of the function signature and form the edges
between the nodes in our graph.

Here, we declare a parameter nodeOutput of type EmtpyNodeOutput. The
type of node output will determine the type of record that we want to send
between the nodes, but more on those later. For now, we opt for an empty
record, hence the EmptyNodeOutput type.

To target our previously created “Worker” node, we can use the
[NodeId(...)] attribute to specify which node we want to send record(s) to.
This attribute is again optional, and if none is present, the node id will be
inferred by the name of the node output parameter. Thus, if we want to omit
the [NodeId(...)] attribute here, we have to write EmptyNodeOutput
Worker, to target our “Worker” node.

Lastly, we need to declare the maximum number of records that we want to
send with the [MaxRecords(...)] attribute. In our example, we only send a
single record.

You will again find this code in the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl on line 64.
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Hello Hork Graphst

open
tutorials/ tutorial-8sHelloHorkGraphs.hlsl

to start this tutorial
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If we check back with the Work Graph Playground App, we still do not see the
message from the “Worker” node.
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void EntryFunction(
[MaxRecords(1)]
[NodeId("Worker™)]
EmptyNodeOutput nodeOutput
) {

// nodeOutput.ThreadIncrementOutputCount(1);
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The reason for this is simple: while we have declared an output from “Entry” to
“‘Worker” and thus formed a connection between these two nodes, we have
not actually sent any records yet.

In the tutorial file tutorials/tutorial-0/HelloWorkGraphs.hlsl on line
106, you'll find the commented-out code above.
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void EntryFunction(
[MaxRecords(1)]
[NodeId("Worker™)]
EmptyNodeOutput nodeOutput

) A

nodeOutput.ThreadIncrementOutputCount(1);
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Uncomment this line!

You can see that we’re now using the nodeOutput parameter that we declared
before and incrementing the output count by one, thus sending a single record
to the “Worker” node.

144
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m
Testing adapter "AMD Radeon RX 7900 XTX": Device supports work graphs. 1
Changes to shader source files detected. Recompiling work graph...
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Save your file in the editor and look at the console output of the Work Graphs
Playground App. It automatically detects when you change a file and tries to
recompile it.

There you will also see error messages. If you run into compile errors, the last
successfully compiled work graph continues to execute.
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k Graph Playground

Hello Hork Graphst

open
tutorials/ tutorial-8sHelloHorkGraphs.hlsl

to start this tutorial

IHellu {your name> from the “Horker™ nude!l
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Then you should see, that the code of the “Worker” node is executed and the
message is printed on screen.
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B ' Work Graph Playground = [m]

Hello Hork Graphst

open
tutorials/ tutorial-8sHelloHorkGraphs.hlsl

to start this tutorial

Hellu{‘l‘un the “Horker™ node?t

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg
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Your next task is to customize the welcome message with your name.

Warning: Do not copy your answer from your neighbor. We'll find out!

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

147



Work Graph Concepts — Nodes

void WorkerFunction()

{
PrintCentered(cursor, "Hello SIGGRAPH 2025..!");
¥
COuey - AmDA,
Head back to the tutorial file tutorials/tutorial-

0/HelloWorkGraphs.hlsl and change the message on line 129.

We instructors send out our greetings to everyone at SIGGRAPH 2025.

Save your file in your code editor...

148
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... look at the console and ... wait for it ... until the work graph has compiled...
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Hello Hork Graphst
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tutorials/ tutorial-8-HelloHorkGraprhs.hlsl

to start this tutorial

Hello |SIGGRAPH 2025 |from the “Horker™ node?
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... and congratulations, you just finished your first work graph tutorial = .
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void EntryFunction(
[MaxRecords(2) ]
[NodeId("Worker™)]
EmptyNodeOutput nodeOutput

) A

nodeOutput.ThreadIncrementOutputCount(2);
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Next, let’'s see what happens when we send two records to the “Worker” node.

First, we increment the [MaxRecords(...)] attribute from 1 to 2. This
means, we may now output up to two records. Second, we change the code of
the EntryFunction itself to increment the output count by two instead of one.

151
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Hello Hork Graphst

Oopen

to start this tutorial

Hello SIGGRAPH 2625 from the "Horker™ nodet
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If we save the file again and go back to the Work Graph Playground App, we
see no effect. However, in fact, the “Hello SIGGRAPH 2025 from the “Worker”
node!” is written twice.
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Entry Worker
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The reason why we do not see the message twice is simple: we are sending
empty records. Thus, while the “Worker” node is executed twice, it is printing
the same message at the same location every time.

So next, we are going to see how we can add data to our records, to change
the behavior of a consumer node based on data in the record.
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After having learnt about nodes, we learn about records as a way to send data
between nodes, next.
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B ' Work Graph Playground

Hello Hork Graphs?t
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to start this tutorial

Hello SIGGRAPH 2625 from the "Horker™ nodet
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As you have already successfully completed the first tutorial, it is now time to
move on to the next one.

Select “Tutorial 1: Records” from the menu on the top-left of the Work Graph

Playground App and open tutorials/tutorial-1/Records.hlsl in your
code editor.
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B ' Work Graph Playground — [m]

Box (@, @) Box (2, @) Box (3, @)
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Your Work Graph Playground App should now look like this.
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(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle
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In this tutorial, we have six tasks in which we are going to learn how to use
records. We complete the first five tasks one at a time and explain the
concepts of records along the way.
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Record
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So far, we have seen how we can declare nodes, how we can add edges
between nodes by declaring node outputs, and we have seen how we can
send empty records from one node to another.

Up until now, we have only used empty records, meaning we only
communicated to the Work Graphs runtime, that we want to launch a particular
node, but we have not sent any data.
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[Shader("node")]
[NodeLaunch("thread")]

° s [NodeId("Worker", 0)]
void EntryFunction( void WorkerFunction() {
[MaxRecords(1)] y

[NodeId("Worker")]
EmptyNodeOutput nodeOutput

) {
}
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Let us summarize the concept of Work Graphs nodes detailed in the previous
tutorial-0.

There, we had a producer node, implemented by the EntryFunction that can
produce at most a single EmptyNodeOutput for the Node Worker.

At the consuming node, Worker, the WorkerFunction executes code once a
nodeOutput is sent off. Both nodes are connected over the
[NodeId("Worker")] attribute of nodeOutput.
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[Shader("node")]

[NumThreads(4, 1, 1)]
void Entry(
NodeId("PrintHelloWorld”
[MaxRecords (1) ] [NodeId("PrintHelloWorld")]
EmptyNodeOutput PrintHelloWorld

) {
}
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Now, in this tutorial-1, we also start out by sending an EmptyNodeOutput
PrintHelloWorld to another consuming node "PrintHelloWorld".

160
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[Shader("node")]

[[NumThreads(4, 1, 1)]|
void Entry(
I[MaxRecords (1) ]|
EmptyNodeOutput PrintHelloWorld

) A
// [Task 1]: Emit a single empty record

// to the "PrintHelloWorld" node.
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One difference with this tutorial is that the Entry node no longer uses the
"thread" launch mode, but it uses the "broadcasting” launch mode,
instead. We will cover the specifics of launch modes shortly. For now, the main
difference of the broadcasting launch mode over the thread launch mode is
that we are programming a thread group instead of a single thread. In our
example, our thread group consists of four threads indicated by the
[NumThreads(4, 1, 1)] attribute. This is very much like you would program
a compute shader.

When we are using thread-group launch modes (i.e., not "thread") for our
nodes, the [MaxRecords(...)] attribute declares the maximum number of
records the entire thread group can send to a particular consumer node. In this
case, this means that all four threads together can send one single empty
record to the "PrintHelloWorld" node.
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[Shader("node")]

[NumThreads(4, 1, 1)]
void Entry(

[MaxRecords(1)]
EmptyNodeOutput PrintHelloWorld
) {
// [Task 1]: Emit a single empty record
// to the "PrintHelloWorld" node.

PrintHelloWorld.ThreadIncrementOutputCount(1);
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Our first task in this tutorial is to send a single record to the
"PrintHelloWorld® node. However, if we were to use

PrintHelloWorld.ThreadIncrementOutputCount(1);

as we did in the previous tutorial, every one of our four threads would
increment the output count by one, thus sending one empty record per thread.
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[Shader("node")]

[NumThreads(4, 1, 1)]
void Entry(
[MaxRecords(1)]
EmptyNodeOutput PrintHelloWorld

) {
// [Task 1]: Emit a single empty record
// to the "PrintHelloWorld" node.
PrintHelloWorld.GroupIncrementOutputCount(1);
¥
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To solve this problem, we would either have to change the code to only have a
single thread increment the output count, or we can use

PrintHelloWorld.GroupIncrementOutputCount(1);

instead. As the name implies, this will increment the output count, i.e., send an
empty record once per thread group instead of once per thread.
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Thread Group
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ThreadIncrementOutputCount
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To summarize the difference, consider a thread group: Each wiggly line
represents a thread of the thread group. If we call
ThreadIncrementOutputCount, every single thread emits a single record,
indicated by the package at the bottom of each wiggly line.
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GroupIncrementOutputCount

Thread Group
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If you call GroupIncrementOutputCount, instead, the entire group outputs a
single record.
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Tu | Sample Salubion

torials
Hello Horld?t

Box (2, @) Box (3, @)

Wark craph Playground by A4D & HS Caburg
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Once you complete Task 1, i.e., by adding the statement
PrintHelloWorld.GroupIncrementOutputCount(1);

at the appropriate location, you should see a Hello World message (without
the red box) on your screen.

Hint: This will become important again for Task 6 of this tutorial.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
of applied sciences and orts to@ether we advance_

This concludes our first task.
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I?

Entry L Worker

CO ke AMDQ1
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Before we go on to the next task, we must finally tell you, how to add data to
the record. So far, all the records that we have sent were empty.
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struct PrintBoxRecord {
L
Entry L Worker
169 CDS«;?‘?;;?W« ﬁgﬂ?ﬂadnnm_

Next, we will add some data to it to parameterize a node launch.
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struct PrintBoxRecord {
// Top-left pixel coordinate for a box.
int2 toplLeft;
// Index to print inside the box.
int2 index;

};

CD GRSy AMDI1
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In Work Graphs, we use structs to specify the data layout of the record’s
payload. Here you seen an example of such a struct.
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[Shader("node")]

° Max. 256 Records
void Entry(

[MaxRecords(4) ]
[NodeId("PrintBox")]
NodeOutput<PrintBoxRecord> boxOutput

)
}

CO ke AMDQ1
of applied sciences and orts to@ether we advance_

To enable Entry node to emit such a record, we must specify three things:

1. We must specify, that the Entry node emits records, whose data structure
is defined by struct PrintBoxRecord. We do this by adding
NodeOutput<PrintBoxRecord> boxOutput to the node’s function
parameter list. This is similar to the EmptyNodeOutput we were using
before, but with NodeOutput<...>, we can specify the type of data or
payload that we want to send with each record.

2. We must specify which node consumes those records. We do this by
adding the attribute [NodeId("PrintBox")] to the parameter
boxOutput. Here, the node PrintBox receives those records.

3. Finally, we must provide an upper bound for the number of records the
producer may output. This is done by yet another attribute attached to
boxOutput, i.e. [MaxRecords(4)].

You can send up to 256 records per thread group across all of its NodeOutput
parameters.
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[Shader("node")]

ct Max. 1024 Outputs
void Entry(

NodeOutput<PrintBoxRecord> boxOutput,
NodeOutput<...> ...,
NodeOutput<...> ...,
NodeOutput<...> ...

} Max. 32 kiB Output Size

CO ke AMDQ
of applied sciences and orts to@ether we advance_

If you have multiple NodeOutputs, make sure that the total number of all
NodeOutputs of a given node does not exceed 1024 NodeOutputs per thread

group.

Further, the total amount of memory that all of these NodeOutputs combined
may produce must not exceed 32 kiB.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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[Shader("node")]

void Entry(
[MaxRecords(4)]
[NodeId("PrintBox")]
NodeOutput<PrintBoxRecord> boxOutput

)
}

CO ke AMDQ
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What we see here is that this node is capable of sending four output records.
However, we have not yet seen, how this node does send records.

173
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[Shader("node")]
void Entry(

NodeOutput<PrintBoxRecord> boxOutput
) A

ThreadNodeOutputRecords<PrintBoxRecord> boxOutputRecord
boxOutput.GetThreadNodeOutputRecords (hasBoxOutput ?

[any

2 9);

if (hasBoxOutput) {

boxOutputRecord.Get(0).topLeft = threadBoxPosition;
boxOutputRecord[0].index = dispatchThreadld; "‘p
}
boxOutputRecord.OutputComplete(); 6 O ‘
} -
7
174 CDS,L)\?{:;W{ ﬁgngﬂmmm_

Here is how we actually send out records from our node.

First, we obtain ThreadNodeOutputRecords from the NodeOutput by calling
GetThreadNodeOutputRecords. The parameter of that function specifies the
number of output records per thread we want to write and send. Here, we want
to output either 0 or 1 record per thread. The decision whether a given thread
wants to output a record is stored in a per-thread boolean hasBoxOutput.

Calling ThreadNodeOutputRecords must be thread-group uniform. That
means, ThreadNodeOutputRecords must be called by all threads in lock-step
at the same time by all threads of the thread-group. Otherwise, you can run
into undefined behavior, which may result in crashes. With the tertiary operator
(i.e., hasBoxOutput ? 1 : 0) inside the parameter list of
GetThreadNodeOutputRecords, we can assure that all threads call this
function, even if some threads (i.e., those with hasBoxOutput = false) do
not with to output a record.

If a given thread needs to send an output, we must fill the record. To get
access to the individual PrintBoxRecord, you can either use the Get function
or the []-operator on the ThreadNodeOutputRecords. The provided
parameter is the index to the record. Here, we only have one output per thread
and its index is 0.

With the access to the record, you can read/write the member variables of the
particular record struct.

Once all records are filled, you can send it off, by calling OutputComplete()
on the ThreadNodeOutputRecords variable, again in a thread-uniform
fashion.
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PrintBoxRecord {
.topLeft = int2(...);
.index = int2(...);

s

Entry

175

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox() { ... }

PrintBox

CO ke AMDQ
of applied sciences and ot tOgether we advance_

Let's summarize what has happened so far. We obtained, filled, and send the

record to the PrintBox node...

... but the PrintBox node has no idea that it is supposed to received a record

... and therefore, our Work Graph Playground App crashes.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Terminal

> WorkGraphPlayground.exe
Compiling work graph for tutorial "Tutorial 1: Records”...
Failed to re-create work graph:

Operation Failed: system (-2147024809) (80070057): The parameter is incorrect.

CO ke AMDQ
176 of applied sciences and arts

together we advance_

Here is what you will probably see as an output. We only see the
The parameter is incorrect.

error message. This is hinting to us that something about our work graph is not
correct.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Terminal

> WorkGraphPlayground.exe --enableDebuglLayer

Compiling work graph for tutorial "Tutorial 1: Records”...

[D3D12] ID3D12Device::CreateStateObject: Autopopulated node "Entry" targets output
node PrintBox with an output record size of 16 bytes, but the target node expects an
input record of size @ bytes. These must match.

Failed to re-create work graph:

Operation Failed: system (-2147024809) (80070057): The parameter is incorrect.

CO ke AMDQ1
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To Dbetter understand the crash, we encourage you to execute
WorkGraphPlaygroundApp.exe with the command line parameter shown
here*.

Then, you will get meaningful error messages. Here, for example, you see the
problem: The producer and consumer node did not agree on the record size.
The work graph validation will fail and reports an error.

*Please note that the D3D12 debug layer requires Graphics diagnostic tools to
be installed. You can find more information here:
https://learn.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-
runtime-and-visual-studio-graphics-diagnostic-features
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Work Graph Concepts — Records

struct PrintBoxRecord { ... };

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
| ThreadNodeInputRecord<PrintBoxRecord> inputRecord|

) A
}

CO ke AMDQ
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To fix this problem, we must specify that the consumer node PrintBox
accepts an input record. This is by adding

ThreadNodeInputRecord<PrintBoxRecord> inputRecord

to the parameter list of the corresponding node function PrintBox.

178
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struct [PrintBoxRecord| { ... };

[Shader("node")]

[NodeLaunch("thread")]

void PrintBox(
ThreadNodeInputRecord{PrintBoxRecord} inputRecord

) A
}

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

The template argument is the struct that defines the record’s data layout,
PrintBoxRecord.

179
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[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
ThreadNodeInputRecord<PrintBoxRecord> inputRecord

) A

const PrintBoxRecord record =|inputRecord.Get()j

Cursor cursor = Cursor(record.topLeft + ...);

CO ke AMDQ
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To get read access to the payload, we call the .Get() method on the
inputRecord...

180

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



Work Graph Concepts — Records

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
ThreadNodeInputRecord<PrintBoxRecord> inputRecord

) A

|const PrintBoxRecord record|= inputRecord.Get();

Cursor cursor = Cursor(record.topLeft + ...);

CO ke AMDQ
of applied sciences and orts to@ether we advance_

181

... and obtain a const, i.e., read-only, instance to the struct, which we store
to a local variable record for easier access.

181
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[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
ThreadNodeInputRecord<PrintBoxRecord> inputRecord

) A

const PrintBoxRecord record = inputRecord.Get();

Cursor cursor = Cursor{record.topLeft|+ cee)s

CO ke AMDQ
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We can now access the struct’s members and use it for further processing.

182
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struct PrintBoxRecord {
int2 toplLeft;
int2 index;

};

Entry

183

Records

v

struct PrintBoxRecord {
int2 toplLeft;
int2 index;

};

PrintBox

CO ke AMDQ
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With the producer and consumer now using the same record definition, we
have successfully connected the two nodes. The validation errors are now

gone.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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struct PrintBoxRecord {
int2 toplLeft;
int2 index;

};

Entry

184

Work Graph Concepts —

Records

v

struct PrintBoxRecord {
int2  index;
float2 topLeft;

15
PrintBox

AMDQO

UNIVERSITY
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But beware: the Work Graphs validation only ensures that the size of the
output- and input-record match. This example would still be accepted by the
validation, even producer and consumer have different definitions of the
record’s layout. This can cause you hard-to-find errors.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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(O 1. Print “Hello World”

(O 2. Declare DrawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
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Now, you are ready to do Task-2, declare a draw rectangle record.
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// [Task 2]: Define a struct for the "DrawRectangle" node

// Draws the outline of a rectangle spanning from "topLeft" to "bottomRight" in window coordinates with a "thickness" in
// pixels. Thickness extends symmetrically to inside and outside of outline. Use "color" to specify the RGB values of
// the rendered rectangle outline pixels.

void DrawRect(in const float2 topLeft,
in const float2 bottomRight,
in const float thickness
in const float3 color

1,
float3(e, 0, 0));

CD SRveRSTY AMDQ
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Task 2: Create the record struct to draw a rectangle around all boxes. Take a
look at the prepared stub for the "DrawRectangle" node to see what data
needs to be passed to the record.

Hint: you see that DrawRect should be called. The function is defined in
tutorials/Common.h (line 570) and has the following signature

void DrawRect(in const float2 topLeft,
in const float2 bottomRight,
in const float thickness
in const float3 color

1,
float3(e, 0, 9))

From this you can infer what your record struct should look like.
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// [Task 2]: Define a struct for the "DrawRectangle" node

struct DrawRectangleRecord {
// Pixel coordinate of top-left corner of rectangle.
int2  toplLeft;
// Pixel coordinate of bottom-right corner of rectangle.
int2  bottomRight;
// Color of the rectangle.
float3 color;

};

CD SRveRSTY AMDQ
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Here is our suggested solution.
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Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
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We got Task-2 done.
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[Shader("node")]

void DrawRectangle(
// [Task 3]: Declare a node input with your new.
)

// [Task 3]: Use the DrawRect function to draw a rectangle.

}

// Draws the outline of a rectangle spanning from "topLeft" to "bottomRight" in window coordinates with a "thickness" in
// pixels. Thickness extends symmetrically to inside and outside of outline. Use "color" to specify the RGB values of
// the rendered rectangle outline pixels.

void DrawRect(in const float2 topLeft,
in const float2 bottomRight,
in const float thickness = 1,
in const float3 color = float3(e, 0, 0));

w SRveRSTY AMDQ
189 of applied sciences and orts to@ether we advance_

Next, we draw the rectangle.

Task 3: Add your record struct as an input to the DrawRectangle node and
complete the code in the node to draw a rectangle on screen.
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[Shader("node")]

void DrawRectangle(
// [Task 3 Solution]:
ThreadNodeInputRecord<DrawRectangleRecord> inputRecord

) {
// [Task 3 Solution]:

const DrawRectangleRecord record = inputRecord.Get();
DrawRect (
record.topLeft, record.bottomRight, 1, record.color);

CO ke AMDQ1
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Here is our suggested solution.
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Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
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Next, we have to declare an output record.
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[Shader("node")]

void Entry(
// [Task 4]: Declare a new "NodeOutput"
// to the "DrawRectangle" node.

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

Task 4: Add a node output to the Entry node for DrawRectangle node with
your newly created record struct. For now, we only care about the boxes
around the already existing text, thus each thread will emit a single record. Set
the [MaxRecords(...)] attribute for your accordingly.
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[Shader("node")]

void Entry(
// [Task 4 Solution]:
[MaxRecords(4)]
[NodeId("DrawRectangle")]
NodeOutput<DrawRectangleRecord> rectangleOutput

CD SRveRSTY AMDQ
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Here is our suggest solution.
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Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(© 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
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We declared our output, next we have to fill and emit it.
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Work Graph Concepts — Records

O tutorial-1/Records.hlsl

[Shader("node")]

void Entry(...) {

// [Task 5]: Emit a record to draw a rectangle.

}

COBURG
UNIVERSITY
of applied sciences and arte

AMDQ1
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Task 5: Emit the record to the DrawRectangle node from the Entry node.
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[Shader("node")]

void Entry(...) {
// [Task 5 Solution]:
ThreadNodeOutputRecords<DrawRectangleRecord> threadRectangleRecord =
rectangleOutput.GetThreadNodeOutputRecords (hasBoxOutput ? 1 : 9);

if (hasBoxOutput) {
threadRectangleRecord.Get().topLeft
threadRectangleRecord.Get().bottomRight
threadRectangleRecord.Get().color

}

threadRectangleRecord.OutputComplete();

threadBoxPosition;
threadBoxPosition + BoxSize;
float3(@, 0, 0);

AMDQO

19
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And here is our suggest solution.
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(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(© 4. Declare output to DrawRectangle node
( 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
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As a homework, look at the last task.
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GetGroupNodeOutputRecords

Thread Group

D @

G S

GetThreadNodeOutputRecords

CD GRSy AMDI1
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To better give an idea of what awaits you in Task-6, let’s look at another way to
send out records. Up until now, we have used ThreadNodeOutputRecords,
i.e., each thread of our thread-group outputs a record.

<Next Animation Slide>

In your homework Task-6, we want that the entire thread-group to output a
record. This can be done using GroupNodeOutputRecords.

This  behavior is similar to ThreadIncrementOutputCount and
GroupIncrementOutputCount, but for a non-empty record.
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Task 6: Additionally, we now want to draw another rectangle around all of these
boxes. Update the [MaxRecords(...)] attribute of your node output and
follow the instructions below to emit a per-thread-group record.

After completing the task, you should see a box around all boxes you have
drawn so far. So good luck and have fun!

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.
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Work Graph Concepts

-3

In the last section of the Work Graph Concepts block, we will cover
‘Launches”. We slightly touched on launches in the Nodes and Records
section, but here we give you the full details.
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(O 1. Change FillRectangle to dynamic dispatch grid
O 2. Implement pass-through coalescing node
O 3. Merge adjacent rectangles

(O 4. Non-deterministic coalescers

CO ke AMDQ
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In this tutorial, we have four tasks in which we are going to learn how these
different node launch modes work. In the following, we’ll highlight each of
these tasks and explain the concept of launches and launch modes.
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"broadcasting" "thread" "coalescing"

< <

Thread Groups

e

Unspecified! Thread Group

0 PR

—_—

COBURG
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We've seen before that we can specify the “work” in our work graph with
records. The launch mode then specifies how each node function is
processing the incoming records. In Work Graphs, we have access to three
different launch modes: "broadcasting”, "thread", and "coalescing".
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struct RectangleRecord {

};...

[Shader("node") ]

[[NodeLaunch("broadcasting")]|

[NodeDispatchGrid(6, 6, 1)]

[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")]

void FillRectangleNode(
DispatchNodeInputRecord<RectangleRecord> ir,

uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

<

Thread Groups

_ e

CD SRveRSTY AMDQ
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Let’s start with the "broadcasting” launch mode, since it is the easiest to
grasp if you have every worked with compute shaders before. If we use the
"broadcasting"” launch mode, one record is processed by a grid of thread
groups.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.
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struct RectangleRecord {

};...
[Shader("node") ] i

[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")] Thread Groups
void FillRectangleNode( 353555553353
|DispatchNodeInputRecord*RectangleRecord> ir,
uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}
204 cosﬁ‘?%g?” rrrrrrrrrr s gﬂ?ﬂadnnm_

Launching a node in "broadcasting” launch mode is very similar to
dispatching a compute shader kernel. Thus, the input record is declared with
type DispatchNodeInputRecord. This way, thread groups launches for the
same records all receive a read-only view to the input record.
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struct RectangleRecord {

};...
[Shader("node") ] i

[NodeLaunch("broadcasting")]

[NodeDispatchGrid(6, 6, 1)]

[[NumThreads(8, 8, 1)]|

[NodeId("FillRectangle")] Thread Groups

void FillRectangleNode( 353555555355
DispatchNodeInputRecord<RectangleRecord> ir,

uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

CD SRveRSTY AMDQ
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As with any regular compute shader, we define the three-dimensional grid of
threads in each thread group with the [NumThreads(...)] attribute. In our
example, we're using 8 x 8 X 1 = 64 threads.
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struct RectangleRecord {

¥ (
[Shader("node")] commandList->Dispatch(6, 6, 1) S

[NodeLaunch("broadcasting")]

|[NodeDispatchGrid(6, 6, 1)1}

[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")] Thread Groups

void FillRectangleNode( s&%&s&s&s&s&
DispatchNodeInputRecord<RectangleRecord> ir,

uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

—

CD SRveRSTY AMDQ
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Similarly, the three-dimensional grid of thread groups to launch is defined with
the [NodeDispatchGrid(...)] attribute.

Here, we a launch a grid of 6 X 6 X 1 = 36 groups. This is similar to launching
compute shader from the CPU with the Dispatch command.

However, statically setting the dispatch grid through
[NodeDispatchGrid(...)] means that every incoming record launches the
same number of thread groups. In many scenarios (e.g. image filters) we
require a dynamic number of thread groups that fits the current problem size.
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B Work Graph Playground - [u} X

Adapter: AWD Radean RX 7900 XTX Wark Graph Playground by AMD & HS Coburg
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We can see an example of this in the Node Launches tutorial.
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B | Work Graph Playground

On screen, we see five colored blocks. These blocks are drawn by the
FillRectangle node. The FillRectangle node uses the "broadcasting"
launch mode and a fixed dispatch grid of [NodeDispatchGrid(6, 6, 1)].
However, in the node function of the Entry node, we can see that each of
these rectangles should have a different size, as computed by the
GetRectanglePositionAndSize helper function.

To then draw each rectangle with the correct size, we must dynamically set the
dispatch grid for each rectangle (i.e., each record). Follow the instructions for
[Task 1] in tutorials/tutorial-2/NodeLaunches.hlsl.

1. Start by adding variables for the dispatch grid and rectangle size in the
"RectangleRecord" struct.

2. Next, change the [NodeDispatchGrid(...)] attribute of the
"FillRectangle® node to a [NodeMaxDispatchGrid(...)] and update
the dispatch size limit in the x dimension.

3. Lastly, set the dispatch grid and rectangle size for the rectangle records in
the "Entry" node.

In the following, we’ll discuss the sample solution.
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struct RectangleRecord {
uint2 dispatchGrid : SV_DispatchGridﬂ

}s 6
[Shader("node") ]

[NodeLaunch("broadcasting")]

[NodeDispatchGrid(6, 6, 1)]

[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")] Thread Groups

void FillRectangleNode( 353555553353
DispatchNodeInputRecord<RectangleRecord> ir,

uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

—
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To dynamically set the dispatch grid for each record, we add a variable to the
record struct and annotate it with the SV_DispatchGrid semantic. This
semantic tells the work graph system, that this variable should be used as the
dispatch grid for the broadcasting node. The type of this variable can be uint,
uint2, uint3 or a 16-bit variant of the aforementioned types.

With this, we have completed the first step of Task 1.
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struct RectangleRecord {
uint2 dispatchGrid : SV_DispatchGrid;

18
/

[Shader("node") ]

NodelLaunch("broadcasting"
[NodeMaxDispatchGrid(16, 6, 1)]

[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")] Thread Groups
void FillRectangleNode( 553335553553
DispatchNodeInputRecord<RectangleRecord> ir,
uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

Next, we need to change the [NodeDispatchGrid(...)] attribute of the
FillRectangle node to [NodeMaxDispatchGrid(...)]. Instead of setting a
fixed dispatch grid for all incoming records, we now define an upper limit for
the dispatch grid set by each individual record.

Beside replacing NodeDispatchGrid with NodeMaxDispatchGrid, we have to
determine an upper limit for the grid size. As each thread in the
FillRectangle node draws a single pixel, we compute the upper limit as
follows:

- 6 thread groups for base-size rectangle (48x48)

- 10 thread groups (10x8 = 80 pixels) to cover the size of the 20th thread
group (48 + 19 * 4)

Gives us a total of 16 thread groups max.

Finally, we need to set the newly added dispatchGrid variable in each of the
records that we send to FillRectangle. We omitted this step here for
simplicity, but you can refer to the sample solution or the previous tutorial on
records for more information on writing data to records.
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Once you're done with Task 1, the rectangles should now cover a continuous
horizontal rectangle.
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(O 1. Change FillRectangle to dynamic dispatch grid
O 2. Implement pass-through coalescing node
O 3. Merge adjacent rectangles

(O 4. Non-deterministic coalescers
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This completes our look at Task 1 and the "broadcasting” launch mode.
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< <
| |

Thread Groups Unspecified! Thread Group
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Next, we look at the "thread" launch mode.
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[Shader("node")] é
[NodeLaunch("thread")]

[NodeId("PrintLabel")]

void PrintLabelNode(

ThreadNodeInputRecord<PrintLabelRecord> ir
) { ...} Unspecified!

0
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We use the PrintLabelNode to explain the "thread" launch mode. We've
also seen similar used of the "thread" launch mode in the previous tutorials.

214
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B tutorial-2/NodeLaunches.hlsl

[Shader("node")] o
[[NodeLaunch("thread")]|
[NodeId("PrintLabel™)]
void PrintLabelNode(
ThreadNodeInputRecord<PrintLabelRecord> ir

) { ...} Unspecified!

0
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Again, we use the [NodeLaunch(...)] attribute to provide the launch mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 215



Work Graph Concepts — "thread" Launches "

[Shader("node")] é
[NodeLaunch("thread")]

[NodeId("PrintLabel")]

void PrintlLabelNode(

|ThPeadNodeInputRecord*PrintLabelRecord> ir
)y { ...} Unspecified!

0
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As we are now dealing with a single thread that accesses the incoming record,
we use the type TheadNodeInputRecord to declare the input.
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Thread Group

27 . Thread I:l Group Shared Memory

g

Unspecified!

0
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Even though an execution of "thread"-launch nodes is not defined by the
specification, the underlying work-graphs system still uses thread groups to

execute these nodes.
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Thread Group

<

Unspecified!

0
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However, access to the group shared memory is not allowed, and...
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Thread Group
2 SIS $
e &) |62 &2
S E R
o -,i -,-2- b‘. Unspecified!
5151 %% §
x [ Thread [ Group Shared Memory COME . e eimtance.

...as we only programmed a single thread, operations, such as wave intrinsics
are also not allowed.

However, executing "thread"-launch nodes with one thread group per record
is very wasteful of GPU resources.
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Thread Group
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Thus, the Work Graphs scheduler tries to combine multiple
ThreadNodeInputRecords of the same node into thread groups, thereby
increasing the efficiency of "thread"-launch nodes.

This is fully transparent to the programmer: we program as if there is just one
single thread. With the exception that some work graph limits — like the
maximum number of output records — are split up among the invisible group.
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"broadcasting" "thread"

< <

Lots of threads in
thread groups

Thread Groups Unspecified!

_ e

e
N

A single thread
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We looked at the two extremes:

- "broadcasting" node launch mode. They resemble compute shaders.
There, we program an entire thread group.

- "thread" launch mode that is how we program vertex or pixel shaders. You
as a programmer write your code from the perspective of a single thread.

In summary, the "thread" launch mode tries to cluster together records to the
same node, but communication between the threads is forbidden. They cannot
use shared memory.

What if we take this idea further and allow for communication?
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This is where our last launch mode comes in: The "coalescing"” launch
mode.
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[Shader("node")]
[NodeLaunch("coalescing")]

[NumThreads (4, 4, 1)] €€€

void Node(

[MaxRecords(4) ]

GroupNodeInputRecords<Job> input
) { Thread Group
. R

CD SRveRSTY AMDQ
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The easiest way to think of the "coalescing"” launch mode is as a "thread"
launch mode with more flexibility and control: We can specify how many
records to the same node should be grouped together at maximum, and how
many threads the group that is processing this collection should have.
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[Shader("node")]

[[NodeLaunch("coalescing") ]| .
[NumThreads (4, 4, 1)] ;
void Node(

[MaxRecords(4) ]
GroupNodeInputRecords<Job> input
) { Thread Group

PR

}...
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So here you see how you define a node in "coalescing"” launch mode. We
start — as before — by setting the [NodeLaunch(...)] attribute to
"coalescing".
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[Shader("node")]

[NodeLaunch("coalescing")] ‘i
[NumThreads (4, 4, 1)] (;
void Node( ‘E;
[MaxRecords(4) ]
GroupNodeInputRecords<Job> input
) { Thread Group

PR
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As we now have multiple records that are shared across a single thread group,
we use GroupNodeInputRecords to declare the node input (Note the plural
“s” at the end).

Additionally, we set an upper limit for how many records we want to consume

with each thread group of our node. Please note, that this is only an upper
limit.
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[Shader("node")]

[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(

[MaxRecords(4) ]

GroupNodeInputRecords<Job> input
) { Thread Group

?%?t recordCount =|input.Count(); %§§%§%§

CD SRveRSTY AMDQ
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The actual number of available input records can be queried with the Count()
function in the node input object.

226
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hadir("nﬁtgﬁ")]l — Thread Group

odelLaunch("coalescin

[NumThreads (4, 4, 1)]g/ ....

void Node( ....
MaxR ds(4
ér‘iﬁpﬁlggg;éui;ecord“Jol: ....

) EEEE

uint recordCount = input. Thread Group

, PR
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As we are programming a thread group, we have full control over how many
threads we want per thread group and how these thread should be organized
as a three-dimensional grid.

Here we have 4 x 4 = 16 threads. We then also have full control over how
incoming records are mapped to these threads.
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[ CoalescingExample.hlsl ——————————

[Shader("node")] Thread Group
| 2 |

[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]— |
void Node(
[MaxRecords(4)]
GroupNodeInputRecords<Job

) _
uint recordCount = input. Thread Group

, PR
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As we have at most four incoming records, we can assign a row of four
threads to each of these records. Each of these threads can then process
parts of the incoming record. For example, if incoming data are colors with four
components (red, green, blue and alpha), each thread can process one color
component.
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[ CoalescingExample.hlsl

[Shader("node™)] Thread Group
[NodeLaunch("coalescing")]

[NumThreads(4, 4, 1)]— |
void Node(
[MaxRecords(4)] 4
GroupNodeInputRecords<Job

’

H

uint recordCount = input. Thread Group

PR
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229

So far, we’ve seen how we process multiple records separately in parallel with
"coalescing"-nodes. Additionally, as all threads of our thread group have
access to all incoming records, we can also perform operations such as
reductions across all incoming records.

229
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[NodeLaunch("coalescing")]
[NumThreads(1, 1, 1)]
[NodeId("MergeRectangle")] JE:
void MergeRectangleNode( 6‘
[MaxRecords(2)] <
GroupNodeInputRecords<RectangleRecord>
inputRecords,

Thread G
[MaxRecords(2)] read Group

[NodeTd("Fil1Rectangle")] PR

NodeOutput<RectangleRecord> output) {
}
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Implementing such a reduction is part of Task 2 and Task 3 in the Node
Launches tutorial.

Start by opening tutorials/tutorial-2/NodelLaunches.hlsl and follow
the instructions for [Task 2].

As a first step, implement a MergeRectangle node as shown above. This
node will take in up to two rectangles and pass them through to the
FillRectangle node. Later, we will implement the reduction by merging
rectangles into a single one if they share an edge.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 230



Work Graph Concepts — "coalescing" Launches g~

B ' Work Graph Playground — [m] X
torials tior
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Once you are done with Task 2, the Work Graph Playground App should still
look the same.

Continue with instructions for [ Task 3] to implement the reduction.

Complete the sub-call to the ComputeCombinedRect helper method. If this
helper returns "true", then you must emit a single record to the
"FillRectangle" node.

Position and size of this rectangle are given by the "ComputeCombinedRect"
helper. For the color of this rectangle, you can re-use the color from any of the
input records (e.g., record[0]).

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 231



Work Graph Concepts — "coalescing" Launches g~

B ' Work Graph Playground — [m] X
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Once you're done, you should now see the same area being filled, but this
time with just three instead of five rectangles. As five is not divisible by two,
there's also one rectangle which could not be merged and is passed through
as-is from the MergeRectangle node to the FillRectangle node.

232
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(O 1. Change FillRectangle to dynamic dispatch grid
O 2. Implement pass-through coalescing node
O 3. Merge adjacent rectangles

(O 4. Non-deterministic coalescers
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With Task 2 and Task 3 completed, we can continue to Task 4 and the non-
deterministic nature of "coalescing"-nodes.
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Increase the dispatch grid of the Entry node in x dimension to emit more
rectangles.

You should now see the merged rectangles flickering...
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B ' Work Graph Playground — [m] X
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...between different ways of merging the rectangles. As the input to the
coalescer node is non-deterministic and depends on the timing of the different
thread groups of the "Entry" node. Thus, every frame different rectangles are
merged.

This step is omitted from the sample solution.
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Additionally, the order in which the incoming records are passed to the node
function is also not deterministic, ...
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...can change with every execution of the work graph.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 237



Work Graph Concepts — "coalescing" Launches g~

o9 <

Thread Group Thread Group

PR PR

CD SRveRSTY AMDQ
288 AP of opplied sciences and arts together we advance_

There is also no guarantee that a group always receives the specified number
of records. However, all records sent to a "coalescing"-node will eventually

be processed by it — even if this means invoking the node with just a single
record.
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In summary, we’'ve now seen the three different launch modes available in
Work Graphs: "broadcasting”, "coalescing" and "thread". Together with
nodes and records, these form the three core concepts of Work Graphs, and
we are now ready to move on to more advanced uses of Work Graphs.
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Advanced Work Graphs

In this section, we put all concepts, i.e., nodes, records, and launches,
together to create an advanced use-case for Work-Graphs. Plus, we are going
to learn about a powerful Work Graphs feature called “Node Arrays”. We
demonstrate this at the practical example of Material Shading.

240
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So, what is the problem of Material Shading? Consider this simple scene with
a background, a plane, and a sphere.
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return float4(e.4, 0.7, 1, 1);
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The objects and therefore the rendered pixels have a different material,
highlighted with different colors here. For example, the sky could have a very
simple material, such as a constant color. But computing the material for the
sphere or the plane could be quite involved. They could, in fact, be different
materials, requiring different algorithms with different costs.
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What is the problem then? To explain that, let’'s change to a coarser version of
that image. You see the individual pixels of the image here using three distinct
colors. Each color represents a different material type.
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And let’s not forget that we are running our computation on a GPU.
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So, let’s see how a GPU thread group would compute that image.
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To make it a little more readable, our example thread group only has four
threads.
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Our thread group can then compute a 2x2 grid of pixels in a SIMD fashion.
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Each thread group computes a subset of those 2x2 blocks.
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Things become interesting at the highlighted block here, where different
materials need to be evaluated.
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Each of the four pixels is evaluated with one thread in our thread group. Let’s
consider how the computation is carried out over time.
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The computation of each pixel is scheduled to one thread. Ideally, the four
pixels can be executed in parallel and take equally long.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 251



Problem: Material Shading

CD SRveRSTY AMDQ
252 of applied sciences andort: together we advance_

However, some materials are faster to compute, like the sky (blue), while
others take a lot longer. In a thread group, the short code paths must wait for
long ones to finish.
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The threads of our thread group are executed on a SIMD core. That means
the same instruction must be executed on all SIMD lanes at the same time.

Since the three different materials have different instructions, they cannot be
executed in parallel. Instead, only those threads that share the same
instructions can physically run in parallel. All other threads must defer their
computation to a later point in time. This goes by the name “thread
divergence” and can become a huge performance bottleneck on GPUs.
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Where SIMD cores can deliver a huge performance boost is when the thread
code is coherent, for example here in the group of red pixels.

In the following sections, we’ll take a look at how Work Graphs can help us
eliminate thread divergence by creating specialized nodes for each material.
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[NumThreads(8, 8, 1)]

void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);
switch (hit.material) {

}
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To start with, consider this compute shader example.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 255



Problem: Material Shading

[NumThreads(8, 8, 1)]
|void RenderScene(uint2 dtid : SV_DispatchThreadId)|{
const RayHit hit = TraceRay(...);

switch (hit.material) {

}
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It is called RenderScene and we get a unique global thread id dtid that gives
a 2D integer pixel coordinate for the pixel that we wish to shade.
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|[NumThreads(8, 8, 1)H
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}
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Each thread group uses an 8x8 grid of threads, so that, each thread group
computes 64 pixels.
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[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV DispatchThreadId) {
|const RayHit hit = TraceRay(...)ﬂ

switch (hit.material) {

}
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For each thread, we trace a ray, to find the closest hit...
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[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}
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... and then carry out the shading, depending on the material that our ray hit.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 259



Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {
case RayHit::Sky:
color = ShadeSky(ray); break;
case RayHit::Sphere:
color = ShadeSphere(ray, hit.distance); break;
case RayHit::Plane:
color = ShadePlane(ray, hit.distance); break;
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Here, we have the switch statement, which is the root of the thread divergence
problem. Depending on the material, we must take a different code path. If
those code paths don’t share the same instruction, we effectively serialized the
code.
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|[Shader(“node")ﬂ

[NumThreads (8, 8, 1)]

void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

COBURG
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261 of applied sciences and orfs

We want to solve this by using Work Graphs.

To turn a compute shader into a Work Graph node, we start by adding a
[Shader("node™)] attribute before the function definition. Nodes are
basically compute-shaders with this node attribute.
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Recap — Work Graph — Records

struct Record {

b

[Shader("node")]

[NumThreads(8, 8, 1)]

void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

v CD SRveRSTY AMDQ

of applied sciences and ot tOgether we advance_

As this is no longer a compute shader, but a work graph nodes, we cannot
dispatch it with e.g. the Dispatch command. Instead, we must send a record to
our newly created node. Thus, we declare a Record struct above with all the
data that we want to pass to our node, e.g., a camera view-projection matrix.
The actual contents of the struct are omitted here for simplicity.
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Recap — Work Graph — Records

struct Record {
}s

[Shader("node")]
[NumThreads(8, 8, 1)]
void RenderScend( NodeInputRecord<Record> inputRecordL
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CD SRveRSTY AMDQ
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To make our RenderScene node a consumer receiving such a record, we must
declare a NodeInputRecord with our record as template argument.
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Recap — Work Graph — Records

struct Record {
}s

[Shader("node")]
[NumThreads (8,

8, 1
void Render‘ScenodeInputRecord<Record> inputRecord,

uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CO ke AMDQ
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As we’ve seen before, the specific type of NodeInputRecord depends on the
launch mode for the node, which we have not yet selected in our example.
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Recap — Work Graph — Launches
struct Record { ... };

[Shader("node")]
|[NodeLaunch("broadcasting")1|
[NumThreads(8, 8, 1)]
void RenderScene( NodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CO ke AMDQ
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The compute shader implementation that we started out with was dispatched
with multiple thread groups in both x and y direction to cover all the pixels in
our render target.

This behavior is mimicked by the "broadcasting” node launch, which
dispatches a grid of thread groups for each incoming record.
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Recap — Work Graph — Launches
struct Record { ... };

[Shader("node")]
[NodeLaunch("broadcasting")]

[NumThreads(8, 8, 1
void RenderScen (DispatchﬂodelnputRecord<Record> inputRecord,

uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CO ke AMDQ
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For "broadcasting” nodes, the input record must be declared as
DispatchNodeInputRecord. All thread groups of the dispatch have a read-
only view on the same inputRecord.
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Recap — Work Graph — Launches

struct Record { ... };

[Shader("node")] Dispatch(480, 270, 1)
[NodeLaunch("broadcasting") ]

[[NodeDispatchGrid(48e, 270, 1)]|
[NumThreads (8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,

uint2 dtid : SV_DispatchThreadId) {

const RayHit hit = TraceRay(...);

switch (hit.material) {

CO ke AMDQ

of applied sciences and orts to@ether we advance_

Next, we must specify the dispatch grid for our node, or in other words, how
many thread groups we want to launch for each incoming record.

Here, we set it to launch a grid of 480x270x1 thread groups for every record.
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Recap — Work Graph — Launches
0 tutorial-3/MaterialShading.hlsl

struct Record { ... }; Dispatch(48e, 270, 1)

[Shader("node")]
[NodeLaunch("broadcasting")] 8x8
[[NodeDispatchGrid(480, 270, 1)]
[NumThreads (8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CD SRveRSTY AMDQ
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As each thread group has 8x8 threads...
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Recap — Work Graph — Launches

struct Record { ... }; Dispatch(48e, 270, 1)

[Shader("node")]
[NodeLaunch("broadcasting") ]
[[NodeDispatchGrid(48e, 270, 1)]
[NumThreads (8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

COBURG
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... that makes grid of 3840 x 2160 threads in total. That is enough to cover a
4K Ultra HD (UHD) image with one thread per pixel. That is, however, now a
fixed grid size. That means, we would always launch 3840 x 2160 threads. But
what if we want to keep that size more flexible, for example, if we want to
make our window smaller?

Hint: In case you wonder, 8 threads in x direction and 480 blocks in x direction
makes 8 x 480 = 3840. Likewise, for the y direction we get 8 x 270 = 2160.
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Recap — Work Graph — Launches

struct Record { ... };

[Shader("node")]
[NodeLaunch("broadcasting")]

[[NodeMaxDispatchGrid(480, 270, 1)]|
[NumThreads (8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,

uint2 dtid : SV_DispatchThreadId) {

const RayHit hit = TraceRay(...);

switch (hit.material) {

}

270
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To get that flexibility, we add a Max there. This specifies an upper bound for the
number of thread groups.
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Recap — Work Graph — Launches

struct Record {
fuint3 dispatchGrid : SV_DispatchGrid;|

%

[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid(480, 270, 1)]

[NumThreads(8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {

CO ke AMDQ
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The producer of the Record struct is then tasked with setting the actual
number of thread groups. This information is passed to the work graph runtime
by annotating a variable with SV_DispatchGrid.
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Recap — Work Graph — Launches

struct Record {
uint3 dispatchGrid : SV_DispatchGrid;

%

[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid(480, 270, 1)]

[NumThreads(8, 8, 1)]

void RenderScene{DispatchNodeInputRecord<Record> inputRecord )
uint2 dtid : SV_DispatchThreadId) {

CD SRveRSTY AMDQ
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Remember, the Record struct and thus by extension the variable with
SV_DispatchGrid semantic are tied to our node through the
DispatchNodeInputRecord declaration.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 272



Material Shading

struct Record { ... };

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CO ke AMDQ
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Thus far, we have turned our initial compute shader into a broadcasting node
with a dynamic dispatch grid.

Our goal, however, was to solve the issue of thread divergence caused by the
switch-case statement for executing the material shaders.
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Material Shading

[Shader("node")]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {
case RayHit::Sky:
color = ShadeSky(ray); break;
case RayHit::Sphere:
color = ShadeSphere(ray, hit.distance); break;
case RayHit::Plane:
color = ShadePlane(ray, hit.distance); break;

AMDQO

s together we advance_

274

To reiterate, these shading functions use different instructions and thus cannot
run in parallel on the SIMD-architecture of our GPU.
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Material Shading

[Shader("node")]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {
case RayHit::Sky:
color =|ShadeSky(ray); |break;
case RayHit::Sphere:
color = ShadeSphere(ray, hit.distance); break;
case RayHit::Plane:
color = ShadePlane(ray, hit.distance); break;

CO ke AMDQ
275 of applied sciences and orts to@ether we advance_

The underlying idea is to move these different shading functions into separate
nodes and use work graphs to send records to these nodes based on the ray
tracing result.

We start by moving the ShadeSky function...
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Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;

1

[Shader("node")]
[NodeLaunch("thread")]
void| ShadePixel Sky|[ThreadNodeInputRecord<PixelRecord> inputRecord) {

const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

CDS‘%E‘éggrv AMDQ
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...to a new node named ShadePixel Sky.

276
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Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;
}s

[Shader("node")]

|[NodeLaunch("thread")H

void ShadePixel Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

CO ke AMDQ
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As this node only processes a single pixel, we can use the "thread" launch
mode, which assigns a single thread to each incoming record (i.e., each
incoming pixel).
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Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;
}s

[Shader("node")]

[NodeLaunch("thread"

void ShadePixel_ Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

AMDQO
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As we'’re using the "thread" launch mode, we must declare the node input
with ThreadNodeInputRecord.
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Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;

};

[Shader("node")]

[NodeLaunch("thread")]

void ShadePixel_ Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

CO ke AMDQ
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The record data itself is defined in the PixelRecord struct above. Here we
pass the coordinate of the pixel we wish to shade, the ray that was traced for
this pixel along with the ray length.
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Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;
}s

[Shader("node")]

[NodeLaunch("thread") ]

void ShadePixel Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
|const PixelRecord record = inputRecord.Get();|

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

AMDQO
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For convenience, we store the incoming record to a local variable called
record.
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Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;

1

[Shader("node")]

[NodeLaunch("thread")]

void ShadePixel_ Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

CD GRSy AMDI1
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We can then call the underlying ShadeSky function with the data from the
record to compute the shaded color and write it to our pixel with the help of the
WritePixel function.
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Material Shading

[Shader("node™)]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread

void ShadePixel_ ThreadNodeInputRecord<PixelRecordy inputRecord) {}

[Shader("node™)]
[NodeLaunch("thread")]

void ShadePixel|Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

CO ke AMDQ
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We repeat the same steps for the Sphere and Plane material as well, thus
creating a ShadePixel Sphere and ShadePixel_Plane node. We can use
the same PixelRecord struct that we declared earlier for these new nodes as

well.

282
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Material Shading

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8. 8. 1)1
void Rende Max. 256 Records €InputRecord<Record> i [Shader("node")]
void ShadePixel Sky(...)
[MaxRecords(8 * 8)]
NodeOutput<PixelRecord> ShadePixel_SkyJ

uint2 dtid : SV_DispatchThreadId) b

CD SRveRSTY AMDQ
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To send records to our newly declared nodes, we must declare a NodeOutput
in our RenderScene node for each material. We show this at the example of
the NodeOuput for the ShadePixel Sky node.

As all 8x8 pixel in our thread group might have the same material, we must
declare all these node outputs with this worst case, i.e. 8 * 8 records.

However, this would mean that we would reach the output limit of 256 records
with just four materials (8 * 8 * 4 = 256). Contrast this with the hundreds of
materials used by modern AAA games and we can immediately see that this
approach of declaring separate node outputs does not scale very well.

We can solve this problem by using a work graph feature specially designed
for such use-cases called node arrays.
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Node Arrays

[Shader("node™)]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node™)]
[NodeLaunch("thread")]
void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

CO ke AMDQ
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Consider our different material nodes from before. They all use the same
launch mode and input record...

284
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Node Arrays

[Shader("node")]
[NodeId("ShadePixel", 0]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

Node Array Index

[Shader("node™)]

[NodeId("ShadePixel", 1]

[NodeLaunch("thread")]

void ShadePixel Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]

[NodeId("ShadePixel", 2]

[NodeLaunch("thread")]

void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

COBURG
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...thus we can combine them into a single node array named ShadePixel. To
do this, we add a [NodeId("ShadePixel", @] attribute to each node. The
first part (i.e. the node id name) is the same for all nodes, but we must assign
a different node array index to each node.

In our example, use the following mapping:
0 — sky material

1 — sphere material

2 — plane material

This mapping aligns with the RayHit enum values that we were using for the
switch-case statement before.
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Node Arrays

ShadePixel
[e]: Sky
[1]: Sphere

[2]: Plane

CO ke AMDQ
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In our Work Graph, we can then address these nodes as a node array named
ShadePixel.
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Material Shading

[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid(480, 270, 1)]

[NumThreads (8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> input,

[MaxRecords(8 * 8)]
NodeOutputArray<PixelRecord> ShadePixel,

uint2 dtid : SV_DispatchThreadId) {

CD SRveRSTY AMDQ
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We can then target this node array by declaring a NodeOutputArray. Note
that we do not target any individual node, but rather the whole array at once.
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Material Shading

[Shader("node™)]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid (480, 270, 1)]

[NumThreads(8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> input,

[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,

uint2 dtid : SV_DispatchThreadId) {

CO ke AMDQ
of applied sciences and orts to@ether we advance_
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However, the D3D12 runtime must still be able to validate that all the nodes we
expect in this node array are present in the graph. Thus, we must add a
[NodeArraySize(...)] attribute with the expected number of nodes in the
array, which in our case is three.

288
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Material Shading

void RenderScene(DispatchNodeInputRecord<Record> input,
[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,
uint2 dtid : SV_DispatchThreadId) {

ThreadNodeOutputRecords<PixelRecord> outputRecord =
ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

outputRecord.Get().pixel dtid;
outputRecord.Get().ray ray;
outputRecord.Get().hitDistance = hit.distance;

outputRecord.OutputComplete();

AMDQO
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Allocating records to be sent to this node array is very similar to the plain node
outputs that we've seen before...
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Material Shading

void RenderScene(DispatchNodeInputRecord<Record> input,
[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,
uint2 dtid : SV_DispatchThreadId) {

ThreadNodeOutputRecords<PixelRecord> outputRecord =
ShadePixel[hit.material]}GetThreadNodeOutputRecords(1);

outputRecord.Get().pixel
outputRecord.Get().ray N
outputRecord.Get().hitDistance = hit.distance;

Node Array Index

outputRecord.OutputComplete();

CO ke AMDQ
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...the main difference is the bracket-operator, with which we specify the node
array index, to which we want to send the record.

In our case, this index is determined by the ray tracing result.
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Material Shading

void RenderScene(DispatchNodeInputRecord<Record> input,
[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,
uint2 dtid : SV_DispatchThreadId) {

ThreadNodeOutputRecords<PixelRecord> outputRecord =
ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

outputRecord.Get().pixel dtid;
outputRecord.Get().ray ray;
outputRecord.Get().hitDistance = hit.distance;

outputRecord.OutputComplete();

wsaszzgw AMDI1
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Writing data to the record is unchanged...
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Material Shading

void RenderScene(DispatchNodeInputRecord<Record> input,
[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,
uint2 dtid : SV_DispatchThreadId) {

ThreadNodeOutputRecords<PixelRecord> outputRecord =
ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

outputRecord.Get().pixel dtid;
outputRecord.Get().ray ray;
outputRecord.Get().hitDistance = hit.distance;

|outputRecor‘d.OutputComplete();| ; O ‘
}

AMDQO
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... and so is sending the record off to the Work Graph runtime for processing.
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Classify & Execute

Classify & Execute
ShadePixel
Sky

RenderS
enderScene Sphere

Plane
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This is our work graph. First, the RenderScene node classifies the pixel and
emits a record to the corresponding index in the ShadePixel node array.

Second, the ShadePixel node array executes the shaders for each pixel in a
SIMD friendly way.
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SIMD Efficiency

RenderScene ShadePixel
Sky

Sphere

Plane

Executon ________________________~
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Why are node arrays SIMD friendly? Let’s go back to our coarse pixel grid for
demonstration purposes.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 294



SIMD Efficiency

RenderScene ShadePixel
Sky

Sphere

Plane
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295 of applied sciences and orts to@ether we advance_

The classifier node “RenderScene” classifies each pixel and...
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SIMD Efficiency

RenderScene ShadePixel
Sky

Sphere

Plane

Exccuton
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...creates a record for the consumer node in the ShadePixel node array based
on the material index.
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SIMD Efficiency
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These records are then sent to the individual nodes of the node array.
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SIMD Efficiency

ShadePixel
Sky
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t
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Even though we specified these nodes as “thread” launch nodes, they are still
executed in thread groups...
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SIMD Efficiency
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Thread
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...with one record (i.e., pixel) assigned to each thread. All threads of a thread
group now run in SIMD lock step, thereby reducing thread-divergence.
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SIMD Efficiency
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Likewise, for the other materials, too.
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SIMD Efficiency
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We’ve seen how work graphs, in combination with node arrays can help us
reduce thread-divergence for classify-and-execute applications.
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Conclusion

ShadePixel
Sky
RenderS
enderScene Sphere
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The code in these slides is available in the Work Graph Playground under
tutorials/tutorial-3/MaterialShading.hlsl. Please follow the
instructions there to get a hands-on experience with node arrays.

However, note, that in this materials-example, you will see little to no
performance gains. This is because we kept our shader code simple, such that
thread-divergence is not an issue. Our goal here is to teach you the principle
of how node arrays work.
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Conclusion

ShadePixel
Material 0
Material 1

ShadeMaterial
Material 2

3, Download today on GPUOpen

Material N
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You can also find a standalone sample of this classify-and-execute work graph
on GPUOpen.

303
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Summary

"broadcasting” "thread" "coalescing”

Node Array

Records # Dispatches ‘ ‘ %
) B —
¢ | | ]
Threadgroups. Unspecified! Thre eadg roup :
i3 I

Node Launch Types

Dataflow through Node Arrays

Records

304

In summary, we've seen how work graphs allow for GPU-driven dataflow
through records. We’ve seen how and when to use the different launch modes
available in work graphs. And lastly, we've seen how node arrays can help
simplify our code and help us manage hundreds or thousands of nodes in a

classify-and-execute scenario.
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Next, we are going to look at how recursion is possible with Work Graphs.
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Recursion

Node

Directed
Acyclic*
Graph

Node Node —‘ Node
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We have seen before that a work graph can be classified as a directed acyclic
graph. Thus, a cycle as shown here is not allowed.

Implementing recursive algorithms with acyclic graphs is difficult, however, the
Work Graphs specification allows a small exception to the acyclic constraint.
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Node

Directed
Acyclic*
Graph

Node Node Node

* with self-recursion
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Self-recursion, or in other words, trivial cycles from one node to itself are
allowed. These self-recursive cycles can also have a payload amplification,
meaning for every incoming record, a node that’s part of a self-recursive cycle
can emit multiple records to itself.
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Procedural Generation Subdivision Fractals
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There are many different applications or algorithms that can be implemented
as such self-recursive nodes. These can range from different algorithms for
procedural generation or subdivision (e.g., Catmull-Clark subdivision surfaces)
to mathematical concepts, such as recursively evaluated fractals.

We will take a closer look at self-recursive graphs for procedural generation.
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Co GRveRSITY AMDD
toppiedscincescndars  fooethor we AUVANCE.

For now, we focus on a simpler example: the Koch Snowflake fractal. This
fractal is part of the fourth tutorial in our Work Graph Playground App and you
can find the implementation in tutorials/tutorial-4/Recursion.hlsl.

In simple terms, the Koch Snowflake recursively subdivides each line segment
into four new line segments which form a small triangle in the middle of the
original line segment, as you can see on the right part of the slide.

We start with an initial equilateral triangle with three line segments, as shown
on the left.

309
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After one iteration, you can see the newly formed triangles on the edges of the
initial triangle, thus transforming the initial triangle into a star shape.
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After two iteration, we can start to see the snowflake shape forming.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 311



312

Recursion

UNIVERSITY

w COBURG

of applied sciences ant

dar

v

AMDQO

together we advance_

The third...
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...and fourth iteration then further refine the snowflake shape.
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Recursion

[Shader("node")]

[NodeLaunch("thread")]

[NodeId("Snowflake")]

void SnowflakeNode(
ThreadNodeInputRecord<Line> inputRecord

) A
}

COBURG
CO ke AMD{1
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So how does this self-recursion look like in the shader code? Let’s consider
this thread node shown in the slide. This is already part of the tutorial, but
there will be similar exercise for you as homework.

314
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O tutorial-4/Recursion.hlsl

[Shader("node")]

[NodeLaunch("thread")]

[NodeId("Snowflake")]

void SnowflakeNode(
ThreadNodeInputRecord<Line> inputRecord,

[MaxRecords(4) ]
[NodeId("Snowflake")]
NodeOutput<Line> recursiveOutput

)
}

COBURG
w UNIVERSITY AMDQ1
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Recursive nodes declare a NodeOutput to itself.

315
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[Shader("node")]

[NodeLaunch("thread")]

|[NodeId("Snowflake")]|

void SnowtlakeNode(
ThreadNodeInputRecord<Line> inputRecord,

[MaxRecords(4)]
[[NodeId("Snowflake")]|
NodeOutput<Line> recursiveOutput

){-on
)

CD SRveRSTY AMDQ
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Note how we use the [NodeId("Snowflake™)] attribute to both identify the
node itself and the NodeOutput with the same node id. Thus, the node is
recursively outputting records to itself.
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[Shader("node")]

[NodeLaunch("thread")]

[NodeMaxRecursionDepth(4)]

[NodelId( Snowflake )]

void SnowflakeNode(
ThreadNodeInputRecord<Line> inputRecord,

[MaxRecords(4)]
[NodeId("Snowflake")]
NodeOutput<Line> recursiveOutput

){..o
)

CD SRveRSTY AMDQ
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Self-recursion is, however, limited to fixed number of iterations, which must be
set using the [NodeMaxRecursionDepth(...)] attribute.
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[Shader("node")]
[NodeLaunch("thread")]
[NodeMaxRecursionDepth(4)]
[NodeId( Snowflake )]

void SnowflakeNode(

) A

// Check if we have reached the recursion limit.
const bool hasOutput = GetRemainingRecursionLevels()|!= 9;

CD SRveRSTY AMDQ
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In each recursive iteration, we can then query the number of remaining
iterations with the GetRemainingRecursionLevels() intrinsic. If this intrinsic
returns 9, then the node is no longer allowed to emit self-recursive records.
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Node Depth = 3

Node Node Node Node
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As a reminder, the longest chain of nodes can not exceed the limit of 32
nodes. When computing this longest chain of nodes, the maximum number of

recursive iterations ([NodeMaxRecursionDepth(...)]) add to the chain
length.

In this example the node on the far-right has a node depth in the graph of
three.
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Node Depth = 4

Node Node r Node ~‘ Node

[NodeMaxRecursionDepth(1)]
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If we add a self-recursion loop to the graph, this node depth increases by the
value of the [NodeMaxRecursionDepth(...)] attribute.
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Node Depth = 5

Node Node r Node ~‘ Node

[NodeMaxRecursionDepth(2)]
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Increasing [NodeMaxRecursionDepth(...)] further increases the node
depth of the last node.
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As a homework assignment, your task is to implement another recursive
fractal in the Work Graph Playground App: the Menger sponge.

Follow the instructions in tutorials/tutorial-4/Recursion.hlsl and

implement the fractal. You can verify your solution by comparing it to the
provided sample solution.
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Another aspect for advanced work graphs is synchronization of thread groups
in broadcasting launches.
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Synchronization

Threadgroup Threadgroup

Record {
.dispatchGrid = uint3(2, 2, 1) %% %%%
) Sy ) | S

Node

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Before, we dive into the code, let's quickly explain what we mean by this.
Consider a broadcasting node that is part of a longer chain of nodes, e.g., a
chain of image filters. In such a chain, we might have data-dependencies
between different nodes in the chain, i.e., we can only launch the next node, if
all thread groups of the previous node have finished executing.

In our example, our node receives an incoming record. Our node is using the
broadcasting launch mode. The record sets the dispatch grid of the node to
2x2 thread groups. We assume that these thread groups all run in parallel on
our GPU.
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Record { Threadgroup Threadgroup
.dispatchGrid = uint3(2, 2, 1) e St
} Threadgroup Threadgroup Qo

\ /
® Node 00 -

Execution 4
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After a while, the thread groups terminate one after the other...
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Record { Y P
.dispatchGrid = uint3(2, 2, 1) e e

} Threadgroup oo
e
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...until only one thread group remains.
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Record {
.dispatchGrid = uint3(2, 2, 1)
} Threadgroup
& -
€
- Node
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Synchronization in broadcasting nodes allows this last thread group to realize
that it is in fact the last one.
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Record {
.dispatchGrid = uint3(2, 2, 1)
} Threadgroup{
& ¥

Node
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Thus, it can carry out a final special operation, such as emitting a record for
the next node, as we now know that all thread groups in our broadcasting
node have finished execution and any data that they might have produced is
now ready to be processed by a following node(s).
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dspter: A0 Radeon R 7980 KTX Wark craph Playground by A4D & HS Caburg
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In the fifth tutorial of the Work Graphs Playground App, we are going to use
such synchronization to draw a bounding box around this dancing trail of
circles.
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Synchronization

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(32, 1, 1)]
[NumThreads (32, 1, 1)]

void ComputeBoundingBox(

DispatchNodeInputRecord<Record> inputRecord

) A

DrawRect(...);

CO ke AMDQ
of applied sciences and ot tOgether we advance_

330

In the tutorial, we're using a node with "broadcasting” launch mode. The
node is dispatched with 32 thread groups and 32 threads in each thread group.
Each thread then computes a position and radius of a circle and draws the
circle on screen.

We now want to compute the bounding box of all circles. Once all of the thread
groups have finished computing the bounding box in parallel, we want to have
the last thread group draw the resulting bounding box to the screen.

330
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[Shader("node")]
[NodeLaunch("broadcasting™)]
[NodeDispatchGrid(32, 1, 1)]
[NumThreads (32, 1, 1)]

void ComputeBoundingBox(

DispatchNodeInputRecord<Record> inputRecord

) A

if(ﬂinputRecord.FinishedCrossGroupSharing()b return;

DrawRect(...);

CD GRSy AMDI1
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With FinishedCrossGroupSharing(), Work Graphs provide a method on the
input record, that returns true, if the calling thread group is the last one to call
this method.
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struct |[[NodeTrackRWInputSharing]| Record {
}s
[Shader("node")]

void ComputeBoundingBox(

DispatchNodeInputRecord<Record> inputRecord

)

if(!inputRecord.FinishedCrossGroupSharing()) return;

DrawRect(...);

CO ke AMDQ
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Since this is carried out on the input record, the input record needs to be
prepared to support such an operation. Therefore, you must add the
[NodeTrackRWInputSharing] attribute to the record struct, as shown above.
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struct [NodeTrackRWInputSharing] Record {
}s
[Shader("node")]

void ComputeBoundingBox(

|[RWDispatchNodeInputRecord<Record>| inputRecord

)

if(!inputRecord.FinishedCrossGroupSharing()) return;

DrawRect(...);

COBURG
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As FinishedCrossGroupSharing “writes” into the record, you need to adjust
the input record declaration to use RWDispatchnodeInputRecord.

Note that this adds an even more powerful capability: The RW prefix allows you
to communicate between thread groups in broadcasting mode.

For "thread" and "coalescing" node launches, the input node declaration
receives the same RW prefix, if you want write to your record.
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Synchronization

[Shader("node")]
v01d ComputeBoundlngBox(

RWDispatchNodeInputRecord<Record> inputRecord
) A

|InterlockedMax(1nputRecord Get().aabbmax.y, ...);|

1f('1nputRecord FinishedCrossGroupSharing()) return;

DrawRect(...);

(do )i AMDQ
334 of applied sciences and orts to@ether we advance_

We use this ability to write to a shared record in our tutorial: We compute the
bounding box with atomic min/max operations, where all threads of our
dispatch write to same input record.
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[Shader("node")]
v01d ComputeBoundlngBox(

RWDispatchNodeInputRecord<Record> inputRecord
) A

InterlockedMax(inputRecord.Get().aabbmax.y, ...);

|Bar‘r‘1er‘(NODE INPUT_MEMORY, DEVICE SCOPE | GROUP_SYNC);|

1f('1nputRecord FinishedCrossGroupSharing()) return;

DrawRect(...);

CD ShneRsiry AMDQ
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Since we write to record memory from all threads concurrently, we must use a
barrier before reading back the resulting bounding box.
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Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg
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Now, we have a nice bounding box!
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In this section, we want to show you how Work Graphs can be used for
procedural generation.
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Procedural grass rendering

ion with GPU Work Graphs
Real-Time GPU Tree Generation

#Building the sample

We will present four examples that are based on two papers [Kuth et al. 2024,
Kuth et al. 2025], some blog posts, and samples that we have published.

Blog Posts:

https://gpuopen.com/learn/work graphs mesh nodes/work graphs mesh no
des-getting started/

https://gpuopen.com/learn/work graphs mesh nodes/work graphs mesh no
des-intro/

https://gpuopen.com/learn/work graphs mesh nodes/work graphs mesh no
des-procedural generation

https://gpuopen.com/learn/work graphs mesh nodes/work graphs mesh no
des-tips tricks best practices/ https://qithub.com/GPUQOpen-
LibrariesAndSDKs/WorkGraphsHelloMeshNodes

Samples:
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work graphs learning sample/
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https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work_graphs_learning_sample/
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Houdini

To get started, let's look at existing procedural software. An obvious mention is

Houdini.
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Second one would be Blender with its geometry nodes.

Logo from https://www.blender.org/about/logo/
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But also Unreal Engine now has a built-in system named PCG.
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All these tools have one thing in common: The generation is controlled by
designing node graphs consisting of reusable nodes.
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When we look at how or where these tools generate, we can see that this
usually happens on CPU. Then the result gets exported to a polygon format
onto disk. Finally, the ready-made model is then uploaded to the GPU for
rendering by a game engine.

With the new Unreal Engine PCG system, the export step is skipped: as the
generation happens in-engine, there is no need for an export.
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What we want to do with Work Graphs today is to totally skip the CPU part:
The GPU generates everything it needs for rendering.
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Radius 1.18
Height 1.04
Folds 70
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We already mentioned the node graphs that control the procedural generation,
but what are the edges connecting the nodes? We call the data that flows
between the edges control parameters. A node receives control parameters
and outputs control parameters. A very simple example for this would be
generation of this muffin: Three parameters control the shape of it.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 345



Radius 1.18
Height 1.04
Folds 70

Control parameters do not have to be scalar values: how about a bounding
box controlling the generation of a chair. By changing the bounds, we can turn

it into a bench or adjust the height of the back support.
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Or what about a polygon controlling the shape of an entire building?
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Let's start with our first example: a procedural market.
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For this, we went on a research trip to the Coburg marketplace and observed
the following: the overall shape of it can be described by a polygon. From each
corner, a path leads towards the center of the market. These paths are
connected by rings of paths. In the regions between the paths, there are the
booths. So, we call this the booth islands and should place some fitting assets
there like tents or tables. In the center of there market, there is usually a
special area with a special asset, like a tree or a well.
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Figure 1: (a) Polygon hierarchy and (b) straight skeleton

This market layout is very close to something called the straight skeleton of a

Jourme of Universal Computer Sience, wi. 1, na. 12 (1995, 752.761
bwined. 1711195, accepsed. 21295, appeared 2012095 © Springer Pub. Co.

A Novel Type of Skeleton for Polygons
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Absteact A new internal steucture for simple polygons, the straight skelecon, is in-
troduced and discussed. 1t is compased of picces of angular bisectores which partition
the iateriar of a given n-gon P in 4 tree-like fashion iato n monotone polygons. Its
straight-line structure and its lower combinatoeial complexity may make the straight
skeleton preferable to the widely used medial axis of & polygon. As a semingly un-
related application, the straight skeleton provides & canonical way of constructing a
polygosal roof above a general layout of graund walls.

Keywords: Simple polygon, angalar bissctors, internal skeleton, roof conseruction

1 Introduction and basic propertics

The purpase of this paper s to introduce and discuss a new and interesting
internal structure for simple polygons in the plane. The new structure, called
the straight skeleton, i solely made up of straight line segments whi
of anguls bisectors of polygon edges It uniquely partitons the in
given n-gon P into n monotone polygons, ane for each edge of
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polygon by Aichholzer and coworkers [Aichholzer et al. 1995].

Figure 1(a) and (b) from [Aichholzer et al. 1995].
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Figure 1: (a) Polygon hierarchy and (b) straight skeleton
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For generating it, a polygon is shrunk till one of two possible events occur.
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Figure 1: (a) Polygon hierarchy and (b) straight skeleton
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The merge event, where two points of the polygon merge into one.
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And the split event, where the polygon gets split into two.
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Now let's start with our market generation. A node of a work graph receives a
polygon as input.
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static const int maxMarketPoints = 32; ;

struct MarketRecord {

float2 points[maxMarketPoints];
¥

[Shader("node")]
[NodeLaunch("broadcasting™)]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]

<void Market (
DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,

H
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Let's look at how this would look like in code:
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static const int maxMarketPoints = 32; ;

struct MarketRecord {

Ifloatz points[maxMarketPoints]; |

3

[Shader("node")]
[NodeLaunch("broadcasting™)]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]

< void Market(
DispatchNodeInputRecordfMarketRecordy inputRecord,

uint gtid : SV_GroupThreadld,

CD SRveRSTY AMDQ
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Our market receives a market record as input, consisting of up to 32 points.
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static const int maxMarketPoints = 32; ;

struct MarketRecord {

float2 points[maxMarketPoints];
¥

[Shader("node")]
[NodeLaunch("broadcasting™)]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]

< void Market(
DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,

CD SRveRSTY AMDQ
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And we launch the market node as one thread group of 32 threads.
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Before shrinking the polygon, we need to check when the next straight
skeleton event occurs.
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float closestEvent = WaveActiveMin(distance); |
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We assign each thread to a corner of the polygon and compute when its event
occurs. By using the wave intrinsic WaveActiveMin, we can find the closest
event.
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So, in this case it is thread or point 2, but the polygon can still shrink quite a bit
before.
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After shrinking, the market node writes output records to a node for drawing
paths.
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And for the booth islands, we make a little bit of space.
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Next, let's look at how a work graph can output geometry for drawing.
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Draw List BVH Instance List Mesh Nodes

. Execute Indirect ®
int index;

InterlockedAdd(drawMeshArgumentCounter, 1, index);
drawMeshArguments[index] = args;

CD SRveRSTY AMDQ
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One way would be to append a draw command to a draw list and then
dispatch that list after the work graph has finished using execute indirect. To
allow for ray-tracing, one can also write to an instance list and then build a
TLAS from it after the work graph has finished.

Finally, mesh nodes can draw the generated geometry straight from the work
graph to the scene.
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Alright, let's get back to our market, where we have just finished one ring. To
do the next ring, the market node simply recurses with the new polygon.
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For this ring, we do the same as for the last.
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Now we must handle our first event: the polygon splits into two if we continue
shrinking.
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To resolve this, the market node recurses into two markets
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For the smaller side, we do not have enough space for another ring and finish

with a market center.
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For the other side, we can generate one more ring.
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And finish with a market center.
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608 0.96ms

Instances Generation Time

And with this, we have finished out market generation. Let's see it in action.
Because it runs every frame in less than a millisecond, we can see the
changes instantly.
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There is one thing, we have not mentioned, yet: You might have spotted these
garlands spanning in-between rings. But these are generated independently of
each other, so how do we find the connecting points?
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This is something we call dependent generation. Here is an example of it from
Unreal Engine. In the video, you can see the user dragging around the central
structure. When the structure marked with the red box instersects with
something, a bridge made of a stam is generated towards the center. The
structure in the blue box does not intersect with anything and thus no bridge is
generated.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 376



A spatial GPU data- ...fast creation and update ...and fast access
structure... time...
90
L~

l Raytracing g
 Fim

Draw List BVH Instance List Mesh Nodes

[Shader("node")]
int index; [NodeLaunch("mesh")]

InterlockedAdd(drawMeshArgumentCounter, 1, index); [OutputTopology(“triangle")]
drawMeshArguments[index] = args;

void Meshshader(...)

So, for our system, we need a spatial GPU data structure that is fast to create
and update and fast to access. This is exactly what a ray tracing BVH is for.
Creating and accessing it is just a matter of issuing API calls, and we have
already established earlier that we can output for BVH generation.
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During generation, we add these red bounding boxed to our BVH with a
separate instance flag to prevent hitting them when ray-tracing for shading
effects. Next a garland starting points shoots rays into its vicinity to find points
to connect to.

378
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And with this, we can have garlands from market elements generated
independently from each other.
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Let's look at another example for dependent generation: lvy ontop of existing
geometry.
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—J_’—{ IvyBranch J

I
while(growin - -
: shootRays();I -
updatePosition(); - -
drawAssets();
e

if(random) split();

CD SRveRSTY AMDQ
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An IvyBranch node is given a transformation as the input record. For growing,
it runs a loop that shoots rays into its vicinity to find a surface, updates the
transformation based on the result, and draws fitting assets like leaves and a
stem. Finally, there is a chance that the ivy branches into two which we solve
with recursion.
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while(gr‘owing){. --
|updatePosition(),‘| ---
e .

if(random) split();
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[ |
while(growing){ ---

shootRays (); I
- 11
|
1
I
i N
]

if(random) split();
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—‘1—’ —>  IvyBranch D

while(growing){
shootRays();
updatePosition();
drawAssets():
Ii-F(r'andom) split();l
}

CO AMDQ
of applied sciences and orts to@ether we advance_
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_J"_>| IvyBranch D‘T*

while(growing){
shootRays();
updatePosition();
drawAssets():
Ii-F(r'andom) split();l
}

CO AMDQ
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while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

COBURG
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while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

387

Here you can see an example video of this for more realistic assets.
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Let's extend on this idea and add a parent to IvyBranch, the IvyArea. It
receives a bounding volume as input, uses rays to find fitting starting locations
for ivy to grow and then outputs work records to IvyBranch.
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#Work Graph Ivy Generation Sample

@ Building the sample

@ Prerequisites
To build the Work Graphs Ivy Generation Sample, you must first install the following tools:

o CMake 317

o Visual Studio 2019 DA

her we advance_

Here you can see an example video of this. We have published a sample of
this if you want to play around with the generation yourself.
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View Mode Render Draw Calls
Baseline 27.74 ms 79,710

Overview
79,710 / 79,710

Market Baseline
20,859 / 24,068

Let's talk about timings. We generate our scene from two perspectives, an
overview where we generate everything, and a view from the market only,
where we can cull some of the generation.
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View Mode Generation Render Draw Calls

Overview Baseline 3.24 ms 27.74 ms 79,710

79,710 79,710

Market Baseline 2.34 ms 8.06 ms 20,859
20,859 /m

Here you can see the number of instances generated.
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View Mode Render Draw Calls
Baseline 27.74 ms 79,710

Overview
79,710 / 79,710

Market Baseline
20,859 / 24,068

As you can see, right now, the render timings go through the roof for the
overview perspective.
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View Mode Render Draw Calls
Baseline 27.74 ms 79,710

Overview
79,710 / 79,710

Market Baseline
20,859 / 24,068

The reason for this can be seen on the right. We have one draw call per
instance. We need instancing to optimize this.
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[ DrawAssetCoalescer }

[Shader("node"
[NodeLaunch
[NumThreads(32, 1,

void DrawAssetCoalescer(
[MaxRecords(256)]
GroupNodeInputRecords<DrawAssetRecord> input)
[MaxRecords (256)]

NodeOutput<MeshNodeRecord> DrawAsset

CD SRveRSTY AMDQ
ggggggggg sciencesondorts together we advance_

304

For this, we utilize a node in coalescing launch mode. It receives up to 256
records for drawing an asset and output up to 256 records. But ideally, we are
able to combine some of these using instancing.

394
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DrawAssetCoalescer

v

[ DrawAsset J [ DrawAsset J [ DrawAsset J [ DrawAsset J

DrawAsset

CD SRveRSTY AMDQ
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By sorting by asset, we can significantly reduce the number of draw calls.
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View Mode Generation Render Draw Calls
Overview Baseline 3.2;1 ms 27.74 ms 79,310
910 475110 Coalescing 3.14 ms 0.62 ms 965
Market Baseline 2.34 ms 8.0? ms 20,i359
20859724068 Coalescing 2.29 ms 0.51 ms 493
e ¥ N N\
[ DrawAsset J [ DrawAsset J [ DrawAsset J [ DrawAsset J
COMEr ~ AMDD .

Here you can see the improvement, the number of draw calls was significantly
reduced, same with the render timings.
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Instead of placing existing assets, for our last two examples, we want our work
graph to generate all the geometry from scratch.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 397



Generate
vegetation that...

...point towards the camera...
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L)

...is in the frustum...

398
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More specifically, for a given camera matrix, we want to only generate
everything that is in the camera frustum, faces the camera, and only in the

detail required.
The first one is easy: just omit dispatch records for work outside the frustum.
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ClutterGrid

struct ClutterTileRecord {
uint2 size : SV_DispatchGrid;
int2 offset;

ClutterTile

( GrassPatch J( ShroomPatch )( BeePatch ]
=

3

w SRveRSTY AMDQ
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For our ground clutter, we find the 2D grid that encloses our camera frustum.
Finer culling is then done inside the individual thread groups. We have a node

array of mesh nodes for generating different kinds of clutter like grass, low
LOD grass, mushrooms or insects.
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For our trees, we omit outputting records of a, e.g., branch of a tree, when its
bounding capsule lies outside the frustum.
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To only generate front facing triangles, we analyzed how far around a stem we
have to tessellate given the tree growth direction, the change in stem radius,
and the camera orientation.
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Front-face

Back-face

In this video, you can see this in action.
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For continuous LOD, we employ fractional tessellation.
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And in this video, you can see it in action.
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3.54 M Triangles

We do something similar with our leaf LOD.
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Another thing you can do with real-time generation is animation: simply adjust
the generation based on the current timestamp.
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Or how about adding seasonal detail based on a real number indicating the
time of year.
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Apple Tree Config

Branches

Branch Length

Bee= Attraction Up

Fruit Chance

over 150 more parameters!

And here you can see real-time edits of our final tree model. Edits effecting an
entire forest happen within the next frame.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

408



:

Level of Detail Factor

1.000

Tree Triangles (G-Buffer only)
30.24 M

With a continuous LOD, one can also adjust the image quality smoothly based
on the current frame time.
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Here is a performance measurement we did on a camera path. Frame-to-
frame times vary based on image complexity between 13 — 40ms.
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With an automatic LOD, the performance peaks can be mitigated.
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This concludes the procedural generation part of this course.

412
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Advanced Work Graphs

As part of the Advanced Work Graphs Section, we would like to present ideas
of how Work Graphs might potentially be implemented on a GPU.
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How does it work?

14

So, so far, we’ve seen what Work Graphs is, how it allows us to schedule work
directly on the GPU, and how that can help us solving different use-cases.

But how does this “launching work from the GPU” work?
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How does it work?

|commandList->Dispatch(480, 270, 1);|
commandQueue->ExecuteCommandLists(1, &commandList);

CD SRveRSTY AMDQ
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To understand this, we first need to look at how any launch of work on the
GPU works. In Direct3D12, we record commands, as for example this
Dispatch, into a commandList.
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How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);|

CD SRveRSTY AMDQ
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To execute this commandList, we chose a commandQueue and submit our
command list to it.
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How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists (1, EcommandList';

GPU driver

Micro Engine Scheduler

COBURG
w UNIVERSITY AMDH
of applied sciences and orts to@ether we advance_

0] cPU

¢
ol

[e9 GPU

To then actually execute the commandList, the GPU driver will copy the
command list ( = ) into GPU-visible memory...

417

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1l, &commandList);

GPU driver

0] cPU

Micro Engine Scheduler

GFX0 GFX 1 | Compute 0 Compute 1 -

[ea GPU

CO AMDQ
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... and passes an execute-command through a ring buffer to the GPU.

418
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How does it work?

Micro Engine Scheduler

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
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e GPU

On the GPU, this ring buffer is connected to the command processor (red box)

419
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How does it work?

Micro Engine Scheduler

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
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e GPU

Or more specifically the Micro Engine Scheduler, which is a part of the
command processor.

The Micro Engine scheduler is responsible for handling commands, such as
the one to execute the command list coming from the CPU.

420
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How does it work?

Micro Engine Scheduler

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
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e GPU

To process any of the incoming commands, the Micro Engine Scheduler has
access to different queues.

There are two types of queues: graphics queues (GFX 0, GFX 1 in the slide)
and compute queues (Compute 0, Compute 1, ..., in the slide).

421
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How does it work?

e GPU

Micro Engine Firmware

S | Kino )

Buffer,
GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
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The Micro Engine Scheduler selects one of those queues — in this case

Compute 0 — and maps the incoming command to its input ring buffer.

Each of these queues is a small processor which is programmed through the

firmware to execute the commands.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

422



How does it work?

Dispatch(48e, 270, 1) [=le[lalRs{ele(V]l=;

GFX0 GFX 1 Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
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e GPU

In this case, we want to execute our command list, so the command processor
fetches one command after the other from memory, parses, and executes it.

In our example here, we have the dispatch command from before.

423
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How does it work?

Dispatch(48e, 270, 1) [=le[lalRs{ele(V]l=;

GFX0 GFX 1 Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

ea GPU

Compute queue 0 then sets up and invokes the SIMDs in order to carry out the
dispatch command. This is a very simplified view of the GPU, as we are only
interested in how commands such as dispatches are handled and not the
specifics of how the actual thread groups of the dispatch are mapped and set
up to GPU hardware components.
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. 2 commandList->Dispatch (480, 270, 1);
How does it work? commandQueue - >ExecuteCommandLists(1, 8

Micro Engine Scheduler

Memory

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
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e GPU

We've seen that we can place a command buffer in GPU memory and have
the command processor execute it.

425
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How does it work?

Micro Engine Scheduler

Memory

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
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e GPU

This would mean that if we want to schedule work from the GPU itself, we can
just write to such a command buffer in GPU-visible memory and have the

command processor execute it.

426
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How does it work?

Micro Engine Scheduler
GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
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e GPU

In the case of Work Graphs, we‘re not writing a command list, but we‘re writing
records. To allow for a continuous cycle of writing and launching these records,
we can store these records in a ring buffer.

427
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How does it work?

Micro Engine Scheduler
| -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
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e GPU

As we have different records for different nodes, we need multiple ring buffers,
one for each node.

Here we have a very simple Work Graph with nodes A, B, C and D. A can send
records to B and C, i.e., thread groups that run code for node A can write
records to the ring buffers of node B and C.

Nodes B and C can both send records to node D.

428
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How does it work?

M

Micro Engine JEsiss

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
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e GPU

The compute processor can then scan these ring buffers in memory for
available records and decide what records to launch and how to launch them.

429
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Record {
.dispatchGrid = uint3(2, 1, 1)

}

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

e GPU

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
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As an example, we have placed a record in the ring buffer of node A. Node A is
using a dynamic dispatch grid and the record specifies that two thread groups

should be launched.

430

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



How does-it2aaxi2

Record {
.dispatchGrid = uint3(2, 1, 1)
}

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

e GPU

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CD SRveRSTY AMDI1
431 of applied sciences and orts to@ether we advance_

Compute queue 0 can then find this record in the ring buffer and launch two
thread groups for it. In our simplified GPU, we’ve mapped each of these thread
groups to on SIMD.
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Record {
.dispatchGrid = uint3(2, 1, 1)

}

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

e GPU

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
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Each of these thread groups then want to send two records to node B and two
records to node C. These records are visualized by small yellow boxes at the
top of each of the SIMDs.

432
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How does it work?

Micro Engine Scheduler

GFX1 | Compute 0 Compute 1 -

D SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

e GPU

Each of these thread groups can then write their outputs to the respective ring
buffers of the nodes. Here the first thread group writes its four records...
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ea GPU

...and so does the second thread group.
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Once writing is complete these records are ready to be picked up by command
queue 0 and launched.
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Command queue 0 therefore launches thread groups for each of the records in
the ring buffer of node B and node C. In our example, each of these records
will launch a single thread group, this yielding four thread groups for running
code for node B and four thread groups running code for node C.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 436



How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

ea GPU

Each of these thread groups then want to send between one and two records
to node D. These are again visualized with small yellow boxes in each of the
thread groups.
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Each of these thread groups then writes their output to the ring buffer of node
D. The first thread group of node B writes a single record, ...
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..the third one writes two records,
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... and the third one writes a single record again.
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And finally the last thread group of node B writes two records.
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The same process continues for al the thread groups for node C. The first
thread group starts by writing two records to the ring buffer of node D.
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The second thread group wants to write two records to the ring buffer of node
D.

However, the ring buffer for node D is now full, thus no more records can be
written to it. Simultaneously, all SIMDs of the GPU are busy, thus the
command queue cannot launch any records to free up space in the ring buffer
for node D.

This is obviously a problem, since we are now in a deadlock. So maybe this
launching work from the GPU is not as simple as initially assumed. Let’'s go
back a few steps to see what we missed.
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Node C Node D

We return to the state just before we started launching the records in the ring
buffers of node B and node C. Currently, we have four record in each of these
ring buffers.

In order to avoid the deadlock from before, the work graphs runtime must
ensure a forward progress guarantee.

What does the forward progress guarantee mean?

Essentially, once the graph is kicked of, it needs to be able to process all its
records without any deadlocks.
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This is ensured with the output limits for each node. We've seen in the
beginning of this course, that we need to annotate all outputs of a node with
the maximum number of records that we intend to send.
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With this limit, the work graph runtime, i.e. the firmware running on the
compute queue, can then make a reservation into the ring buffer of node D.

As each thread group of node B can send up to two records to node D, the
compute queue reserves the first two slots in the ring buffer of node D.
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This continues for the second record in the ring buffer of node B, thus the
command queue reserved two more slots in the ring buffer of node D.
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ea GPU

The same process happens for the third...
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...and fourth record in the ring buffer of node B.

Now, the ring buffer of node D is full with output reservation of all the thread
groups of node B. This guarantees that every one of these thread groups can
write up to two records into the ring buffer of node D without overflowing the
ring buffer.

On the other hand, this also means that we cannot launch any further thread
groups that can produce records for node D. In our example, we cannot launch
the four records available in the ring buffer of node C.

As you can see, this forward progress guarantee can impact the overall GPU
occupancy. This can be solved by choosing appropriate sizes for the ring
buffers.

So, now we've seen how launching new work directly from the GPU can work.
We've seen the challenges that come along with this and we’ve seen how the
work graph runtime can avoid deadlocks, whilst operating with limited
resources.
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But so far, we’ve only looked at the compute-only node and how the compute
queues of the command processor execute the work graph.

But what about mesh nodes?
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[Shader("node")]

[NodeLaunch("mesh")]

[NodeId("LineMeshNode", ©)]

[NodeDispatchGrid(1, 1, 1)]

[NumThreads (32, 1, 1)]

[OutputTopology("triangle")]

void LineMeshShader(
DispatchNodeInputRecord<Line> ing

"mesh"

<

out indices uint3 outputIndices[4], Thread Groups
out vertices Vertex outputVertices[6]) §§§§§§§§§§§§
{ :
}
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As a reminder, with mesh nodes you can directly output primitives to the
rasterizer.

Mesh Nodes consist of a mesh shader, an optional pixel shader, and all other
state associated with a pipeline state. The mesh shader is almost identical to
the mesh shading pipeline.

Mesh Nodes come with a new launch mode "mesh" that works the same as
broadcasting launch mode. That means a grid of thread groups is launched.
Each thread group outputs a meshlet, i.e., a small mesh consisting of a vertex
buffer and an index buffer. This one gets then passed to the rasterizer. The
Mesh Node must, however, not output any records. Therefore, a Mesh Node is
bound to be a leaf node of the Work Graph.
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e GPU

One limitation of the compute queues, which we used before for compute
nodes, is that they cannot set up the graphics state, which is required for
launching a mesh node.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 452



Mesh Nodes

M

Firmware

GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

Micro Engine Scheduler
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Therefore, we need to use a graphics queue for mesh nodes. Graphics
queues are also programmed by firmware and thus can scan the ring buffers

assigned to mesh nodes in GPU memory.
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To allow the graphics and compute queue share the work load of a work
graph, we can change the Micro Engine Scheduler command to a so called
gang submit. This joins up a graphics (GFX 0) and compute queue. They can
now work together on processing the records.
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Mesh Node

Graphics Queue 0 (GFX 0) can then scan the ring buffer for the mesh node(s)
(here shown as the ring buffer on the bottom) and launch mesh shader thread

groups.

To launch a mesh node, the graphics queue will also set up the graphics state
(e.g. back-face culling or blend state) for each different mesh node. Thus, with
a single DispatchGraph you can now switch between Pipeline State Objects.
This is something that you couldn’t do before with a regular draw command.
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In this example, GFX0 scanned the ring buffer for “Mesh Node”, found one
record, and launched four thread groups for the mesh node.
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With this, we can have mesh nodes (with their mesh and pixel shaders) and
‘regular” compute nodes running in parallel.
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Thus, the GPU can feed itself enough work to completely fill it, all without any
barriers or other involvement from the CPU.
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So this concludes our advanced session. With Work Graphs, we have an
entirely GPU-driven Producer-Consumer Network that you as programmer can
specify using a shading language. The advantage is the memory management
is handled by the Work Graphs system, while also guaranteeing you a
deadlock-free execution.
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We have seen Work Graphs, its core concepts, and exciting applications.
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With Work Graphs you model data flow through a directed acyclic graph with
trivial self-recursive cycles. The data flow is represented by records that you
send from one node to another. Records are not dispatches, but eventually

trigger dispatches. The specifics of these dispatches are specified by one of
three different launch modes.
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Combining all these concepts gives you a producer-consumer network running
entirely on the GPU.

The memory for these records is managed by the Work Graphs system.
Further, the Work Graphs system guarantees a deadlock-free execution under
limited resources.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 462



Work Graph Playground

Hello Work Graphs E,I Records CJ Node Launches G Material Shading G
Recursion /| Synchronization 4 Recursive Grids Mesh Nodes

RN

COBURG
wUNIVERSIYY AMDn
463 of applied sciences and orts to@ether we advance_

In this course, we have walked you through the first six tutorials of our Work
Graph Playground App.
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For the Recursive Grids tutorial, you'll need to combine everything that you've
learned so far: nodes, records, different launch modes, recursion, and
synchronization.
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With the latest update, we've also added support for mesh nodes and a
dedicated mesh nodes tutorial. You can find mesh-nodes enabled versions of

the  playground in  our releases: https://github.com/GPUQOpen-
LibrariesAndSDKs/WorkGraphPlayground/releases
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We've also released a more complex sample for our procedural tree
generation. This sample runs in the Work Graph Playground App.

You can find the sample source code here: https://github.com/Bloodwyn/gptree
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We also have more standalone samples available on GPUOpen.

For example, you can find this compute rasterizer example here:
https://gpuopen.com/learn/work_graphs_learning_sample/
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468

If you're interested in procedural generation with mesh nodes, we have
additional samples available here:
https://github.com/search?q=topic%3Ameshnodes+org%3AGPUOpen-
LibrariesAndSDKs&type=repositories
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AMD 1
Developer Community

Connect with us

& Discord

fa gpu-work-graphs

discord.q

Join the gpu-work-graphs channel on the AMD Developer Community Discord
server at https://discord.gg/amd-dev
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This concludes our course today. Big thanks go out to our undergraduate and
graduate students at Coburg University, the Work Graphs team at AMD, and
Matthaus.
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