COBURG
AM D ' UNIVERSITY
of applied sciences and arts

GPU Work Graphs

Welcome to our GPU Work Graphs Course here at SIGGRAPH 2025 in
Vancouver.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

GPU Work Graphs - Instructors

Bastian Kuth Max Oberberger Quirin Meyer
PhD Student MTS Software Engineer Computer Graphics Professor
Coburg University AMD Coburg University
(doYi mDH .
2 of applied sciences and arts L er we advance_

Before we start, allow us to introduce ourselves. We are Bastian Kuth from
Coburg University, Max Oberberger from AMD, and | am Quirin Meyer, also
from Coburg University.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

GPU Work Graphs — Timeline
AMD & Coburg SIGGRAPH
.Project Course.
>
CD S«S‘?é:;m arts ﬁgﬂ?ﬂ advance_

We are teaching a course here today at SIGGRAPH on Work Graphs.

Coburg University and AMD have been jointly focusing on the practical
exploration of Work Graphs since January 2023 with funding from the state of
Bavaria.

In the last two and a half years, Work Graphs has been dominating our work
life, and we would like to tell you briefly what we and others have done so far
with this new technology.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

GPU Work Graphs — Timeline
AMD & Coburg Vulkan SIGGRAPH
Project Support Course
5 Work Graphs 5 5
: Preview, ¢ Samples :
= Work Graphs Preview
= Sample Code
= Vulkan Support S e P
= Work Graph Samples Wﬁ
CO e AMD{
4 A ofapplied sciences and arts together we advance_

While we were conducting our research, Work Graphs occurred as preview
with sample code, Vulkan support was added, and AMD published multiple
Work Graphs samples.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/learn/gpu-work-graphs/gpu-work-graphs-intro/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloWorkGraphs
https://gpuopen.com/gpu-work-graphs-in-vulkan/
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work_graphs_learning_sample/

GPU Work Graphs — Timeline

AMD & Coburg Vulkan GDC 24 HPG 24 SIGGRAPH
Project Support Work Graph 1.0 Paper Course

Work Graphs
Preview,

L

COBURG
wUNIVERSIYY AMDn
5 of applied sciences and orts to@ether we advance_

At the Game Developer Conference (GDC) 2024, we presented our first demo
using Work Graphs. We published our research results at High Performance
Graphics (HPG) 2024.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://www.youtube.com/watch?v=QQP6-JF64DQ
https://gpuopen.com/events/amd-at-gdc-2024/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
https://gpuopen.com/download/publications/Real-Time_Procedural_Generation_with_GPU_Work_Graphs-GPUOpen_preprint.pdf
https://gpuopen.com/download/publications/Real-Time_Procedural_Generation_with_GPU_Work_Graphs-GPUOpen_preprint.pdf

GPU Work Graphs — Timeline

AMD & Coburg Vulkan GDC 24 HPG 24 SIGGRAPH
Project Support Work Graph 1.0 Paper Course

Work Graphs
Preview,

N~

DX12 Vulkan
Mesh Nodes Mesh Nodes

DX 12 Mesh Nodes & Blog Posts
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-
getting_started/

= Vulkan Mesh Nodes

COBURG
(doYi AMDQ
6 of applied sciences and orts to@ether we advance_

Our research makes use of Mesh Nodes, which were made available in the
third quarter of 2024. We also wrote several blog posts teaching about work
graphs and mesh nodes.

You can find a video of our demo, which highlights some of the benefits of
Work Graphs here: https://gpuopen.com/learn/gdc-2024-workgraphs-
drawcalls/

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://www.youtube.com/watch?v=QQP6-JF64DQ
https://gpuopen.com/events/amd-at-gdc-2024/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://gpuopen.com/learn/gpu-workgraphs-mesh-nodes-vulkan/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/

GPU Work Graphs — Timeline

AMD & Coburg Vulkan GDC 24 HPG 24 GPC SIGGRAPH

Project Support Work Graph 1.0 Paper Master Class Course
. Work Graphs . H . . .
. Preview, 5 Samples H . . :
) . . . L] . L L ;

Work Graph Playground App

COBURG
wUNIVERSIYY AMDn
7 of applied sciences and orts to@ether we advance_

Our GDC demo and our HPG paper raised some excitement, so we got invited
to teach a Master Class at the Graphics Programming Conference in Breda,
Netherlands in 2024. This is where we released our Work Graph Playground
App for the first time. We are going to use this app in this course, too. In case
you brought your laptop, you can join us experimenting with our Work Graph
Playground App.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/gpc-2024/

Work Graph Playground App

1. Go to: https://wgpa.short.gy/
github.com/GPUOQOpen-LibrariesAndSDKs/WorkGraphPlayground

2. Download the Latest Release

3. Unzip WorkGraphsPlayground.zip

4. Open Folder wOr‘kGraphsPlaygroV

5. Run WorkGraphPlayground.exe

. Testing adapter "Microsoft Basic Render Driver": Failed
6. Optional: DownloadWarpAdapter.bat to create D3D12 device.
WARP adapter does not support D3D feature level 12.2
and work graphs.
See readme.md#running-on-gpus-without-work-graphs-

If you need Software Emulation

support for instructions on installing latest WARP
adapter or run DownloadWarpAdapter.bat if you are using
pre-built binaries.

No device with work graphs support was found.

CO ke AMDQ1
8 ofappiied sciencesondorts together we advance_

To install the app as a binary, follow these steps. We encourage you to do this
right away. In ca. half an hour, you are invited to actively use it.

If your GPU does not support Work Graphs, use the WARP (i.e., software
emulation) adapter. Use the DownloadWarpAdapter.bat batch script to
download the corresponding DLL.

You can build it from source, too, by following the instruction in the GitHub
repository.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://wgpa.short.gy/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground

GPU Work Graphs — Timeline

Jan 23 Jul 23 Mar 24 Jul 24 Nov 24 Aug 25
AMD & Coburg Vulkan GDC 24 HPG 24 GPC SIGGRAPH
Project Support Work Graph 1.0 Paper Master Class Course
. o o . o o
o Jun 23 o) o o o .
. Work Graphs : A;Q/Oclt 23 : : : :
: Preview, | SAMPI : : : :
.
. . o o
. . s
: : : >
. . N
Jul 24 Oct 24 M
DX12 Vulkan :
Mesh Nodes Mesh Nodes :
.
Mar 25
GDC
Demo

. COTEr ... oo
Besides the app, we created a demo for GDC 2025, where we generated

vegetation directly on the GPU with Work Graphs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736
https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736

GPU Work Graphs — Timeline
GDC 24 HPG 24 GPC SIGGRAPH
Work Graph 1.0 Paper Master Class Course
Real-Time GPU Tree Generation : : : .
e GDC HPG
Demo Paper
CD SRSy AMDQ1
of applied sciences and ot tOgether we advance_

Our demo is full of research findings that we were able to share at HPG 2025
just a couple of weeks ago.

You can watch a recording of Bastian’s talk at HPG here:
https://www.youtube.com/watch?v=SPWDLMc-9h4&t=26050s

The full paper is available here:
https://diglib.eg.org/bitstream/handle/10.2312/hpg20251168/hpg20251168.pdf

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

10

https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736
https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736
https://www.youtube.com/watch?v=SPWDLMc-9h4&t=26050s
https://diglib.eg.org/bitstream/handle/10.2312/hpg20251168/hpg20251168.pdf

GPU Work Graphs — Timeline

AMD & Coburg Vulkan GDC 24 HPG 24 GPC SIGGRAPH

Project Support Work Graph 1.0 Paper Master Class Course

. Work Graphs :

: Preview, o S$amples 3 : 1

: A] 1y, 4m 23d :
Not even 1.5y old since official release Dx12 Vulkan : :

Mesh Nodes Mesh Nodes

) Goal for today:

GDC HPG
Teach how to use Work Graphs Demo Paper
CO R AMDQU
1" of applied sciences andort: together we advance_

In June, we celebrated two years of work graphs when including the preview
phase. The official announcement of Work Graphs dates back only less than
one and a half year. So, it is a rather new technology.

Our goal in this course is that we teach you how to use Work Graphs and that
you can use it for your own applications.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

1"

GPU Work Graphs — Course Agenda

Introduction & Foundations 14:00 — 14:30
Concepts 14:30 — 15:30
Nodes
Records
Launches
Break 15:30 — 15:45
Advanced Work Graphs 15:45 - 16:45

Material Shading
Recursion & Synchronization
Procedural Generation
Under the hood
Wrap-Up 16:45 —17:00 AMDR

UNIVERSITY
12 of applied sciences and ot tOgether we advance_

Here is a brief overview of the topics that we will cover today.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Introduction & Foundations

? GPU Concepts for Work Graphs

? Why Work Graphs?

CO ke AMDQ
13 ied scie

of applied sciences and ot tOgether we advance_

You have just seen some applications demonstrating the power of Work
Graphs. Before going into details, we want to first answer the main question:

Why even Work Graphs?

That comes with questions concerning alternative approaches and why you
should prefer Work Graphs over them. But before that, we provide a summary
of GPU concepts that are important for Work Graphs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

13

Introduction & Foundations

? GPU Concepts for Work Graphs
? SIMD
? Work ltem
? Work Amplification, Work Reduction
? Compute Shaders

? Mesh Shaders

AMDQO

dors together we advance_

We believe that those concepts are important for Work Graphs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

14

GPU History

Geometry Shaders (D3D10) Execute Indirect (D3D12)
Register Hardware Tessellation (Consoles) .
Combiners . .
Fragmept Shader Model 32 . Work Graphs
X .
Proce.sslng Dynamic ¢ Mesh Shading & GDC
. Control Flow e . -
. . . Hardware M
¢ Programmable . + CUDA . Raytracing .
. . e e . ¢ .
Vertex . . .
. .
e Processing .
0 .
.>
GPGPU
ATI .
Close-to-the-Metal
Shader Model 2 Hardware Tessellation (D3D11)
Programmable Compute Shaders
Vertex/Pixel
Shader Pipeline
CDS%%SSW AMD{
of applied sciences and orts to@ether we advance_

| can best explain these concepts using a brief history of the GPU evolution.

The demand for greater flexibility has driven the evolution of GPU
programmability throughout the past decades. Early register combiners
allowed rudimentary fragment processing [Kilgard 1999], and later vertex
processing became programmable [Lindholm et al. 2001]. In 2002, the DirectX
9.0 Shader Model 2.0 is considered to be the first programmable hardware
vertex- and pixel-shader pipeline. Two years later, Shader Model 3.0 added
dynamic control flow [Akenine-Moller 2018]. Geometry shaders [Blythe 2006]
followed with programmable per-primitive processing. Hardware tessellation
[Andrews and Barker 2006] allowed for fast on-chip geometry amplification
[Niessner et al. 2016]. The introduction of compute-shaders [Peercy et al.,
Nvidia 2007] exposed a hardware-oriented programming model - the
beginning of GPGPU. It allowed the GPU to execute high-performance
graphics and non-graphics applications, as shown for example in the GPU
Gems 3 book [Nguyen 2007]. Also, modern GPU ray tracing [Haines and
Akenine-Moller 2019] on hardware originates back to compute-shader-based
ray-tracing implementations [Parker et al. 2010]. With indirect execution or
execute indirect, the sizes of draw-calls and dispatches are taken from GPU
memory, allowing for GPU-driven work creation. Amplification and mesh
shaders [Kubisch 2018] provide a single-level, non-recursive amplification
pipeline for rasterization workloads, following the programming model of
compute shaders.

Work Graphs [Microsoft 2024] increase GPU programmability by providing
multi-level, self-recursive amplification of both compute and rasterization
workloads.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

15

GPU History

Geometry Shaders (D3D10)
Hardware Tessellation (Consoles)

Execute \nd\.rect (D3D12)

Mesh $hading

Work (.Braphs

Shader Model 2
Programmable
Vertex/Pixel
Shader Pipeline

Hardware Tessellation (D3D11)
Compute Shaders

COBURG
UNIVERSITY
of applied sciences and orfs

AMDQO

together we advance_

We find those milestones sufficient to explain the basic concepts of GPU

pipelines...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

16

Programmable Vertex & Pixel Shader Pipeline

Programmable
Vertex/Pixel
Shader Pipeline

CD SRveRSTY AMDQ
17 of applied sciences and ot tOgether we advance_

and we start off with Shader Model 2 which introduced programmable
vertex and pixel shading.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

17

Programmable Vertex & Pixel Shader Pipeline

_ InputAssembler |

Vertex Shader

Rasterizer

Pixel Shader

Output Merger |

Shader Mode! 2

Shader Pipeline

CD SRveRSTY AMDQ
18 of applied sciences and art = together we advance_

Here is a simplified version of the pipeline. The blue and yellow boxes are the
different pipeline stages.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

18

Programmable Vertex & Pixel Shader Pipeline

| i

Input Assembler |

L
-1
0
1
Rasterizer

Output Merger

CDS‘N’F#E&V AMDQ
19 ci

of applied sciences and orts to@ether we advance_

Given a triangle mesh with vertices, shown as circles. The black edges
connect the vertices to form triangles. The vertex coordinates are 4D
coordinates shown as column vectors.

They are input to the pipeline, shown on the right.

As output, you get pixel graphics, as shown in the pixel grid on the lower left of
the slide.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

19

Programmable Vertex & Pixel Shader Pipeline
1 1 Vertex Buffer
| i

1

0
0
1

=1
0 .
0 Input Assembler
1
0

l 1 l Vertex Shader
\‘ Rasterizer]
Pixel Shader

Output Merger

COBURG
(doYi AMDQ
20 of applied sciences and orts to@ether we advance_

The vertex coordinates are stored in an array called vertex buffer.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Programmable Vertex & Pixel Shader Pipeline
-1 1 Vertex Buffer
0 1
0 0 -1 _
1 1 8 Input Assembler
1
0 1 2 3
[1\ lll Index Buffer
0 0
1 ' |0Jo - .
[Rasterizer
0|®
0 1
(Output Merger
CDSEF#S?.W ?g:lhnn |
2 afappted scisnces and s together we advance_

And the vertex indices are stored in what is called an index buffer.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Programmable Vertex & Pixel Shader Pipeline
Vertex Buffer Index Buffer

-1
0
0 | Input Assembler
i 0|0
A (O] [©)
0 1
Vertex Shader
Rasterizer
Output Merger
COBURG AMDD1
22 wgwﬁ:!tﬁmmams together we advance_

Let’s recap what happens when we input a vertex- and an index buffer into the
pipeline.

First, each element of the index buffer is fed into the input assembler.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

22

Programmable Vertex & Pixel Shader Pipeline

Vertex Buffer Index Buffer Q Q ¢ Q Q Q

I O O (Input Assembler J
|0 Voo

©J[€)]

0 1

A Il

Vertex Shader

Rasterizer

Output Merger

COBURG
(doYi AMDQ
23 of applied sciences and orts to@ether we advance_

The input assembler then gathers the elements from the vertex buffer and
makes them available at its outputs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

23

Programmable Vertex & Pixel Shader Pipeline

@

Input Assembler

Q@
gg ! :
| -i i i

Vertex Shader

Rasterizer

Output Merger

COBURG
wUNIVERSIYY AMDn
2 of applied sciences and orts to@ether we advance_

The input assembler can operate on each element independently. This
enables GPUs to have a high degree of parallelism.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

24

Programmable Vertex & Pixel Shader Pipeline

[Input Assembler
—1 =il
0 0
0 0
1 1
Vertex Shader
Rasterizer

Output Merger

(o) AMDQ1
2 of applied sciences and orts to@ether we advance_

Then the vertices are fed into the next stage: the vertex shader.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(b@) { I Input Assembler
float4x4 m; * *
} -1 -1
0 0
struct VertexIn { 0 0
float4 p : POSITION; 1 1
¥
Vertex Shader
struct VertexOut {
float4 q : SV_POSITION;
¥
VertexOut VS_main(VertexIn i) {
VertexOut o; Rasterizer

0.q = mul(Const.m, i.p);
return o;

}

Output Merger

r COBURG
UNIVERSITY
2 of applied sciences and arfs

AMDQO
together we advance_

In the vertex shader, you as a programmer can write shader code, as shown

on the left.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

26

Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(bo) { | Input Assembler
float4x4 m; *
} =il 1
struct VertexIn { 0 0
float4 p : POSITION; 1 1
¥

Vertex Shader

struct VertexOut {
float4 q : SV_POSITION;
¥

VertexOut VS_main(VertexIn i) {
VertexOut o;
0.q = mul(Const.m, i.p);
return o;

}

Rasterizer

Output Merger
w SRSy AMDQ1

dorts together we advance_

You define a struct, describing the output of the input assembler. At the same
time, it serves as input to the vertex shader. For each vertex that the input
assembler outputs, the GPU launches one vertex shader thread.

Let’s do an example with the first vertex.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

27

buffer Const : register(be) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;
¥

struct VertexOut {
float4 q : SV_POSITION;
¥

Programmable Vertex & Pixel Shader Pipeline

VertexOut VS main(VertexIn i

VertexOut o;

0.q = mul(Const.m, i.p);

return o;

}

| Input Assembler
-1 -1
0 0
0 0
1 1
Vertex Shader
Rasterizer

Output Merger

COBURG AMDD1
COHEr....

o together we advance_

The vertex inside the yellow box serves as input to one vertex shader thread.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

28

Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(b@) { I Input Assembler
float4x4 m; * *
} -1 -1
0 0
struct VertexIn { 0 0
float4 p : POSITION; 1 1
¥
Vertex Shader
struct VertexOut {
float4 q : SV_POSITION;
¥
VertexOut VS_main(VertexIn i) { 1
VertexOut o; 0 Rasterizer
0.q =|mul(Const.m, i.p) j=— 0
return o; 1
}
Output Merger
COBURG AMDD
- QO ... togetherwescvance.

With that input, the vertex shader thread carries out the operations a
programmer specified...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

29

Programmable Vertex & Pixel Shader Pipeline

buffer Const :
float4x4 m;

register(bo) {

}

struct VertexIn {
float4 p : POSITION;

¥

struct VertexOut {
float4 q : SV_POSITION;
¥

VertexOut VS_main(VertexIn i) {
VertexOut o;

return o;

}

H

| Input Assembler
-1 -1
0 0
0 0
1 1
Vertex Shader
Rasterizer

Output Merger

COBURG AMDD1
COHEr....

o together we advance_

... and writes the output, that a programmer defined with the struct shown in

the blue box.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

30

Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(b@) { I Input Assembler
float4x4 m; * *
} =il 1
struct VertexIn { 0 0
float4 p : POSITION; 1 1

¥
Vertex Shader
struct VertexOut {

float4 q : SV_POSITION; -
¥

VertexOut VS_main(VertexIn i) {
VertexOut o; Rasterizer
0.q = mul(Const.m, i.p);
return o;

}

Output Merger
m ARSIy AMDQ1

ndars together we advance_

The result is then made available at the vertex shader output.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

31

Programmable Vertex & Pixel Shader Pipeline

buffer Const : register(be) { I Input Assembler
float4x4 m; *
}

struct VertexIn {
float4 p : POSITION;
¥

struct VertexOut {
float4 q : SV_POSITION;
¥

VertexOut VS_main(VertexIn i) {
VertexOut o;
0.q = mul(Const.m, i.p);
return o;

}

Rasterizer

Output Merger

(o) AMDQ1
32 of applied sciences and orts to@ether we advance_

All other vertices undergo the same fate: They pass through the same vertex
shader code, however, using different inputs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

32

Programmable Vertex & Pixel Shader Pipeline

VertexOut VS_main(VertexIn i) { l

Input Assembler
VertexOut o; * *
0.q = mul(Const.m, i.p); -1 -1
return o; I 0 ‘ 0 ‘

} 0 0
1 1
v
Single Instruction d
—0.5 —0.5]
0 0
0 -
T 1 |
Multiple Data Rasterizer

Output Merger
w SRSy AMDQ1

+« together we advance_

This is a very important concept. The same piece of code is executed on
different data items.

In other words, a single instruction operates on multiple data. Hence the name
Single Instruction, Multiple Data...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

33

SIMD

Programmable Vertex & Pixel Shader Pipeline

[Input Assembler

? GPU Concepts for Work Graphs
2 SIMD
? Work Item
? Work Amplification, Work Reduction

? Compute Shaders

f? Mesh Shaders

Rasterizer

Output Merger
w SRSy AMDQ1

dorts together we advance_

... or short SIMD.

SIMD is the underlying parallel computing model of GPUs and it is very
important for their performance. Since Work Graphs run on a GPU, they make

use of the SIMD model.

Side note: In the context of GPUs, the massively parallel underlying computing
model is sometimes also referred to as SIMT (Single Instruction, Multiple

Threads).

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

34

Programmable Vertex & Pixel Shader Pipeline

S I M D I Input Assembler
Work Items
Rasterizer
Output Merger
- m Sigfv:\é;dgﬂYudi ﬁgq'?hEE advance_

From an abstract perspective, the vertices attributes, as the D (data) in SIMD,
are Work Items...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

35

Programmable Vertex & Pixel Shader Pipeline

SIMD

|

Work Items

? GPU Concepts for Work Graphs
L2 SIMD

.2 Work Item

? Work Amplification, Work Reduction

Rasterizer

? Compute Shaders

? Mesh Shaders

Output Merger
COBURG AMDO
% (DNS il

sssssssssssssssssssssss together we advance_

... that flow through a pipeline.

In a pipeline, one stage acts as a producer, and the subsequent stage as a
consumer. A stage can consume and produce items at the same time.

The items that flow through the pipeline are called work items.

From that point of view, the graphics pipeline is already providing a data-flow-

oriented model which is also used in Work Graphs, however, in a much more
sophisticated way.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

36

Programmable Vertex & Pixel Shader Pipeline

| Input Assembler

Rasterizer

Output Merger
m ARSIy AMDQ1

o together we advance_

But going back to what you are already familiar with: Our vertex-pixel-shader
pipeline.

The vertex shader has just transformed the vertices.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

37

Programmable Vertex & Pixel Shader Pipeline

—0.5
0
0
1

-0.5
-0.5
0
1

0.5
o
1
1

Input Assembler

Vertex Shader

? GPU Concepts for Work Graphs
2 SIMD
[Work Iltem

? Compute Shaders

? Mesh Shaders

? Work Amplification, \Work Reduction

Rasterizer J

Output Merger
CD SRSy AMDQ1

sssssssssssssssssssssss together we advance_

The rasterizer then gathers three-tuples of vertices and discretizes the

triangles into fragments.

This can be considered work amplification. Consider a triangle an input data
item. We amplify that input data item to a much larger number of output items,

i.e., our fragments.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

38

Programmable Vertex & Pixel Shader Pipeline

:

Input Assembler

? GPU Concepts for Work Graphs
2 SIMD
[Work Iltem
[Work Amplification, Work Reduction
? Compute Shaders
? Mesh Shaders

Vertex Shader

Rasterizer |

Output Merger

N w SRveRSTY AMDQ

sssssssssssssssssssssss together we advance_

But the rasterizer can also reduce work entirely, for example by removing
triangles that do not produce fragments.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

39

Programmable Vertex & Pixel Shader Pipeline

[Input Assembler |

Vertex Shader

| Rasterizer |

Pixel Shadi
floatd PS_main(Vertexout v) : SV.TARGET {

float ¢ = v.q.y + 0.5;
return float4(c, c, c, 1.9);
}

Output Merger

(doYi AMDQ1
40 of applied sciences and ot tOgether we advance_

The pixel shader is again a program using the SIMD model. Each fragment is
its input work item ...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

40

Programmable Vertex & Pixel Shader Pipeline

[Input Assembler |

Vertex Shader

| Rasterizer |

float4 PS_main(VertexOut v) : SV_TARGET {
float ¢ = v.q.y + 0.5;
return float4(c, c, c, 1.9);

}

Output Merger
w SRSy AMDQ1

dorts together we advance_

... and gets executed by one thread on the GPU ...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

41

Programmable Vertex & Pixel Shader Pipeline

[Input Assembler |

Vertex Shader

| Rasterizer |

float4 PS main(VertexOut v) : SV_TARGET { CEC B W W W W

float ¢ = v.q.y + 0.5;
return float4(c, c, c, 1.9);

}

Output Merger

(doYi AMDQ1
a2 of applied sciences and ot tOgether we advance_

... which computes its output color ...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

42

Programmable Vertex & Pixel Shader Pipeline

[Input Assembler |

Vertex Shader

Rasterizer |

Pixel Shader

Output Merger J

(doYi AMDQ1
43 of applied sciences and ot tOgether we advance_

Each fragment shader thread then passes its output data item to the output
merger.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

43

Programmable Vertex & Pixel Shader Pipeline

[Input Assembler |
Vertex Shader
L Rasterizer |

Pixel Shader

Output Merger

CD SRveRSTY AMDQ
4 T P QAT of applied scisnces and arte together we advance_

The output merger then merges the fragments with the existing ones to form
the final image.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

44

Graphics Pipeline — 2002 Vertex & Pixel Shader Pipeline

Input Assembler |

Vertex Shader
) Rasterizer
.
N
o
. Pixel Shader
.
.
Shader Model 2 L Output Merger
Programmable
Vertex/Pixel
Shader Pipeline
coauwel . AMDH
. COTE ... toptherwestvance.

This concludes our talk about the vertex- and pixel-shader pipeline from 2002.

We have seen that some concepts that we will use for Work Graphs already
existed back then.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

45

Shader Model 2
Programmable
Vertex/Pixel
Shader Pipeline

Graphics Pipeline — 2002 Vertex & Pixel Shader Pipeline

| Input Assembler |

Distinct
Hardware == Vertex Shader
Units
L Rasterizer
Distinct
Hardware Pixel Shader
Units

| Fixed Function |

| Output Merger

Programmable

AMDQO

dors together we advance_

The pipeline has two programmable stages and several configurable fixed-

function stages.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

46

Graphics Pipeline — 2006 Geometry Shaders

IGeometry Shaders (D3D10)I

_ InputAssembler |

IR S Voo Shader |

on Vertices
IMD
on PSrimitives_> Geometry Shader

. > | Rasterizer J

.

.

N

. S::MDI — Pixel Shader

: on Pixels
Shader Model 2 — _ Output Merger |
Programmable |~ Fixed Function Programmable

Vertex/Pixel
Shader Pipeline
CoBURG AMDD1
. COTE ... toptherwestvance.

The vertex shader is SIMD on vertices; the fragment shader is SIMD on
fragments. In 2006, D3D10 introduced geometry shaders, another
programmable stage. That stage uses SIMD on triangles and other primitives.

The hardware designers observed that all programmable stages use the same
underlying SIMD principle.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

47

Graphics Pipeline — 2006 Unified Shader Model

GPU Hardware

Input Assembler |

- - - - Geometry Shader

Rasterizer

Pixel Shader

Output Merger |
. Shader Core

D Shared Memory
. D Work Group Processor CD GaveRSITY AMDQ1

of applied sciences and arfs together we advance_

To provide a common abstraction, they created the unified shader model.

Each thread maps onto a shader core. Multiple shader cores are grouped into
a work group processor. For example, on the AMD RDNA™ 3 architecture, we
have 128 shader cores per work group processor.

The shader cores of a work group processor can communicate over a shared
memory, which has 128 KiB on AMD RDNA™ 3 GPUs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

48

Graphics Pipeline — 2006 Unified Shader Model

GPU Hardware
#

. . Geometry Shader

Graphics Memory | Rasterizer |
Pixel Shader

| Input Assembler

[Output Merger |
. Shader Core

I:l Shared Memory

Work Group Processor cosurs AMDQ
[COMErn ...,

dorts together we advance_

Several such work group processors are on a GPU. On The AMD Radeon™
RX 7800 XT, we have 30 work group processors.

The work group processors share a common Graphics Memory. Today, that is
several GiBs large.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

49

Graphics Pipeline — 2009 Compute Shaders

Geometry Shaders (D3D10)

Input Assembler |

Vertex Shader
Geometry Shader

\ 4

Rasterizer

Pixel Shader

GPU Hardware
Shader Model 2

Programmable : . Shader Core
Vertex/Pixel
Shader Pipeline D Shared Memory
Work Group Processor cosure AMDQ1
50 D P CD ‘J.NLVERGS r ssssssss together we advance_

Output Merger |

Now with such an abstract model of the GPU, it was just obvious to define new
shader types. This gave rise to compute shaders.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

50

Graphics Pipeline — 2009 Compute Shaders

GPU Abstraction

Input Assembler |

R
HE--N
L]
L Rasterizer J
GPU Abstraction GPU Hardware
| Output Merger |
. Thread . Shader Core

I:l Group Shared Memory

I:l Shared Memory

Thread Grouy| > Work Group Processor cosure AMDQ1
51 D P D P CD ‘J.NLVERGS r uuuuuuuu together we advance_

Compute shaders require a GPU abstraction.

That contain threads, which access a common group shared memory. Threads
are mapped onto shader cores and group shared memory maps to shared
memory.

Threads are clustered into thread groups. On GPU hardware, a thread group
is executed on a work group processor.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

51

Graphics Pipeline — 2009 Compute Shaders

GPU Abstraction

Input Assembler |

808 // 1D, 2D, 3D Grid of Max. 1024 threads
bE--m uint3 gtid : SV_GroupThreadID;
— Vertex Shader
Geometry Shader
{ Rasterizer J
Pixel Shader
[Output Merger |
. Thread
D Group Shared Memory
Thread G COBURG AMDQ1
. ETeadGrop O ... together weaharce.

In a compute shader program, the SV_GroupThreadID semantic provides a
3D index in a grid of up 1024 threads of a thread group.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

52

Graphics Pipeline — 2009 Compute Shaders

GPU Abstraction

Input Assembler |

858|858 |BE-B| // 1D, 20, 3D Grid of Max. 1024 threads
om--m|gm--m| |@m--m| Yint3 gtid : SV_GroupThreadID;
BB ES

=== === === // :.LD, 2D, 3|? Gr‘1¢.1 of Max. 65536 thread groups

é' - é' al” é. - // in each dimension
|3 |E==| uint3 gid : SV_GroupID;

OE--0|[EE--E| [EE--E L Rasterizer J
oE--0||@E--0 |DE--E I
BE-0||BE-8| (BE-D

—||c—/ l_.l
Pixel Shader
Device Memory

. Thread

I:l Group Shared Memory

Thread Grouy| SoveRs: AMDQ
D p CD U¢NLVD\ER: mua. together we advance_

Output Merger |

To locate a thread group, the SV_GroupID semantic provides the programmer
with a 3D index into the grid of thread groups.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Graphics Pipeline — 2009 Compute Shaders
.Thread

D Group Shared Memory
D Thread Group

Device Memory Compute Shader Vertex Shader
struct Data {
float3 u; Geometry Shader

Input Assembler |

float2 v;
}s 3
. Rast
StructuredBuffer<Data> A : register(t0); L AT J
StructuredBuffer<Data> B : register(tl);
RWStructuredBuffer<Data> C : register(ue); Pixel Shader
[numthreads (128, 1, 1)]

void main(uint3 gtid : SV_GroupThreadID,
uint3 gid : SV_GroupID) {
const uint t = gtid.x + gid.x * 128;
C[t].u = A[t].u + B[t].u;
C[t].v = A[t].v * B[t].v;
¥

Output Merger |

CD SRvERS: AMDQ
s

of applied sc together we advance_

Compute shaders are programmed using shader programs that adhere to the
SIMD model.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

54

Graphics Pipeline — 2009 Compute Shaders
.Thread

D Group Shared Memory _Input Assembler |
D Thread Group

Device Memory Compute Shader Vertex Shader
struct Data {
float3 u; Geometry Shader

float2 v;
1 :
5 Rast
StructuredBuffer<Data> A : register(t0); { AT J
StructuredBuffer<Data> B : register(tl);

RWStructuredBuffer<Data> C : register(ue);
[numthr‘ead 1, 1)]

void mainQuint3 gtid : SV GroupThreadID,
uint3 gid : SV GroupID
|const uint t = gtid.x + gid.x * 128;

C[t].u =[A[t].u]+ B[t].u;

C[t].v = A[t].v * B[t].v;

Output Merger |

CD SRveRSTY AMDQ
85 e WA ctappiied sciences and arts together we advance_

When knowing the thread-group size (in this example 128 threads),
SV_GroupThreadID and SV_GroupID can be used to uniquely identify a
thread. We use such a unique ID to index into memory (in this example a
StructuredBuffer) to perform our computations.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

55

Graphics Pipeline — 2009 Compute Shaders
.Thread

D Group Shared Memory
|:| Thread Group

? GPU Concepts for Work Graphs
2 SIMD
[Work Iltem
[Work Amplification, Work Reduction
[.. Compute Shaders

? Mesh Shaders

_ InputAssembler |

Device Memory Compute Shader Vertex Shader

Geometry Shader

Rasterizer J

Pixel Shader

COBURG
UNIVERSITY
of applied sciences and arte

Output Merger |

AMDQO

together we advance_

So, we got our fourth concept “Compute Shaders.”

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

56

0] cpPU

Graphics Pipeline — 2009 Compute Shaders

Graphics

Memory

Compute Shader

GPU

| Input Assembler
[Rasterizer |
| Output Merger

COBURG
(doYi AMDQ
of applied sciences and orts to@ether we advance_

But how do compute shaders interact with the graphics pipeline?

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

57

Graphics Pipeline — 2009 Compute Shaders

0] cpPU

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

e Dispatch =====p |/O

58

GPU

Input Assembler |
Vertex Shader
Geometry Shader

Compute Shader

Graphics
Memory

Rasterizer)
Pixel Shader
| Output Merger |

CD SRveRSTY AMDQ

sssssssssssssssssssssss together we advance_

In this example, a compute shader gets dispatched from the CPU. On the
GPU, the threads of the compute shader process a list of instances coming

from graphics memory.

As an example, we assume that the compute shader’s task is to cull instances
outside the view frustum. The compute shader writes only the visible instances

back to graphics memory.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

58

Graphics Pipeline — 2009 Compute Shaders
10 cPu GPU
v

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

% Input Assembler
Compute Shader Vertex Shader

// Process Geometry with Graphics Pipeline Geometry Shader
commandList->SetPipelineState(...); Graphics
commandList->DrawIndexedInstanced(...); r— Memory
commandList->Barrier(...); | Rasterizer |
Pixel Shader
{ Output Merger
P> Dispatch =P |/O SORAS AMDQ
59 wa«uppmmwe;mms together we advance_

Next, the graphics pipeline renders only the visible instances. It reads them
from graphics memory and generates a 2D image. That one is written back to
graphics memory.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

59

Graphics Pipeline — 2009 Compute Shaders

0] cpPU

GPU

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);

commandList->DrawIndexedInstanced(...); e
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

e Dispatch =====p |/O

60

__Input Assembler |
Compute Shader
_ Rasterizer

Graphics
Memory

| Output Merger

(doYi AMDQ1
of applied sciences and orts to@ether we advance_

Then, we dispatch another compute shader. This could, for example, do some
post-processing on the image. Therefore, we read all the pixels, transform
them, and write them back to graphics memory.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

60

Graphics Pipeline — 2009 Compute Shaders
10 cPu GPU

(Input Assembler
Compute Shader Vertex Shader
Geometry Shader

(Rasterizer |

Pixel Shader

(Output Merger]

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...); Graphics

Memory

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader & Compute Shader Problems
commandList->SetPipelineState(...);
commandList->Dispatch(...); & Barriers

commandList->Barrier(...);

— Dispatch e | /O wcoauwe AMDD1

UNIVERSITY

61 of applied sciences and arfs together we advance_

But there are two problems. The first problem is: The barriers. They are
required to avoid read/write hazards between pipelines. A pipeline must finish
its entire computation before any other pipeline can even start. This is assured
by barriers.

This can leave many work group processors idle, especially when a pipeline
computation is about to finish.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Graphics Pipeline — 2009 Compute Shaders

0] cpPU

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

e Dispatch =====p |/O

62

GPU

Input Assembler]

Compute Shader Vertex Shader
Graphics Geometry Shader
i [Rasterizer |

Pixel Shader

Output Merger]

<
<

& Compute Shader Problems

& Barriers

& Device Memory 1/0

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

The second problem is: The communication between pipelines happens over
graphics memory, which can become a limiting factor.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

62

Graphics Pipeline — 2009 Compute Shaders
0] cpPU GPU

GiB GPU Memory TiB
ca. 64=~ Bandwidth ¢ 175

| Input Assembler
Compute Shader Vertex Shader
Geometry Shader
Graphics [Rasterizer |
Memory
Pixel Shader
| Output Merger

GiB
ca. 59%

Interconnect
Bandwidth

COBURG
(doYi AMDQ
63 of applied sciences and orts to@ether we advance_

Here are some numbers: In comparison to other memory buses we have in
our system, 1 TiB/s between the work groups processor of a GPU and
graphics memory seems huge.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

63

Graphics Pipeline — 2009 Compute Shaders
GPU

A100 H100

1000000 |
TPUV4

GPU Compute Performance
10000 ¥ GTX 580

HBM2E
100

Normalized Scaling

GPU Memory Bandwidth

Pentium Il Xeon

+ y t t + y g y y
1996 1999 2002 2005 2008 2011 2014 2017 2020 2023
Year

Adapted from: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. Al and Memory Wall.
RiseLab Medium Blog Post, University of Califonia Berkeley, 2021, March 29. (MIT License)

Compute Shader

Input Assembler |

Vertex Shader

Geometry Shader

Rasterizer

Pixel Shader

COBURG
UNIVERSITY
of applied sciences and arfs

| Output Merger |

AMDQO

together we advance_

However, as we can see in this plot, over the last years, the growth in GPU
Compute Performance has outpaced the growth in GPU Memory Bandwidth.

Source: Image adapted from https://github.com/amirgholami/ai_and_memory_wall/blob/main/imgs/pngs/hw_scaling.png

From the paper: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. Al and Memory Wall. RiseLab Medium Blog Post, University of Califonia Berkeley,

2021, March 29.

Available on https://github.com/amirgholami/ai_and_memory_wall/blob/main/README.md

MIT License

Copyright (c) 2021 Amir Gholami

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

64

Graphics Pipeline — 2009 Compute Shaders

GPU

Input Assembler

CIEDE| DEED DEDE DEED DD DEEE
CDEDE| | DEEE DEDEH DEEE| DD DEEE
CDEDE| | DEEE DEDEH DEEE| DD DEEE
Fllq H Fllq H Fllq H Compute Shader Vertex Shader
DEDE| DEED DEDE DEED DD DEEE
CDEDE| | DEEE DD DEEE DEEEH DEEE Geometry Shader
CDEDE| | DEEE DD DEEE DEEEH DEEE
Rasterizer
ca. 118 Pixel Shader
S
| Output Merger
Graphics Memory
COBURG AMDD1
65 wg:lpvjf:!::ntesunduﬂs together we advance_

So even with a bandwidth of 1 TiB/s to graphics memory...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

65

Graphics Pipeline — 2009 Compute Shaders

GPU

Input Assembler |

DEDE| DEED DEDE DEED DD DEEE
CDEDE| | DEEE DD DEEE DEEEH DEEE
CDEDE| | DEEE DD DEEE DEEEH DEEE
Fllq H Fllq H Fllq H Compute Shader Vertex Shader
DEDE| DEED DEDE DEED DD DEEE
CDEDE| | DEEE DD DEEE DEEEH DEEE Geometry Shader
CDEDE| | DEEE DD DEEE DEEEH DEEE
Rasterizer J
TiB
.1 S Latency Pixel Shader
Graphics Memory
SRSy AMDQ1
66 CD m':pphj ssssssssssssss together we advance_

... inside the cores, we have the shared memory which is much faster. In fact,
it has a very low latency compared to graphics memory.

However, it is much smaller in memory capacity.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

66

Graphics Pipeline — 2009 Hardware Tessellation

Geometry Shaders (D3D10)

Shader Model 2| Hardware Tessellation (D3D11)
Programmable
Vertex/Pixel
Shader Pipeline

Input Assembler |

Compute Shader Vertex Shader
Geometry Shader

Pixel Shader

Rasterizer J

Output Merger |

AMDQO

dorts together we advance_

So back in 2009, I/0 was, of course, already a problem. To save I/O, hardware

tessellation was introduced in 2009.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

67

Graphics Pipeline — 2009 Hardware Tessellation

Geometry Shaders (D3D10)

_ InputAssembler |
hs Compute Shader Vertex Shader

Hull Shader

Tessellator

Domain Shader

Geometry Shader

| Rasterizer |

Pixel Shader

Output Merger |

Shader Model 2 Hardware Tessellation (D3D11)
Programmable

Vertex/Pixel
Shader Pipeline

CD SRveRSTY AMDQ
68 of applied sciences and ot tOgether we advance_

It contains two more programmable stages, hull shader and domain shader,
and a fixed-function hardware tessellator.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

68

Graphics Pipeline — 2009 Hardware Tessellation

| Input Assembler
\; Tessellator

Domain Shader

Geometry Shader

[Rasterizer |

Pixel Shader

[Output Merger |

COBURG
(doti AMDQ
69 of applied sciences and orts to@ether we advance_

Hardware tessellation allows to amplify geometry from a couple of control
points to a larger number of triangles. But the rather rigid tessellation patterns
do not offer the desired degree of freedom on topology.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

69

Geometry Shaders (D3D10)

Graphics Pipeline — 2018 Mesh Shading

Mesh Shading
.

Shader Model 2 Hardware Tessellation (D3D11)
Programmable

Vertex/Pixel
Shader Pipeline

Input Assembler |

Compute Shader Vertex Shader
Hull Shader

Tessellator

Domain Shader
Geometry Shader

Rasterizer

Pixel Shader

COBURG
UNIVERSITY
of applied sciences and arte

Output Merger |

AMDQO

together we advance_

This is why in 2018, mesh shading was added to the pipeline. Mesh shading is

important for Work Graphs, too.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

70

Graphics Pipeline — 2018 Mesh Shading

0] cpPU

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

Graphics

Memory

e Dispatch =====p |/O

7

v
Compute Shader

' fnputAssembIer]

Vertex Shader

| Tessellator |
| Rasterizer |

Output Merger

COBURG
wUNIVERSIYY AMDn
of applied sciences and orts to@ether we advance_

So, what problem does mesh shading solve? Consider a compute shader that
creates or transforms geometry. However, the compute shader must write its

output to graphics memory.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

71

Graphics Pipeline — 2018 Mesh Shading

0] cpPU

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

=P Dispatch

72

> |/O

Graphics
Memory

v

' IanKAssem_bIer
| Tessellator |
| Rasterizer 7

Output Merger

AMDQO
together we advance_

COBURG
UNIVERSITY
of applied sciences and arte

Then, the graphics pipeline can read from graphics memory. Therefore, we
have one memory write and one memory read, which we could save.
Remember, graphics memory access is rather expensive.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

72

Graphics Pipeline — 2018 Mesh Shading

0] cpPU

// Process with Mesh Shader
commandList->SetPipelineState(...);
commandList->DispatchMesh(...);

v

Input Assembler
Com pute Shader
| Tessellator |

Domain Shader

Graphics

Memory

Geometry Shader

Rasterizer

Pixel Shader
Output Merger

f!

> Dispatch =P |/O CO Sk AMDQ

73 o together we advance_

The idea of mesh shading is to directly feed the rasterizer from the compute
shader. This saves the extra graphics memory access.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

73

Graphics Pipeline — 2018 Mesh Shading

' fnputAssembIer]
// Process with Mesh Shader Compute Shader Mesh Shader Vertex Shader

commandList->SetPipelineState(...);
commandList->DispatchMesh(...); HU” Shader
Tessellator
Domain Shader
Geometry Shader

| Rasterizer | | Rasterizer |

Pixel Shader Pixel Shader

| Output Merger | | Output Merger |

CO e AMDQ1
74 of applied s ore together we advance_

This gives us a third pipeline: the Mesh Shading Pipeline.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

74

Graphics Pipeline — 2018 Mesh Shading
GPU

[outputtopology("triangle")]]

[[numthreads (128, 1, 1)]]

void main(

uint3 gtid : SV_GroupThreadID,
&int3 gid : SV GroupID,

out vertices float3 smallVertexBuffer[256],
out indices uint3 smallIndexBuffer[256])

Meshlet

Mesh Shader

A
| Small Vertex Buffer |
Small Index Buffer

L

{ Rasterizer J

Pixel Shader

| Output Merger |

CD SRveRSTY AMDQ
of applied sciences and arfs together we advance_

Like a compute shader, you launch a grid of mesh shader thread groups. So,
in the code, we have our SV_GroupThreadID and SV_GroupID semantics.
Each mesh shader thread group can have up to 128 threads. We can output
triangles (or other primitives) to a small vertex and index buffer with up to 256
vertices and triangles each. A mesh shader output is like a small mesh.

Therefore, it is commonly called a meshlet.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

75

Graphics Pipeline — 2018 Mesh Shading
GPU

[outputtopology("triangle")]

[numthreads (128, 1, 1)]

void main(
uint3 gtid : SV_GroupThreadID,
Luint3 gid : SV _GroupID,]
out vertices float3 smallVertexBuffer[256],
out indices uint3 smallIndexBuffer[256])

Mesh Shader

Meshlets

0o

I
(Y

l

Rasterizer

Pixel Shader

Output Merger |

- 0o

AMDQO

together we advance_

COBURG
UNIVERSITY
of applied sciences and arfs

With multiple mesh shader thread groups,

we can output multiple meshlets.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

76

Graphics Pipeline — 2018 Mesh Shading

Mesh Shader

Rasterizer
Pixel Shader
Output Merger

COBURG
w UNIVERSITY AMDH
of applied sciences and orts to@ether we advance_

If you want to render a larger model, you first decompose it into multiple

meshlets in a preprocess.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

77

Graphics Pipeline — 2018 Mesh Shading

Mesh Shader

[Rasterizer J

Pixel Shader

Output Merger |

CD SRveRSTY AMDQ
78 of applied sciences and arts together we advance_

And then run a mesh shader thread group for each meshlet.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

78

Graphics Pipeline — 2018 Mesh Shading

Mesh Shader

.
i

Rasterizer

Rk

Pixel Shader

| Output Merger |

CD SRveRSTY AMDQ
79 of applied sciences and arts together we advance_

The mesh shader thread groups then transform these meshlets and pass them
over to the rasterizer.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

79

Graphics Pipeline — 2018 Mesh Shading

AMDZ1 | GpuDpen @ X @ Wweoe B

WOoODOOe0

Optimization and best practices

Mesh Shader

L. GPU Concepts for Work Graphs
L. SIMD
L Work Item

More info:
Mesh shaders on AMD RDNA™ graphics cards £4 Compute Shaders
https://gpuopen.com/learn/mesh_shaders/mesh_shaders-indg

L. Mesh Shaders

L2 Work Amplification, Work Reduction

CDS%%S?.W AmDE |

80 of applied sciences and arts together we advance_
Mesh shading is a super light-weight version of work graphs.

For more information see this blog post series:

https://gpuopen.com/learn/mesh shaders/mesh shaders-index/

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

80

https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/

Graphics Pipeline — 2018 Mesh Shading

2 GPU Concepts for Work Graphs
? Why Work Graphs?
L Rasterizer |

Output Merger |

CD GRSy AMDI1
81 of applied sciences and ort < together we advance_

But now that we have mesh shading, we have all concepts together that we
need for work graphs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

81

Graphics Pipeline — 2018 Mesh Shading

? Why Work Graphs?

Mesh Shader

L Rasterizer J

Pixel Shader

Output Merger |

CD SRveRSTY AMDQ

of applied sciences and arfs together we advance_

The question now is: why do we even need Work Graphs?

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

82

Graphics Pipeline — Execute Indirect

Geometry Shaders (D3D10) | Execute Indirect (D3D12)]

Mesh Shading
.

Shader Model 2 Hardware Tessellation (D3D11)
Programmable

Vertex/Pixel
Shader Pipeline

Input Assembler |

Compute Shader Vertex Shader

Hull Shader

Tessellator

Domain Shader
Geometry Shader

Rasterizer

Pixel Shader

COBURG
UNIVERSITY
of applied sciences and arte

Output Merger |

AMDQO

together we advance_

To answer that question, let’s first look what another addition to the pipelines

attempt to solves: | am speaking of “execute indirect.”

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

83

Graphics Pipeline — Execute Indirect

Compute

Pipeline

Graphics

Pipeline

CO AMDQ
of applied sciences and orts to@ether we advance_

Suppose you have a compute pipeline and a graphics pipeline.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

84

Graphics Pipeline — Without Execute Indirect

(0 OO UROTOOTROTONN: «
CPU

Graphics Pipeline

Graphics Memory

—» Dispatch =% GPU I/O Barrier Ot AMDZ1

sssssssssssssssssssssss together we advance_

And you kick of your compute pipeline from the CPU.

The GPU then does some computation using the compute pipeline. To that
end, it reads data from graphics memory and writes its results back to graphics
memory.

To make sure that everything is written into graphics memory, we must include
a barrier.

Only after we have reached the barrier, we can kick off the graphics pipeline.

So, we must wait. The graphics pipeline can then read the data from memory
and produce the pixels output. After that we need another barrier.

These barriers can become a severe performance problem, because your
system must wait actively.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

85

Graphics Pipeline — Without Execute Indirect

(o0 OO OROTOOTROOTONN: «
CPU

Consumer

Graphics Memc 'y

—» Dispatch =» GPU I/O Barrier O AMDRU

uuuuuuuuuu
o together we advance_

The situation gets even more severe when the producer (i.e., the compute
kernel) produces a varying number of data entries.

As an example, imagine a scene with tens of thousands of objects. The task of
the producer is to cull invisible objects. After the producer kernel has run, it
outputs 5000 visible objects to data. There, it writes N = 5000.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

86

Graphics Pipeline — Without Execute Indirect
Time
@ 0000 00O0OGFOOGONOGOOOONONONOIDOSC....>
CPU
~
\
[X
\
GPU
Graphics Memory
\'| Data
i) ier NS Fence =9 GPU-CPU /O . o= cosure
—» Dispatch =» GPU I/O Barrier . Fence —» GPUCPUIO cymes, AMDA

The consumer then renders the 5000 objects. But to do so, the CPU must
configure the draw call and it must know that number N.

So, the CPU must read N from the GPU. Therefore, we must include a fence
that synchronizes CPU and GPU. Only after that fence can the CPU read the
number N and properly configure the draw call.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

87

Graphics Pipeline — Without Execute Indirect

@ 0000000000000 0000 0

CPU

Time

oo o ..‘..‘...‘...‘.>

Producer Consumer

Graphics Memory

—» Dispatch =» GPU I/O Barrier . Fence =» GPU-CPUIIO ¢y AMDRU

UNIVERSITY
of applied sciences and orts to@ether we advance_

With that handle to the data and the number of objects, the CPU can dispatch
5000 draw calls to the visible objects.

Note that producer and consumer need to agree up-front on the handle to data
(&Data).

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

88

Graphics Pipeline — With Execute Indirect

@ 0000000000000 0000 0

CPU

Time

..‘...‘......‘...‘.>

Producer . Consumer

Graphics Memory

—=> Dispatch =» GPU I/O Barrier [R§ Fence —» GPU-CPU I/O CO, AMDD

8 esondors together we advance_

With “execute indirect”, we also get a handle to where the number N is stored.
Let’s see why that can improve things.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

89

Graphics Pipeline — With Execute Indirect

@ 0000000000000 0000

R

Producer . Consumer

Time

..‘...‘......‘...‘.>

Graphics Memc 'y

—=> Dispatch =» GPU I/O Barrier [R§ Fence —» GPU-CPU I/O CO, AMDD

% esondors together we advance_

The producer gets both handles: &N and &Data. As before, it writes out the
visible objects (Data) and the number of visible objects (N).

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

90

Graphics Pipeline — With Execute Indirect

@ 0000000000000 0000

R

Producer

Time

.‘...‘......‘...‘.>

Graphics Memory

=P Dispatch =% GPU I/O ™ Barrier Fence =¥ GPU-CPU I/O gomvre AMDQ1

ot esondors together we advance_

Now the CPU knows the location of the handles on the GPU but not the actual
values behind it. So, there is no need to transfer the actual values.

And therefore, no need for fence.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

91

Graphics Pipeline — With Execute Indirect

N Data] Fime

i ...

Producer . Consumer

Graphics Memc 'y
\|

=P Dispatch =% GPU I/O ™ Barrier Fence =¥ GPU-CPU I/O conurs AMDQ1

2 esondors together we advance_

All the CPU needs to do is call the consumer with handles as parameters
instead of the actual values.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

92

Graphics Pipeline — Execute Indirect — Problems

m Time & Execute Indirect Problems

@ 0000000000000 000000000 ooooooooooooooo> & Barriers

R

Producer

Consumer

AT S
A A S

Graphics Memory

—» Dispatch =% GPU I/O Barrier [R§ Fence —» GPU-CPU I/O CO AMDD

o esendons together we advance_

However, we still need the barriers, since the producer and consumer still
communicate over graphics memory.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

93

Graphics Pipeline — Execute Indirect — Problems

m Time & Execute Indirect Problems
@ 0000000000000 00O0COCOCOCOOO ooooooooooooooo> OBarriers
CPU m 8 ——

Producer Consumer

Graphics Memory

N=0

—=> Dispatch =» GPU I/O Barrier [R§ Fence —» GPU-CPU I/O CO, AMDD

esondors together we advance_

Additionally, if N = 0, there would not be any reason for the CPU to dispatch

the Consumer. But the CPU has no idea about N being 0, so it must dispatch
the draw call no matter what.

That is not dangerous, but we have the overhead of a launch including the
barrier.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

94

Graphics Pipeline — Execute Indirect — Problems

m Time & Execute Indirect Problems
@ 000000000000 O0COCFOCFOIOIOIOGOSNOIDS ..O0.0...O...OC> °Barriers
CPU & Empty Launches
E a ° o Memory

Producer Consumer

Graphics Memory

\'} Output Unused

=P Dispatch =% GPU I/O ™ Barrier Fence =¥ GPU-CPU I/O conurs AMDQ1
95 k w of applied science

esondors together we advance_

Another problem with execute indirect is, that we have to reserve memory for
what could end up in data. Going back to the culling example, we could end up
rendering all objects or zero objects. Since we do not know that up front, we

must always be prepared for the worst case and thus potentially waste
memory.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Graphics Pipeline — Execute Indirect — Problems

m Time & Execute Indirect Problems
@ e000000000000000000000 ooooooooooooooo> OBarriers
C P U & Empty Launches
m a & Wasted Memory
& Worst-Case Allocation

Consumer

Producer

Graphics Memory

\'} Overflow

—=> Dispatch =» GPU I/O Barrier [R§ Fence —» GPU-CPU I/O CO, AMDD

% esondors together we advance_

We must always account for the worst-case scenario. If not, we could run into
dangerous memory overflow situations.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

96

Graphics Pipeline — Execute Indirect — Problems

& Execute Indirect Problems
& Barriers
& Empty Launches

& Wasted Memory

& Worst-Case Allocation

Consumer

—» Dispatch =» GPU I/0 Barrier [Fence =% GPU-CPU I/O AMDRU

dors together we advance_

o7

So those are all existing execute-indirect problems.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

97

Graphics Pipeline — Mesh Shading — Problems

Amplification
Mesh Shader

Rasterizer

Pixel Shader

Output Merger |

CD SRveRSTY AMDQ
98 ci

of applied sciences and art « together we advance_

Could we solve those with mesh shaders? | have not yet mentioned the
amplification shader stage of the mesh-shading pipeline.

An amplification shader can control the number of mesh shader thread groups
to launch directly on the GPU. In essence, this is a little consumer-producer

pipeline. So, for very simple scenarios, mesh shading, can solve some of the
issues.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

98

Graphics Pipeline — Mesh Shading — Problems

& Execute Indirect Problems
& Barriers
& Empty Launches
& Wasted Memory

& Worst-Case Allocation

& Mesh Shading Problems

& Graphics Only

AMDQO

dors together we advance_

But mesh shading is graphics only. It has no compute support.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

99

Graphics Pipeline — Mesh Shading — Problems

& Execute Indirect Problems
& Barriers
& Empty Launches
& Wasted Memory

& Worst-Case Allocation

| .
I > Consumer & Mesh Shading Problems

3 & Graphics Only

& Self-Recursion

AMDQO

dors together we advance_

100

It breaks, if you want something like self-recursions, as for example with
recursive subdivision.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 100

Graphics Pipeline — Mesh Shading — Problems

& Execute Indirect Problems
& Barriers
& Empty Launches
& Wasted Memory

& Worst-Case Allocation

- Const - Cone &- ° Mesh Shading Froblems

& Graphics Only

& Self-Recursion

& Long Chains

CD GRSy AMDI1
101 of applied sciences andort: together we advance_

The mesh-shading pipeline has only one or two programmable stages. Long
chains are therefore not possible...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 101

Graphics Pipeline — Mesh Shading — Problems

& Execute Indirect Problems
& Barriers
& Empty Launches
& Wasted Memory

& Worst-Case Allocation

Producer Consumer & Producer Consumer & Producer & Mesh Shading Problems
& Graphics Only
Producer Consumer & Producer Consumer & Producer & Self-Recursion

& Long Chains

Producer Consumer & Producer Consumer & Producer & Parallel Chains

w SRveRSTY AMDQ
102 of applied sciences ar

ndors together we advance_

... or even multiple different shader chains.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 102

Graphics Pipeline — Mesh Shading — Problems

Producer Consumer & Producer Consumer & Producer

Consumer & Producer

Consumer & Producer

Consumer & Producer Consumer & Producer

103

& Execute Indirect Problems
& Barriers
& Empty Launches
& Wasted Memory

& Worst-Case Allocation

& Mesh Shading Problems
& Graphics Only
& Self-Recursion
& Long Chains
& Parallel Chains

& Classify-and-Execute

CO AMDQ
of applied sciences and orts to@ether we advance_

Diverging branches in a shader chain such as with the classify-and-execute
pattern (see later in the Material Shading section of this course) is also not

possible.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

103

Why Work Graphs?

2 GPU Concepts for Work Graphs
? Why Work Graphs?

& Compute Shader Problems
& Barriers

& Device Memory 1/O

104

& Mesh Shading Problems
& Graphics Only
& Self-Recursion
& Long Chains
& Parallel Chains

& Classify-and-Execute

& Execute Indirect Problems
& Barriers
& Empty Launches
& Wasted Memory

& Worst-Case Allocation

CDS‘%E‘éggrv AMDQ
of applied sciences and orts to@ether we advance_

Those problems give us good reasons to define Work Graphs to solve all

these problems.

© Advanced Micro Devices, Inc. and Coburg University of Appl

lied Sciences and Arts. All rights reserved.

104

Why Work Graphs?

2 GPU Concepts for Work Graphs
2 Why Work Graphs?

[Mesh Shading Problems [0 Execute Indirect Problems
2 Compute Shader Problems [£2 Graphics Only [Barriers
[Barriers [Self-Recursion .. Empty Launches
|| Save I/O .1 Long Chains [Wasted Memory
[Parallel Paths |2 Worst-Case Allocation
.1 Classify-and-Execute

Work Graphs can solve all these problems.

COBURG
CO ke AMDQ1
105 of applied sciences andort: together we advance_

We will show you that Work Graphs can help you solve these problems.

Note: To some extent having, multiple compute queues can deal with these
problems, too. Likewise enhanced barriers (https://microsoft.qithub.io/DirectX-
Specs/d3d/D3D12EnhancedBarriers.html) help with better managing barriers.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 105

https://microsoft.github.io/DirectX-Specs/d3d/D3D12EnhancedBarriers.html
https://microsoft.github.io/DirectX-Specs/d3d/D3D12EnhancedBarriers.html

Work Graph Playground App

1. Go to: https://wgpa.short.gy/
github.com/GPUOpen-LibrariesAndSDKs/W orkGraphPlayground

2. Download the Latest Release

3. Unzip WorkGraphsPlayground.zip

4. Open Folder WOr'kGr‘aphsPlaygr‘ouV

5. Run WorkGraphPlayground.exe

0 X Testing adapter "Microsoft Basic Render Driver": Failed
6. Optional: DownloadWarpAdapter.bat o create D3D12 device.
If you need Software Emulation WARP adapter does not support D3D feature level 12.2

and work graphs.

7. Open Editor in Folder WorkGraphsPlayground [l ak e L Ul
support for instructions on installing latest WARP

adapter or run DownloadWarpAdapter.bat if you are using

pre-built binaries.

No device with work graphs support was found.

CO ke AMDQ1
106 of applied sciences and orts to@ether we advance_

This is now a reminder to download the latest Work Graph Playground App,
because in the next section we are going to use it.

So prepare yourself by opening the folder WorkGraphsPlayground in your
code editor.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 106

https://wgpa.short.gy/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground

Work Graph Playground App

[0 = «

iy oo

 WORKGRAPHPLAYGROUND

P WorkGraphPlayground 8 BODED - ° x

WorkGraphs.hlsl X

tutorial-0 > = Hello

kGraphs.hisl >

p— 21 // OUT OF OR IN CONNECTION WITH THE SOFTWARE O
22 // THE SOFTWARE.
© twtorial-0
n
HelloWorkGraphs his! 0 sinclude “Comon.h®
% screenshotpng P
> tutorial-1 26 / Start of tutorial = al
> tutorial-2 27 *elcome to the first Work Graphs tutorial: H |
S tikorals 28 *In-this tutorial, you familiarize yourself w
S 5 (el 29+ and see your first work graph in action =
N Er [
D Qi3 31+ The Work Graph Playground app supports “hot- ‘-
> tutorial-6 32 % whenever you save any of the tutorial shader
€ Commonh 33 % rebuilds the work graph. This will accelerat
D3D12Coredl .
d3d125DKLayersdl 35 % Now, follow the tutorial below to see this i
wnloadWarpAdapter bat 6
ounlosdWarpadsprerbat 25
Sxccnedl 38 // This attribute lets us turn any void functio
G 39 [Shader("node”)]
license.txt P
@ readme.md 41 * Each tutorial uses one work graph. In all ou
WorkGraphPlaygroundexe 42 % The CPU-side of the-Work Graph-Playground in
43 % Inall our tutorials, the CPU aluays passes
43+ Peek into WorkGraph: :Dispatch in WorkGraph.c
45 % Mark the node as entry node by "NodeIsProgra
a6 v
47 [NodeIsProgramentry]
P
49 % We only need a single thread for now, so-we
S0+ Other launch mode types are discussed in mor
s v
52 [NodeLaunch(*thread")]
53
v 54 * In Work Graphs, nodes are identified by "nod
J ourume 55 % If you skip the array index, it is set to ze
Ml > riveune ° !

X @& Launchpad @0 A 0D 1 % In25Col1 Spacesd4 UTF-8 CRIF () HiSL &

107

1 ok eaph Plarground o x

open
tutorials/tutorial-@/HelloHorkGraphs.hlsl
o = 1

Useful Command Line Options

1. Software Emulation of the GPU
O0g6scéiistAdiiyes

2. Print out Debug Information (Requires Graphics Tools)

OOéniéténacugliyés

COBURG
(doti AMDQ
of applied sciences and ot tOgether we advance_

All you need to do, is edit the HLSL shader files in your editor.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

107

Work Graph Playground App

g = &« O WorkGraphPlayground 8- D80 - o x
EXPLORER HelloWorkGraphs.hlsl X 1]
v WORKGRAPHPLAYGROUND tutorials > tutorial-0 > HelloWorkGraphs.hlsl > ...

21 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR =

v tutorials
. 22 // THE SOFTWARE.
v tutorial-0 .
HelloWorkGraphs.hlsl 24 #include "Common.h"
& screenshot.png 25

tutorial-1 26 = == Start of tutorial ===
tutorial-2 27 * Welcome to the first Work Graphs tutorial: H

el 28 *.In this tutorial, you familiarize yourself w
29 *.and see your first work graph in action.
30 *

Aliselie e 31 * The Work Graph Playground app supports "hot-

>
>
>
> tutorial-4
>
>
G

tutorial-6 32 * whenever you save any of the tutorial shader
Common.h 33 * rebuilds the work graph. This will accelerat
D3D12Core.dll 34 *

108 d3d125DKLayers.dll 35 * Now, follow the tutorial below to see this i fhvance_

So please open tutorials/tutorial-0/HelloWorkGraphs.hisl|

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

108

Work Graph Playground App

J =
EXPLORER

v WORKGRAPHI
“ tutorials
v tutorial-C
Hellow
& screens
v tutorial-1
Records
Records
& screens
> tutorial-z
> tutorial-3
> tutorial-4
> tutorial-5
> _tutorial-6

> Fold all block

]QD]—DX

Fold All Block Comments
Fold

Chat: Next Code Block
Chat: Previous Code Block
Toggle Block Comment
Fold All

Fold All Except Selected

Crl |+ K | Cul |+ #| recently used £2%) ees
Ctrl + Shift + B similar commands
Ctrl + Alt + PageDown SOFTWARE OR ===
Ctrl + Alt + PageUp
Shift + Alt + A
Ctrl + K Ctrl + O

Ctrl + K Ctrl + - emmmmmmma

Ctrl + K Ctrl + 8 :utorial: H

Fold All Regions
Fold Level 4 Ctrl + K Ctrl + 4 yourself w
Fold Level 5 Ctrl + K Ctrl + 5 iction.
Ask GitHub Copilot: Fold all block Ctrl + Alt + |
, o , ports "hot-
32 * whenever you save any of the tutorial shader
33 * rebuilds the work graph. This will accelerat
34 *
35 * Now, follow the tutorial below to see this i

dvance_

We provide detailed explanation of the tutorial template and the tutorial tasks.
As we will explain a selection of these tasks in this course, you may wish to
fold these block comments for easier viewing.

In Visual Studio Code, this can be done with the “Fold All Block Comments”

command.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

109

Work Graph Playground App

’O = = >’ WorkGraphPlayground 8 ps 0D B8O -
EXPLORER HelloWorkGraphs.hlsl X
v WORKGRAPHPLAYGROUND tutorials > tutorial-0 > HelloWorkGraphs.hlsl > ...
) co [/ LLMDLILLIT, WHLIIILR LY AN AT LUN UF U RACT
S 21 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
V/ tutorial-0 22 // THE SOFTWARE.
HelloWorkGraphs.hlsl 23
=2 screenshot.png 24 #include "Common.h"
Vv tutorial-1 25
By o o o s e e o e e e 1a] i
Records hls| 26 D e Start of tutorial ========

38 // This attribute lets us turn any void functio

RecordsSolution.hlsl 39 [Shader("node")]

& screenshot.png A0 > [EES
> tutorial-2 47 [NodeIsProgramEntry]
> tutorial-3 48 > it
> tutorial-4 52 [NodeLaunch("thread")]
> tutorial-5 el

110 : 57 [NodeId("Entry", ©)]
> tutorial-6 :

dvance_

This should hide the large blocks of comments that might disturb you during

the course.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

110

Work Graph Playground App

3 File Edit Selection View Go - « P WorkGraphPlayground

Records.hlsl ~ RecordsSolution.hisl X

 WORKGRAPHPLAYGROUND tu | rdl
¥

[Shader("node")]
[NodeLaunch("thread")]
void DrawRectangle(
/% [Task-3]:
«

Declare a node input for the "Dra

* Similar to "PrintBox", "DrawRecta
. thus you must declare your input
Jf

/* [Task 3]:
2 Use the DrawRect function provide
* Use the data of your input record
e

// DrawRect(...);

Playground.exe

175
176
177

8 goDBEeO - -

rv29 w0 -

[Shader("node")] -
[NodeLaunch("thread")]
void DrawRectangle(
// [Task 3-Solution]:
ThreadNodeInputRecord<DrawRectangleRecord> inputRec

)
{
// [Task 3 Solution]:
// We again store the input record to a local varii
const DrawRectangleRecord record = inputRecord.Get\
// ... and use the data contained in the record to
DrawRect(record.topleft, record.bottomRight, 1, rec
}

. dvance_

We also provide a sample solution for each tutorial. You can even open both
your and our solution in a code-diff editor to compare them.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

111

Work Graphs HLSL Cheat Sheet

GPU Work Graphs HLSL Cheat Sheet
By Max Oberberger, Quirin Mever

w GRERr AMDZU
vwond ‘together we advance_

COBURG
CO ke AMDQ1
12 of applied sciences andort: together we advance_

Additionally, for quick reference, we also provide a cheat sheet for you to look
up common Work Graphs syntax.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 112

AMD 1
Developer Community

Connect with us

& Discord

fa gpu-work-graphs

discord.q

You can also join the gpu-work-graphs channel on the AMD Developer
Community Discord server at https://discord.gg/amd-dev, to connect with the
course instructors or other course participants.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

113

https://discord.gg/amd-dev

GPU Work Graphs — Course Agenda

Introduction & Foundations 14:00 — 14:30
Concepts 14:30 — 15:30
Nodes
Records
Launches
Break
Advanced Work Graphs 15:45 - 16:45
Material Shading
Recursion & Synchronization
Procedural Generation
Under the hood

Wrap-Up 16:45—-17:00 convre AMDR
CO D | totien e stvance.

Here is a brief overview of the topics that we will cover today.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 114

COBURG
AM D ' UNIVERSITY
of applied sciences and arts

Work Graph Concepts

We begin our dive into Work Graphs with the three basic concepts that are key
for Work Graphs: nodes, records, and launches. We now start with nodes.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

115

Work Graphs

Command list

Dispatch Dispatch Dispatch

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Before work graphs, any work that we wish to carry out on the GPU had to be
submitted as individual commands as part of a command list. For this course,
we focus on compute work loads, thus, the commands shown here are all
dispatches. The emphasis with these command lists is really on the list part,
as the GPU would process these command one after the other, thus limiting
our options for any type of dynamic decision making on the GPU. In the
“Introduction & Foundations” part of this course, we have seen the hassle with
fences, barriers, empty launches, and CPU-GPU communication.

116

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graphs

Command list

Dispatch Graph

CO ke AMDQ1
17 of applied sciences andort: together we advance_

With Work Graphs, we can replace these different dispatch commands with a
single new command: DispatchGraph.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 117

Work Graphs

Node Node Node Node

CO ke AMDQ
of applied sciences and orts to@ether we advance_

118

Inside this DispatchGraph command, we no longer have a single compute
kernel, but rather a series of connected compute kernel called “nodes”. These
nodes are programmed in a similar way to regular compute kernel/compute
shaders using the HLSL programming language and we will dive into the
specific syntax in a bit.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

118

Work Graphs

Directed
Acyclic
Graph
Node
Node Node
Node Node

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

The graph topology of a work graph is, however, not limited to a single long
chain of nodes but instead can be classified as a directed acyclic graph (DAG).

As the name “Work Graphs” might suggest, the execution model of this graph
is centered around work flowing along the edges of the graph from one node
to the next. Thus, edges of our graph are directed. Each node can have
multiple in- and out-going edges, as shown here.

Note that while the graph depicted here has a single root node on the far left,
work graphs can have multiple such root nodes.

Additionally, cycles* are not allowed in the graph. Therefore, there exists a
fixed execution order, shown here going from left to right.

*Note: Work Graphs do allow trivial cycles going from one node to itself. More
on this in the “Advanced Work Graphs” section.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

119

Work Graphs

Node
Node J—r Node
1 Node | 1) Node Max Depth:
32 Nodes
120 CDS}?‘?%;%Vc« ﬁgﬂ?ﬂadnnm_

The longest chain of nodes from the first producer node (in graph theory often
referred to as source node) to the last consumer node (also referred to as leaf
node), is limited to 32 nodes. The Work Graphs specification refers to this as
the maximum graph depth.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 120

Work Graphs
Record
Node
[]
Node Node
Node Node
121 CDS;?‘?;:?W« ﬁgﬂ?ﬂadnnm_

As mentioned before, the execution model is based on work flowing along the
edges of the graph. These work items are referred to as records.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 121

Work Graphs
Consumer
Producer Node
[7]
Node Node
[]
Node Node
Consumer
wﬁﬁﬁv‘ésgw AMDQ1
122 of applied sciences andort: together we advance_

Each node can produce one or more records for one or more other nodes,
which then consume these records, thus creating a producer-consumer
relationship between nodes.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 122

Work Graphs

Producer
Node 9@

Node ¢ Node

Node % Node

Producer

CD GRSy AMDI1
123 of applied sciences andort: together we advance_

An inner node, i.e., with both in- and out-going edges, is both a consumer and
a producer at the same time.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 123

Work Graphs

Producer
Node

Node e Node

Node Node

Producer

CD GRSy AMDI1
124 of applied sciences andort: together we advance_

These producer-consumer chains repeat until the leaf nodes are reached.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 124

Work Graphs

Records # Dispatches

Node

Node Node

Node Node

CO ke AMDQ
of applied sciences and orts to@ether we advance_

125

In contrast to other GPU graph programming models, such as CUDA graphs,
the records of a work graph are not dispatches to a particular node/compute
kernel. Meaning, if a producer node sends a record to a consumer node, the
consumer node is not immediately dispatched by the work graph runtime.

125

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graphs

Records # Dispatches

Node

Node Node

Node Node

CO ke AMDQ
of applied sciences and ot tOgether we advance_

126

Instead, you can imagine that there is a virtual queue attached to each node.
Incoming records are queued up and execution of the node is deferred. It is,
however, guaranteed that each incoming record will eventually be processed
by the consumer node.

126

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graphs

Records # Dispatches

Node

Node

127

Node

Node

Node

_ Eecuion 2

COBURG
of applied s

AMDQ1
together we advance_

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

127

Work Graphs

Records # Dispatches

Node
L 1 | []
Node Node
Node Node
(do)i AMDQ1
128 of applied sciences andort: together we advance_

Once the work graph runtime deems enough work is available in the queue,
the node is executed. This deferred approach allows the work graph runtime to
more efficiently use the available GPU resources.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 128

Work Graphs

Node

©® Node Node

e
©% Node Node

CO ke AMDQ
of applied sciences and ot tOgether we advance_

129

Dispatching the graph is done by sending records (e.g., from the CPU) to an
entry node. These initial records are often referred to as entry work.

A graph dispatch can contain entry work for multiple nodes. Entry work can
also target inner nodes, i.e., nodes that are also targeted by other nodes as

well.

129

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Nodes

[Shader("node")]
[NodeIsProgramkEntry]
[NodeLaunch("thread")]
[NodeId("Entry", 0)]
void EntryFunction() {

}

CO ke AMDQ1
of applied sciences and orts to@ether we advance_

Now, let’s have a look at the HLSL syntax for declaring a work graph node.

At its core, a work graph node is an HLSL void-function with additional
attributes. In our case, we named our function EntryFunction, as it will be
the entry node to our graph. First, to be able to compile this function as a work
graph node, we need to annotate it with a [Shader("node™)] attribute.

Next, we mark this function as an entry function with the
[NodeIsProgramentry] attribute.

Work Graphs support multiple launch modes, which determine how incoming
records are processed. We set the launch mode with the [NodeLaunch(...)]
attribute. We cover the available node launches in greater detail later. For now,
we opt for the "thread" launch mode. In this launch mode, you write the code
of your node function from the perspective of a single thread. The Work
Graphs runtime will, of course, attempt to batch multiple threads of the same
function together in a thread group to increase SIMD efficiency.

Lastly, we can optionally assign a unique node id to our node with the
[NodeId(...)] attribute. A node id is a pair consisting of an identifier string
and an optional index. We uncover what the index is used for, when we
discuss Material Shading in the Advanced Work Graphs section.

If we omit the [NodeId(...)] attribute, the D3D12 runtime will automatically
assign a node id based on the node function name. In our example, this auto-
generated node id would be [NodeId("EntryFunction", ©)], as we named
our function EntryFunction.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 130

Work Graph Compilation Model

L s &F o

HelloWorkGraphs.hlsl dxc.exe DXIL Shader

dxc.exe -T vs_ 6 0 -E VSMain ...

CO AMDQ
of applied sciences and orts to@ether we advance_

With our shader code complete, we can focus on compiling it for use in a work
graph.

When we compile regular shaders, i.e., none Work Graph shaders like
compute-, vertex- or pixel-shaders, we compile HLSL files to a single DXIL
shader by specifying the shader type (e.g., vs_... for vertex shaders or
ps_... for pixel shaders) and a shader entry point (i.e., the name of e.g., our
vertex shader function).

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 131

Work Graph Compilation Model

L s &F o

HelloWorkGraphs.hlsl

dxc.exe DXIL Library

dxc.exe -T 1lib 6 8

CD SRveRSTY AMDQ
ot oppd stnces and s

together we advance_

To compile our source file for use with Work Graphs, we need to compile it as
a DXIL library, by setting the target to 1ib_. ..

DXIL libraries can contain multiple nodes, thus we do not need to specify an
entry point. Instead, all functions that we annotated with the
[Shader("node")] attribute are included in the compiled library.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

132

Work Graph Compilation Model
DXIL Library J
DXIL Library
DXIL Library : EEE
DXIL Library
133 w g@i%?'!! rrrrrrrrrrr ﬁgﬂ?ﬂ advance_

We can then assemble one or more of these DXIL libraries into a work graph.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 133

Work Graph Compilation Model

Node Node
Node

Node K

¢ Node Node

CO ke AMDQ
134 ied scier

of applied sciences and ot tOgether we advance_

The D3D12 runtime takes the nodes in the DXIL libraries and validates
connections between them.

The graph compilation fails if missing nodes (i.e., producers without a
matching consumer node) or topological errors (e.g., cycles) are detected.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 134

Work Graph Compilation Model

Entry

CO ke AMDQ1
135 of applied sciences andort: together we advance_

However, in our example from before, we only have a single node, named
“Entry”.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 135

Work Graph Concepts — Nodes

Hello Hork Graphs?t
Oopen

to start this tutorial

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

This node is part of the first tutorial in our Work Graph Playground App.

The “Entry” node prints a “Hello Work Graphs!” message along with
instructions for accessing the tutorial.

In the Work Graphs Playground App, you do not have to worry about
compilation, as this is fully taken care of by the app. All you need to do to
follow along with the tutorial is to run the WorkGraphsPlayground.exe and
open tutorials/tutorial-e@/HelloWorkGraphs.hlsl in an editor of your
choice.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 136

Work Graph Concepts — Nodes

Entry Worker

COBURG
CO ke AMDQ1
137 of applied sciences andort: together we advance_

With just a single node, however, we cannot show the true capabilities of work
graphs, thus we want to create a second node. Here, we opt to call this node
“Worker”.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 137

Work Graph Concepts — Nodes

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Worker",)]
void WorkerFunction() {

}

CO ke AMDQ
of applied sciences and ot tOgether we advance_

To specify the “Worker” node, we write another HLSL function called
WorkerFunction. We again add the same [Shader("node")] and
[NodeLaunch("thread")] attributes.

To name our node “Worker”, we add a matching [NodeId("Worker", 0)]
attribute.

You will find this code already in the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl on line 114.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 138

Work Graph Concepts — Nodes

Hello Hork Graphst

open
tutorials/ tutorial-8sHelloHorkGraphs.hlsl

to start this tutorial

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg

CD GRSy AMDI1
130 P of applied sciences and arts together we advance_

Nothing exciting is happening so far. If you look at the code in the
WorkerFunction, you would expect a

Hello <your name> from the "Worker" node!
to show up somewhere on screen, but it isn’t.

So why is our WorkerFunction not yet working?

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 139

Work Graph Concepts — Nodes

Entry === Worker

CO ke AMDQ1
140 of applied sciences andort: together we advance_

So far, we have only declared both the “Entry” and “Worker” function, but
crucially, we have not set up the connection between them.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 140

Work Graph Concepts — Nodes

void EntryFunction(

[MaxRecords (1)]
[NodeId("Worker")]
EmptyNodeOutput nodeOutput

)
}

CO ke AMDQ1
of applied sciences and orts to@ether we advance_

To fix this, we need to go back to our EntryFunction and declare a node
output. Node outputs are part of the function signature and form the edges
between the nodes in our graph.

Here, we declare a parameter nodeOutput of type EmtpyNodeOutput. The
type of node output will determine the type of record that we want to send
between the nodes, but more on those later. For now, we opt for an empty
record, hence the EmptyNodeOutput type.

To target our previously created “Worker” node, we can use the
[NodeId(...)] attribute to specify which node we want to send record(s) to.
This attribute is again optional, and if none is present, the node id will be
inferred by the name of the node output parameter. Thus, if we want to omit
the [NodeId(...)] attribute here, we have to write EmptyNodeOutput
Worker, to target our “Worker” node.

Lastly, we need to declare the maximum number of records that we want to
send with the [MaxRecords(...)] attribute. In our example, we only send a
single record.

You will again find this code in the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl on line 64.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 141

Work Graph Concepts — Nodes

Hello Hork Graphst

open
tutorials/ tutorial-8sHelloHorkGraphs.hlsl

to start this tutorial

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg

CD GRSy AMDI1
w2 NP of applied sciences and arts together we advance_

If we check back with the Work Graph Playground App, we still do not see the
message from the “Worker” node.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 142

Work Graph Concepts — Nodes

void EntryFunction(
[MaxRecords(1)]
[NodeId("Worker™)]
EmptyNodeOutput nodeOutput
) {

// nodeOutput.ThreadIncrementOutputCount(1);

CO ke AMDQ
of applied sciences and ot tOgether we advance_

The reason for this is simple: while we have declared an output from “Entry” to
“‘Worker” and thus formed a connection between these two nodes, we have
not actually sent any records yet.

In the tutorial file tutorials/tutorial-0/HelloWorkGraphs.hlsl on line
106, you'll find the commented-out code above.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 143

Work Graph Concepts — Nodes

void EntryFunction(
[MaxRecords(1)]
[NodeId("Worker™)]
EmptyNodeOutput nodeOutput

) A

nodeOutput.ThreadIncrementOutputCount(1);

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Uncomment this line!

You can see that we’re now using the nodeOutput parameter that we declared
before and incrementing the output count by one, thus sending a single record
to the “Worker” node.

144

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Nodes

m
Testing adapter "AMD Radeon RX 7900 XTX": Device supports work graphs. 1
Changes to shader source files detected. Recompiling work graph...

(oY AMDQ1
145 of applied sciences and orts to@ether we advance_

Save your file in the editor and look at the console output of the Work Graphs
Playground App. It automatically detects when you change a file and tries to
recompile it.

There you will also see error messages. If you run into compile errors, the last
successfully compiled work graph continues to execute.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 145

Work Graph Concepts — Nodes

k Graph Playground

Hello Hork Graphst

open
tutorials/ tutorial-8sHelloHorkGraphs.hlsl

to start this tutorial

IHellu {your name> from the “Horker™ nude!l

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg

COBURG
(oY AMDI
146 of applied sciences andort: together we advance_

Then you should see, that the code of the “Worker” node is executed and the
message is printed on screen.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 146

Work Graph Concepts — Nodes

B ' Work Graph Playground = [m]

Hello Hork Graphst

open
tutorials/ tutorial-8sHelloHorkGraphs.hlsl

to start this tutorial

Hellu{‘l‘un the “Horker™ node?t

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg

COBURG
UNIVERSITY
147 of applied sciences and arfs

AMDQO

together we advance_

Your next task is to customize the welcome message with your name.

Warning: Do not copy your answer from your neighbor. We'll find out!

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

147

Work Graph Concepts — Nodes

void WorkerFunction()

{
PrintCentered(cursor, "Hello SIGGRAPH 2025..!");
¥
COuey - AmDA,
Head back to the tutorial file tutorials/tutorial-

0/HelloWorkGraphs.hlsl and change the message on line 129.

We instructors send out our greetings to everyone at SIGGRAPH 2025.

Save your file in your code editor...

148

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Nodes

@

Testing adapter "AMD Radeon RX 7900 XTX": Device supports work graphs.
Changes to shader source files detected. Recompiling work graph...
Changes to shader source files detected. Recompiling work graph...

CO ke AMDQ1
149 of applied sciences and orts to@ether we advance_

... look at the console and ... wait for it ... until the work graph has compiled...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 149

Work Graph Concepts — Nodes

Hello Hork Graphst

Oopen

tutorials/ tutorial-8-HelloHorkGraprhs.hlsl

to start this tutorial

Hello |SIGGRAPH 2025 |from the “Horker™ node?

Adspter: AMD Radeon RX 7580 KTX Wark craph Playground by A4D & HS Caburg

COBURG
w UNIVERSITY AMDQ1
150 of applied sciences and orts to@ether we advance_

... and congratulations, you just finished your first work graph tutorial = .

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

150

Work Graph Concepts — Nodes

void EntryFunction(
[MaxRecords(2)]
[NodeId("Worker™)]
EmptyNodeOutput nodeOutput

) A

nodeOutput.ThreadIncrementOutputCount(2);

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Next, let’'s see what happens when we send two records to the “Worker” node.

First, we increment the [MaxRecords(...)] attribute from 1 to 2. This
means, we may now output up to two records. Second, we change the code of
the EntryFunction itself to increment the output count by two instead of one.

151

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Nodes

Hello Hork Graphst

Oopen

to start this tutorial

Hello SIGGRAPH 2625 from the "Horker™ nodet

dspter: A0 Radeon R 7980 KTX Wark craph Playground by A4D & HS Caburg

CD GRSy AMDI1
152 of applied sciences and arts together we advance_

If we save the file again and go back to the Work Graph Playground App, we
see no effect. However, in fact, the “Hello SIGGRAPH 2025 from the “Worker”
node!” is written twice.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 152

Work Graph Concepts — Nodes

Entry Worker

COBURG
(do)i AMDQ1
153 of applied sciences andort: together we advance_

The reason why we do not see the message twice is simple: we are sending
empty records. Thus, while the “Worker” node is executed twice, it is printing
the same message at the same location every time.

So next, we are going to see how we can add data to our records, to change
the behavior of a consumer node based on data in the record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 153

COBURG
AM D ' UNIVERSITY
of applied sciences and arts

Work Graph Concepts
'

154

After having learnt about nodes, we learn about records as a way to send data
between nodes, next.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 154

Work Graph Concepts — Records

B ' Work Graph Playground

Hello Hork Graphs?t
Oopen
to start this tutorial

Hello SIGGRAPH 2625 from the "Horker™ nodet

Wark craph Playground by A4D & HS Caburg

CD SRveRSTY AMDQ
155

of applied sciences and arfs together we advance_

As you have already successfully completed the first tutorial, it is now time to
move on to the next one.

Select “Tutorial 1: Records” from the menu on the top-left of the Work Graph

Playground App and open tutorials/tutorial-1/Records.hlsl in your
code editor.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

155

Work Graph Concepts — Records

B ' Work Graph Playground — [m]

Box (@, @) Box (2, @) Box (3, @)

dspter: A0 Radeon R 7980 KTX Wark craph Playground by A4D & HS Caburg

156

AMDQO

dorts together we advance_

Your Work Graph Playground App should now look like this.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

156

Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ1
of applied sciences and orts to@ether we advance_

In this tutorial, we have six tasks in which we are going to learn how to use
records. We complete the first five tasks one at a time and explain the
concepts of records along the way.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 157

Work Graph Concepts — Records

Record

a

Entry Worker

Node Output

COBURG
(do)i AMDQ1
158 of applied sciences andort: together we advance_

So far, we have seen how we can declare nodes, how we can add edges
between nodes by declaring node outputs, and we have seen how we can
send empty records from one node to another.

Up until now, we have only used empty records, meaning we only
communicated to the Work Graphs runtime, that we want to launch a particular
node, but we have not sent any data.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 158

Work Graph Concepts — Records

[Shader("node")]
[NodeLaunch("thread")]

° s [NodeId("Worker", 0)]
void EntryFunction(void WorkerFunction() {
[MaxRecords(1)] y

[NodeId("Worker")]
EmptyNodeOutput nodeOutput

) {
}

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Let us summarize the concept of Work Graphs nodes detailed in the previous
tutorial-0.

There, we had a producer node, implemented by the EntryFunction that can
produce at most a single EmptyNodeOutput for the Node Worker.

At the consuming node, Worker, the WorkerFunction executes code once a
nodeOutput is sent off. Both nodes are connected over the
[NodeId("Worker")] attribute of nodeOutput.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 159

Work Graph Concepts — Records

[Shader("node")]

[NumThreads(4, 1, 1)]
void Entry(
NodeId("PrintHelloWorld”
[MaxRecords (1)] [NodeId("PrintHelloWorld")]
EmptyNodeOutput PrintHelloWorld

) {
}

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Now, in this tutorial-1, we also start out by sending an EmptyNodeOutput
PrintHelloWorld to another consuming node "PrintHelloWorld".

160

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Records

[Shader("node")]

[[NumThreads(4, 1, 1)]|
void Entry(
I[MaxRecords (1)]|
EmptyNodeOutput PrintHelloWorld

) A
// [Task 1]: Emit a single empty record

// to the "PrintHelloWorld" node.

CO ke AMDQ
of applied sciences and ot tOgether we advance_

One difference with this tutorial is that the Entry node no longer uses the
"thread" launch mode, but it uses the "broadcasting” launch mode,
instead. We will cover the specifics of launch modes shortly. For now, the main
difference of the broadcasting launch mode over the thread launch mode is
that we are programming a thread group instead of a single thread. In our
example, our thread group consists of four threads indicated by the
[NumThreads(4, 1, 1)] attribute. This is very much like you would program
a compute shader.

When we are using thread-group launch modes (i.e., not "thread") for our
nodes, the [MaxRecords(...)] attribute declares the maximum number of
records the entire thread group can send to a particular consumer node. In this
case, this means that all four threads together can send one single empty
record to the "PrintHelloWorld" node.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 161

Work Graph Concepts — Records

[Shader("node")]

[NumThreads(4, 1, 1)]
void Entry(

[MaxRecords(1)]
EmptyNodeOutput PrintHelloWorld
) {
// [Task 1]: Emit a single empty record
// to the "PrintHelloWorld" node.

PrintHelloWorld.ThreadIncrementOutputCount(1);

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Our first task in this tutorial is to send a single record to the
"PrintHelloWorld® node. However, if we were to use

PrintHelloWorld.ThreadIncrementOutputCount(1);

as we did in the previous tutorial, every one of our four threads would
increment the output count by one, thus sending one empty record per thread.

162

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Records

[Shader("node")]

[NumThreads(4, 1, 1)]
void Entry(
[MaxRecords(1)]
EmptyNodeOutput PrintHelloWorld

) {
// [Task 1]: Emit a single empty record
// to the "PrintHelloWorld" node.
PrintHelloWorld.GroupIncrementOutputCount(1);
¥

CO ke AMDQ
of applied sciences and orts to@ether we advance_

To solve this problem, we would either have to change the code to only have a
single thread increment the output count, or we can use

PrintHelloWorld.GroupIncrementOutputCount(1);

instead. As the name implies, this will increment the output count, i.e., send an
empty record once per thread group instead of once per thread.

163

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Records

Thread Group

O

G S

ThreadIncrementOutputCount

CD GRSy AMDI1
164 of applied sciences andort: together we advance_

To summarize the difference, consider a thread group: Each wiggly line
represents a thread of the thread group. If we call
ThreadIncrementOutputCount, every single thread emits a single record,
indicated by the package at the bottom of each wiggly line.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 164

Work Graph Concepts — Records

GroupIncrementOutputCount

Thread Group

LR @

CD GRSy AMDI1
165 of applied sciences and ort: < together we advance_

If you call GroupIncrementOutputCount, instead, the entire group outputs a
single record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 165

Work Graph Concepts — Records

Tu | Sample Salubion

torials
Hello Horld?t

Box (2, @) Box (3, @)

Wark craph Playground by A4D & HS Caburg

CD GRSy AMDI1
166 of applied sciences and ort: < together we advance_

Once you complete Task 1, i.e., by adding the statement
PrintHelloWorld.GroupIncrementOutputCount(1);

at the appropriate location, you should see a Hello World message (without
the red box) on your screen.

Hint: This will become important again for Task 6 of this tutorial.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

166

Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
of applied sciences and orts to@ether we advance_

This concludes our first task.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 167

Work Graph Concepts — Records

I?

Entry L Worker

CO ke AMDQ1
168 of applied sciences andort: together we advance_

Before we go on to the next task, we must finally tell you, how to add data to
the record. So far, all the records that we have sent were empty.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 168

Work Graph Concepts — Records
struct PrintBoxRecord {
L
Entry L Worker
169 CDS«;?‘?;;?W« ﬁgﬂ?ﬂadnnm_

Next, we will add some data to it to parameterize a node launch.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 169

Work Graph Concepts — Records

struct PrintBoxRecord {
// Top-left pixel coordinate for a box.
int2 toplLeft;
// Index to print inside the box.
int2 index;

};

CD GRSy AMDI1
170 of applied sciences andort: together we advance_

In Work Graphs, we use structs to specify the data layout of the record’s
payload. Here you seen an example of such a struct.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 170

Work Graph Concepts — Records

[Shader("node")]

° Max. 256 Records
void Entry(

[MaxRecords(4)]
[NodeId("PrintBox")]
NodeOutput<PrintBoxRecord> boxOutput

)
}

CO ke AMDQ1
of applied sciences and orts to@ether we advance_

To enable Entry node to emit such a record, we must specify three things:

1. We must specify, that the Entry node emits records, whose data structure
is defined by struct PrintBoxRecord. We do this by adding
NodeOutput<PrintBoxRecord> boxOutput to the node’s function
parameter list. This is similar to the EmptyNodeOutput we were using
before, but with NodeOutput<...>, we can specify the type of data or
payload that we want to send with each record.

2. We must specify which node consumes those records. We do this by
adding the attribute [NodeId("PrintBox")] to the parameter
boxOutput. Here, the node PrintBox receives those records.

3. Finally, we must provide an upper bound for the number of records the
producer may output. This is done by yet another attribute attached to
boxOutput, i.e. [MaxRecords(4)].

You can send up to 256 records per thread group across all of its NodeOutput
parameters.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 171

Work Graph Concepts — Records

[Shader("node")]

ct Max. 1024 Outputs
void Entry(

NodeOutput<PrintBoxRecord> boxOutput,
NodeOutput<...> ...,
NodeOutput<...> ...,
NodeOutput<...> ...

} Max. 32 kiB Output Size

CO ke AMDQ
of applied sciences and orts to@ether we advance_

If you have multiple NodeOutputs, make sure that the total number of all
NodeOutputs of a given node does not exceed 1024 NodeOutputs per thread

group.

Further, the total amount of memory that all of these NodeOutputs combined
may produce must not exceed 32 kiB.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

172

Work Graph Concepts — Records

[Shader("node")]

void Entry(
[MaxRecords(4)]
[NodeId("PrintBox")]
NodeOutput<PrintBoxRecord> boxOutput

)
}

CO ke AMDQ
of applied sciences and ot tOgether we advance_

What we see here is that this node is capable of sending four output records.
However, we have not yet seen, how this node does send records.

173

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Records

[Shader("node")]
void Entry(

NodeOutput<PrintBoxRecord> boxOutput
) A

ThreadNodeOutputRecords<PrintBoxRecord> boxOutputRecord
boxOutput.GetThreadNodeOutputRecords (hasBoxOutput ?

[any

2 9);

if (hasBoxOutput) {

boxOutputRecord.Get(0).topLeft = threadBoxPosition;
boxOutputRecord[0].index = dispatchThreadld; "‘p
}
boxOutputRecord.OutputComplete(); 6 O ‘
} -
7
174 CDS,L)\?{:;W{ ﬁgngﬂmmm_

Here is how we actually send out records from our node.

First, we obtain ThreadNodeOutputRecords from the NodeOutput by calling
GetThreadNodeOutputRecords. The parameter of that function specifies the
number of output records per thread we want to write and send. Here, we want
to output either 0 or 1 record per thread. The decision whether a given thread
wants to output a record is stored in a per-thread boolean hasBoxOutput.

Calling ThreadNodeOutputRecords must be thread-group uniform. That
means, ThreadNodeOutputRecords must be called by all threads in lock-step
at the same time by all threads of the thread-group. Otherwise, you can run
into undefined behavior, which may result in crashes. With the tertiary operator
(i.e., hasBoxOutput ? 1 : 0) inside the parameter list of
GetThreadNodeOutputRecords, we can assure that all threads call this
function, even if some threads (i.e., those with hasBoxOutput = false) do
not with to output a record.

If a given thread needs to send an output, we must fill the record. To get
access to the individual PrintBoxRecord, you can either use the Get function
or the []-operator on the ThreadNodeOutputRecords. The provided
parameter is the index to the record. Here, we only have one output per thread
and its index is 0.

With the access to the record, you can read/write the member variables of the
particular record struct.

Once all records are filled, you can send it off, by calling OutputComplete()
on the ThreadNodeOutputRecords variable, again in a thread-uniform
fashion.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 174

Work Graph Concepts — Records

PrintBoxRecord {
.topLeft = int2(...);
.index = int2(...);

s

Entry

175

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox() { ... }

PrintBox

CO ke AMDQ
of applied sciences and ot tOgether we advance_

Let's summarize what has happened so far. We obtained, filled, and send the

record to the PrintBox node...

... but the PrintBox node has no idea that it is supposed to received a record

... and therefore, our Work Graph Playground App crashes.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

175

Work Graph Concepts — Records

Terminal

> WorkGraphPlayground.exe
Compiling work graph for tutorial "Tutorial 1: Records”...
Failed to re-create work graph:

Operation Failed: system (-2147024809) (80070057): The parameter is incorrect.

CO ke AMDQ
176 of applied sciences and arts

together we advance_

Here is what you will probably see as an output. We only see the
The parameter is incorrect.

error message. This is hinting to us that something about our work graph is not
correct.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

176

Work Graph Concepts — Records

Terminal

> WorkGraphPlayground.exe --enableDebuglLayer

Compiling work graph for tutorial "Tutorial 1: Records”...

[D3D12] ID3D12Device::CreateStateObject: Autopopulated node "Entry" targets output
node PrintBox with an output record size of 16 bytes, but the target node expects an
input record of size @ bytes. These must match.

Failed to re-create work graph:

Operation Failed: system (-2147024809) (80070057): The parameter is incorrect.

CO ke AMDQ1
177 of applied sciences and orts to@ether we advance_

To Dbetter understand the crash, we encourage you to execute
WorkGraphPlaygroundApp.exe with the command line parameter shown
here*.

Then, you will get meaningful error messages. Here, for example, you see the
problem: The producer and consumer node did not agree on the record size.
The work graph validation will fail and reports an error.

*Please note that the D3D12 debug layer requires Graphics diagnostic tools to
be installed. You can find more information here:
https://learn.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-
runtime-and-visual-studio-graphics-diagnostic-features

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 177

https://learn.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-runtime-and-visual-studio-graphics-diagnostic-features
https://learn.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-runtime-and-visual-studio-graphics-diagnostic-features

Work Graph Concepts — Records

struct PrintBoxRecord { ... };

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
| ThreadNodeInputRecord<PrintBoxRecord> inputRecord|

) A
}

CO ke AMDQ
of applied sciences and orts to@ether we advance_

To fix this problem, we must specify that the consumer node PrintBox
accepts an input record. This is by adding

ThreadNodeInputRecord<PrintBoxRecord> inputRecord

to the parameter list of the corresponding node function PrintBox.

178

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Records

struct [PrintBoxRecord| { ... };

[Shader("node")]

[NodeLaunch("thread")]

void PrintBox(
ThreadNodeInputRecord{PrintBoxRecord} inputRecord

) A
}

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

The template argument is the struct that defines the record’s data layout,
PrintBoxRecord.

179

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Records

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
ThreadNodeInputRecord<PrintBoxRecord> inputRecord

) A

const PrintBoxRecord record =|inputRecord.Get()j

Cursor cursor = Cursor(record.topLeft + ...);

CO ke AMDQ
of applied sciences and orts to@ether we advance_

To get read access to the payload, we call the .Get() method on the
inputRecord...

180

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Records

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
ThreadNodeInputRecord<PrintBoxRecord> inputRecord

) A

|const PrintBoxRecord record|= inputRecord.Get();

Cursor cursor = Cursor(record.topLeft + ...);

CO ke AMDQ
of applied sciences and orts to@ether we advance_

181

... and obtain a const, i.e., read-only, instance to the struct, which we store
to a local variable record for easier access.

181

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts — Records

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
ThreadNodeInputRecord<PrintBoxRecord> inputRecord

) A

const PrintBoxRecord record = inputRecord.Get();

Cursor cursor = Cursor{record.topLeft|+ cee)s

CO ke AMDQ
of applied sciences and orts to@ether we advance_

We can now access the struct’s members and use it for further processing.

182

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Work Graph Concepts —

struct PrintBoxRecord {
int2 toplLeft;
int2 index;

};

Entry

183

Records

v

struct PrintBoxRecord {
int2 toplLeft;
int2 index;

};

PrintBox

CO ke AMDQ
of applied sciences and orts to@ether we advance_

With the producer and consumer now using the same record definition, we
have successfully connected the two nodes. The validation errors are now

gone.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

183

struct PrintBoxRecord {
int2 toplLeft;
int2 index;

};

Entry

184

Work Graph Concepts —

Records

v

struct PrintBoxRecord {
int2 index;
float2 topLeft;

15
PrintBox

AMDQO

UNIVERSITY
of applied sciences and ot tOgether we advance_

But beware: the Work Graphs validation only ensures that the size of the
output- and input-record match. This example would still be accepted by the
validation, even producer and consumer have different definitions of the
record’s layout. This can cause you hard-to-find errors.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

184

Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare DrawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Now, you are ready to do Task-2, declare a draw rectangle record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 185

Work Graph Concepts — Records

// [Task 2]: Define a struct for the "DrawRectangle" node

// Draws the outline of a rectangle spanning from "topLeft" to "bottomRight" in window coordinates with a "thickness" in
// pixels. Thickness extends symmetrically to inside and outside of outline. Use "color" to specify the RGB values of
// the rendered rectangle outline pixels.

void DrawRect(in const float2 topLeft,
in const float2 bottomRight,
in const float thickness
in const float3 color

1,
float3(e, 0, 0));

CD SRveRSTY AMDQ
186 of applied sciences andort: together we advance_

Task 2: Create the record struct to draw a rectangle around all boxes. Take a
look at the prepared stub for the "DrawRectangle" node to see what data
needs to be passed to the record.

Hint: you see that DrawRect should be called. The function is defined in
tutorials/Common.h (line 570) and has the following signature

void DrawRect(in const float2 topLeft,
in const float2 bottomRight,
in const float thickness
in const float3 color

1,
float3(e, 0, 9))

From this you can infer what your record struct should look like.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 186

Work Graph Concepts — Records

// [Task 2]: Define a struct for the "DrawRectangle" node

struct DrawRectangleRecord {
// Pixel coordinate of top-left corner of rectangle.
int2 toplLeft;
// Pixel coordinate of bottom-right corner of rectangle.
int2 bottomRight;
// Color of the rectangle.
float3 color;

};

CD SRveRSTY AMDQ
187 of applied sciences and orts to@ether we advance_

Here is our suggested solution.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 187

Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
of applied sciences and orts to@ether we advance_

We got Task-2 done.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 188

Work Graph Concepts — Records

[Shader("node")]

void DrawRectangle(
// [Task 3]: Declare a node input with your new.
)

// [Task 3]: Use the DrawRect function to draw a rectangle.

}

// Draws the outline of a rectangle spanning from "topLeft" to "bottomRight" in window coordinates with a "thickness" in
// pixels. Thickness extends symmetrically to inside and outside of outline. Use "color" to specify the RGB values of
// the rendered rectangle outline pixels.

void DrawRect(in const float2 topLeft,
in const float2 bottomRight,
in const float thickness = 1,
in const float3 color = float3(e, 0, 0));

w SRveRSTY AMDQ
189 of applied sciences and orts to@ether we advance_

Next, we draw the rectangle.

Task 3: Add your record struct as an input to the DrawRectangle node and
complete the code in the node to draw a rectangle on screen.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 189

Work Graph Concepts — Records

[Shader("node")]

void DrawRectangle(
// [Task 3 Solution]:
ThreadNodeInputRecord<DrawRectangleRecord> inputRecord

) {
// [Task 3 Solution]:

const DrawRectangleRecord record = inputRecord.Get();
DrawRect (
record.topLeft, record.bottomRight, 1, record.color);

CO ke AMDQ1
190 of applied sciences andort: together we advance_

Here is our suggested solution.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 190

Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(O 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Next, we have to declare an output record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 191

Work Graph Concepts — Records

[Shader("node")]

void Entry(
// [Task 4]: Declare a new "NodeOutput"
// to the "DrawRectangle" node.

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

Task 4: Add a node output to the Entry node for DrawRectangle node with
your newly created record struct. For now, we only care about the boxes
around the already existing text, thus each thread will emit a single record. Set
the [MaxRecords(...)] attribute for your accordingly.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 192

Work Graph Concepts — Records

[Shader("node")]

void Entry(
// [Task 4 Solution]:
[MaxRecords(4)]
[NodeId("DrawRectangle")]
NodeOutput<DrawRectangleRecord> rectangleOutput

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

Here is our suggest solution.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 193

Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(© 4. Declare output to DrawRectangle node
(O 5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
of applied sciences and orts to@ether we advance_

We declared our output, next we have to fill and emit it.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 194

195

Work Graph Concepts — Records

O tutorial-1/Records.hlsl

[Shader("node")]

void Entry(...) {

// [Task 5]: Emit a record to draw a rectangle.

}

COBURG
UNIVERSITY
of applied sciences and arte

AMDQ1
together we advance_

Task 5: Emit the record to the DrawRectangle node from the Entry node.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

195

Work Graph Concepts — Records

[Shader("node")]

void Entry(...) {
// [Task 5 Solution]:
ThreadNodeOutputRecords<DrawRectangleRecord> threadRectangleRecord =
rectangleOutput.GetThreadNodeOutputRecords (hasBoxOutput ? 1 : 9);

if (hasBoxOutput) {
threadRectangleRecord.Get().topLeft
threadRectangleRecord.Get().bottomRight
threadRectangleRecord.Get().color

}

threadRectangleRecord.OutputComplete();

threadBoxPosition;
threadBoxPosition + BoxSize;
float3(@, 0, 0);

AMDQO

19

s together we advance_

And here is our suggest solution.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

196

Work Graph Concepts — Records

(O 1. Print “Hello World”

(O 2. Declare brawRectangleRecord

O 3. Complete DrawRectangle node

(© 4. Declare output to DrawRectangle node
(5. Emit records DrawRectangle node

(O 6. Homework: Draw enclosing rectangle

CO ke AMDQ
of applied sciences and orts to@ether we advance_

As a homework, look at the last task.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 197

Work Graph Concepts — Records

GetGroupNodeOutputRecords

Thread Group

D @

G S

GetThreadNodeOutputRecords

CD GRSy AMDI1
198 of applied sciences andort: together we advance_

To better give an idea of what awaits you in Task-6, let’s look at another way to
send out records. Up until now, we have used ThreadNodeOutputRecords,
i.e., each thread of our thread-group outputs a record.

<Next Animation Slide>

In your homework Task-6, we want that the entire thread-group to output a
record. This can be done using GroupNodeOutputRecords.

This behavior is similar to ThreadIncrementOutputCount and
GroupIncrementOutputCount, but for a non-empty record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 198

Work Graph Concepts — Records

B ' Work Graph Playground — [m] X

Is | o Sample Solukion

ukorials Samg e Salukion |
Hello Horld?t

Ian @, & [Box <2, ®][Box (3, B)

Adspter: Microsoft Basic Render Driver Wark craph Playground by A4D & HS Caburg

CD GRSy AMDI1
199 of applied sciences and ort: < together we advance_

Task 6: Additionally, we now want to draw another rectangle around all of these
boxes. Update the [MaxRecords(...)] attribute of your node output and
follow the instructions below to emit a per-thread-group record.

After completing the task, you should see a box around all boxes you have
drawn so far. So good luck and have fun!

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

199

COBURG
AM D ' UNIVERSITY
of applied sciences and arts

Work Graph Concepts

-3

In the last section of the Work Graph Concepts block, we will cover
‘Launches”. We slightly touched on launches in the Nodes and Records
section, but here we give you the full details.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 200

Work Graph Concepts — Launches &

(O 1. Change FillRectangle to dynamic dispatch grid
O 2. Implement pass-through coalescing node
O 3. Merge adjacent rectangles

(O 4. Non-deterministic coalescers

CO ke AMDQ
of applied sciences and orts to@ether we advance_

In this tutorial, we have four tasks in which we are going to learn how these
different node launch modes work. In the following, we’ll highlight each of
these tasks and explain the concept of launches and launch modes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 201

Work Graph Concepts — Launches "

"broadcasting" "thread" "coalescing"

< <

Thread Groups

e

Unspecified! Thread Group

0 PR

—_—

COBURG
(do)i AMD{1
202 of applied sciences and orts to@ether we advance_

We've seen before that we can specify the “work” in our work graph with
records. The launch mode then specifies how each node function is
processing the incoming records. In Work Graphs, we have access to three
different launch modes: "broadcasting”, "thread", and "coalescing".

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 202

203

Work Graph Concepts — "broadcasting" Launches "

struct RectangleRecord {

};...

[Shader("node")]

[[NodeLaunch("broadcasting")]|

[NodeDispatchGrid(6, 6, 1)]

[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")]

void FillRectangleNode(
DispatchNodeInputRecord<RectangleRecord> ir,

uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

<

Thread Groups

_ e

CD SRveRSTY AMDQ
of applied sciences and art « together we advance_

Let’s start with the "broadcasting” launch mode, since it is the easiest to
grasp if you have every worked with compute shaders before. If we use the
"broadcasting"” launch mode, one record is processed by a grid of thread
groups.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

203

Work Graph Concepts — "broadcasting" Launches "

struct RectangleRecord {

};...
[Shader("node")] i

[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")] Thread Groups
void FillRectangleNode(353555553353
|DispatchNodeInputRecord*RectangleRecord> ir,
uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}
204 cosﬁ‘?%g?” rrrrrrrrrr s gﬂ?ﬂadnnm_

Launching a node in "broadcasting” launch mode is very similar to
dispatching a compute shader kernel. Thus, the input record is declared with
type DispatchNodeInputRecord. This way, thread groups launches for the
same records all receive a read-only view to the input record.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 204

Work Graph Concepts — "broadcasting" Launches "

struct RectangleRecord {

};...
[Shader("node")] i

[NodeLaunch("broadcasting")]

[NodeDispatchGrid(6, 6, 1)]

[[NumThreads(8, 8, 1)]|

[NodeId("FillRectangle")] Thread Groups

void FillRectangleNode(353555555355
DispatchNodeInputRecord<RectangleRecord> ir,

uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

CD SRveRSTY AMDQ
205

of applied sciences and art « together we advance_

As with any regular compute shader, we define the three-dimensional grid of
threads in each thread group with the [NumThreads(...)] attribute. In our
example, we're using 8 x 8 X 1 = 64 threads.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 205

Work Graph Concepts — "broadcasting" Launches "

struct RectangleRecord {

¥ (
[Shader("node")] commandList->Dispatch(6, 6, 1) S

[NodeLaunch("broadcasting")]

|[NodeDispatchGrid(6, 6, 1)1}

[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")] Thread Groups

void FillRectangleNode(s&%&s&s&s&s&
DispatchNodeInputRecord<RectangleRecord> ir,

uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

—

CD SRveRSTY AMDQ
206 of applied sciences and orts to@ether we advance_

Similarly, the three-dimensional grid of thread groups to launch is defined with
the [NodeDispatchGrid(...)] attribute.

Here, we a launch a grid of 6 X 6 X 1 = 36 groups. This is similar to launching
compute shader from the CPU with the Dispatch command.

However, statically setting the dispatch grid through
[NodeDispatchGrid(...)] means that every incoming record launches the
same number of thread groups. In many scenarios (e.g. image filters) we
require a dynamic number of thread groups that fits the current problem size.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 206

Work Graph Concepts — "broadcasting"” Launches g

B Work Graph Playground - [u} X

Adapter: AWD Radean RX 7900 XTX Wark Graph Playground by AMD & HS Coburg

COBURG
(do)i AMD{1
207 AP of opplied sciences and arts together we advance_

We can see an example of this in the Node Launches tutorial.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 207

Work Graph Concepts — "broadcasting" Launches "

B | Work Graph Playground

On screen, we see five colored blocks. These blocks are drawn by the
FillRectangle node. The FillRectangle node uses the "broadcasting"
launch mode and a fixed dispatch grid of [NodeDispatchGrid(6, 6, 1)].
However, in the node function of the Entry node, we can see that each of
these rectangles should have a different size, as computed by the
GetRectanglePositionAndSize helper function.

To then draw each rectangle with the correct size, we must dynamically set the
dispatch grid for each rectangle (i.e., each record). Follow the instructions for
[Task 1] in tutorials/tutorial-2/NodeLaunches.hlsl.

1. Start by adding variables for the dispatch grid and rectangle size in the
"RectangleRecord" struct.

2. Next, change the [NodeDispatchGrid(...)] attribute of the
"FillRectangle® node to a [NodeMaxDispatchGrid(...)] and update
the dispatch size limit in the x dimension.

3. Lastly, set the dispatch grid and rectangle size for the rectangle records in
the "Entry" node.

In the following, we’ll discuss the sample solution.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

208

Work Graph Concepts — "broadcasting" Launches "

struct RectangleRecord {
uint2 dispatchGrid : SV_DispatchGridﬂ

}s 6
[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeDispatchGrid(6, 6, 1)]

[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")] Thread Groups

void FillRectangleNode(353555553353
DispatchNodeInputRecord<RectangleRecord> ir,

uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

—

CD SRveRSTY AMDQ
209 of applied sciences and art « together we advance_

To dynamically set the dispatch grid for each record, we add a variable to the
record struct and annotate it with the SV_DispatchGrid semantic. This
semantic tells the work graph system, that this variable should be used as the
dispatch grid for the broadcasting node. The type of this variable can be uint,
uint2, uint3 or a 16-bit variant of the aforementioned types.

With this, we have completed the first step of Task 1.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 209

Work Graph Concepts — "broadcasting" Launches "

struct RectangleRecord {
uint2 dispatchGrid : SV_DispatchGrid;

18
/

[Shader("node")]

NodelLaunch("broadcasting"
[NodeMaxDispatchGrid(16, 6, 1)]

[NumThreads(8, 8, 1)]

[NodeId("FillRectangle")] Thread Groups
void FillRectangleNode(553335553553
DispatchNodeInputRecord<RectangleRecord> ir,
uint2 dispatchThreadId : SV_DispatchThreadID
) { ...}

Next, we need to change the [NodeDispatchGrid(...)] attribute of the
FillRectangle node to [NodeMaxDispatchGrid(...)]. Instead of setting a
fixed dispatch grid for all incoming records, we now define an upper limit for
the dispatch grid set by each individual record.

Beside replacing NodeDispatchGrid with NodeMaxDispatchGrid, we have to
determine an upper limit for the grid size. As each thread in the
FillRectangle node draws a single pixel, we compute the upper limit as
follows:

- 6 thread groups for base-size rectangle (48x48)

- 10 thread groups (10x8 = 80 pixels) to cover the size of the 20th thread
group (48 + 19 * 4)

Gives us a total of 16 thread groups max.

Finally, we need to set the newly added dispatchGrid variable in each of the
records that we send to FillRectangle. We omitted this step here for
simplicity, but you can refer to the sample solution or the previous tutorial on
records for more information on writing data to records.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 210

Work Graph Concepts — "broadcasting"” Launches g

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg

COBURG
CO ke AMDQ1
2 AP ofapplied sciences and arts together we advance_

Once you're done with Task 1, the rectangles should now cover a continuous
horizontal rectangle.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 211

Work Graph Concepts — "broadcasting" Launches "

(O 1. Change FillRectangle to dynamic dispatch grid
O 2. Implement pass-through coalescing node
O 3. Merge adjacent rectangles

(O 4. Non-deterministic coalescers

CO ke AMDQ
of applied sciences and ot tOgether we advance_

This completes our look at Task 1 and the "broadcasting” launch mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 212

Work Graph Concepts — Launches "

|
"broadcasting" "thread" "coalescing"

< <
| |

Thread Groups Unspecified! Thread Group

e 0 PR

—_—

COBURG
w UNIVERSITY AMDQ1
213 of applied sciences and orts to@ether we advance_

Next, we look at the "thread" launch mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 213

Work Graph Concepts — "thread" Launches "

[Shader("node")] é
[NodeLaunch("thread")]

[NodeId("PrintLabel")]

void PrintLabelNode(

ThreadNodeInputRecord<PrintLabelRecord> ir
) { ...} Unspecified!

0

CD SRveRSTY AMDQ
214 of applied sciences and art « together we advance_

We use the PrintLabelNode to explain the "thread" launch mode. We've
also seen similar used of the "thread" launch mode in the previous tutorials.

214

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

Work Graph Concepts — "thread" Launches g

B tutorial-2/NodeLaunches.hlsl

[Shader("node")] o
[[NodeLaunch("thread")]|
[NodeId("PrintLabel™)]
void PrintLabelNode(
ThreadNodeInputRecord<PrintLabelRecord> ir

) { ...} Unspecified!

0

COBURG
w UNIVERSITY AMDQ1
215 of applied sciences and orts to@ether we advance_

Again, we use the [NodeLaunch(...)] attribute to provide the launch mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 215

Work Graph Concepts — "thread" Launches "

[Shader("node")] é
[NodeLaunch("thread")]

[NodeId("PrintLabel")]

void PrintlLabelNode(

|ThPeadNodeInputRecord*PrintLabelRecord> ir
)y { ...} Unspecified!

0

CD SRveRSTY AMDQ
216 of applied sciences and art « together we advance_

As we are now dealing with a single thread that accesses the incoming record,
we use the type TheadNodeInputRecord to declare the input.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 216

Work Graph Concepts — "thread" Launches "

Thread Group

27 . Thread I:l Group Shared Memory

g

Unspecified!

0

COBURG
UNIVERSITY
ssssssssssssssssssssssss

AMDQO

together we advance_

Even though an execution of "thread"-launch nodes is not defined by the
specification, the underlying work-graphs system still uses thread groups to

execute these nodes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

217

Work Graph Concepts — "thread" Launches g

Thread Group

<

Unspecified!

0

COBURG AMDD1
218 . Thread |:| Group Shared Memory CDS.“ULETE!L@M.S together we advarice.

However, access to the group shared memory is not allowed, and...

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 218

Work Graph Concepts — "thread" Launches g

Thread Group
2 SIS $
e &) |62 &2
S E R
o -,i -,-2- b‘. Unspecified!
5151 %% §
x [Thread [Group Shared Memory COME . e eimtance.

...as we only programmed a single thread, operations, such as wave intrinsics
are also not allowed.

However, executing "thread"-launch nodes with one thread group per record
is very wasteful of GPU resources.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 219

Work Graph Concepts — "thread" Launches "

Thread Group

noon pa—

oooE .
m n E n Unspecified!
2]af{2fs %

cccccc AMDZ
2 . Thread D Group Shared Memory CDS.“JLEZ‘?!Z ssssssssssss lngzmarulu'ndvance_

Thus, the Work Graphs scheduler tries to combine multiple
ThreadNodeInputRecords of the same node into thread groups, thereby
increasing the efficiency of "thread"-launch nodes.

This is fully transparent to the programmer: we program as if there is just one
single thread. With the exception that some work graph limits — like the
maximum number of output records — are split up among the invisible group.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 220

Work Graph Concepts — Launches "

"broadcasting" "thread"

< <

Lots of threads in
thread groups

Thread Groups Unspecified!

_ e

e
N

A single thread

CD SRveRSTY AMDQ
of applied sciences and art « together we advance_

We looked at the two extremes:

- "broadcasting" node launch mode. They resemble compute shaders.
There, we program an entire thread group.

- "thread" launch mode that is how we program vertex or pixel shaders. You
as a programmer write your code from the perspective of a single thread.

In summary, the "thread" launch mode tries to cluster together records to the
same node, but communication between the threads is forbidden. They cannot
use shared memory.

What if we take this idea further and allow for communication?

© Advanced Micro Devices, Inc. Al rights reserved. Confidential — Not for distribution. 221

Work Graph Concepts — Launches "

|
"broadcasting" "coalescing" "thread"

M

Thread Groups Thread Group Unspecified!

_ e PR 0

COBURG
wUNIVERSIYY AMDn
222 of applied sciences and orts to@ether we advance_

This is where our last launch mode comes in: The "coalescing"” launch
mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

222

Work Graph Concepts — "coalescing" Launches g~

[Shader("node")]
[NodeLaunch("coalescing")]

[NumThreads (4, 4, 1)] €€€

void Node(

[MaxRecords(4)]

GroupNodeInputRecords<Job> input
) { Thread Group
. R

CD SRveRSTY AMDQ
of applied sciences and art « together we advance_

The easiest way to think of the "coalescing"” launch mode is as a "thread"
launch mode with more flexibility and control: We can specify how many
records to the same node should be grouped together at maximum, and how
many threads the group that is processing this collection should have.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 223

Work Graph Concepts — "coalescing" Launches g~

[Shader("node")]

[[NodeLaunch("coalescing")]| .
[NumThreads (4, 4, 1)] ;
void Node(

[MaxRecords(4)]
GroupNodeInputRecords<Job> input
) { Thread Group

PR

}...

CD SRveRSTY AMDQ
of applied sciences and arfs together we advance_

So here you see how you define a node in "coalescing"” launch mode. We
start — as before — by setting the [NodeLaunch(...)] attribute to
"coalescing".

© Advanced Micro Devices, Inc. Al rights reserved. Confidential — Not for distribution. 224

Work Graph Concepts — "coalescing" Launches g~

[Shader("node")]

[NodeLaunch("coalescing")] ‘i
[NumThreads (4, 4, 1)] (;
void Node(‘E;
[MaxRecords(4)]
GroupNodeInputRecords<Job> input
) { Thread Group

PR

CD SRveRSTY AMDQ
of applied sciences and art « together we advance_

As we now have multiple records that are shared across a single thread group,
we use GroupNodeInputRecords to declare the node input (Note the plural
“s” at the end).

Additionally, we set an upper limit for how many records we want to consume

with each thread group of our node. Please note, that this is only an upper
limit.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 225

Work Graph Concepts — "coalescing" Launches g~

[Shader("node")]

[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(

[MaxRecords(4)]

GroupNodeInputRecords<Job> input
) { Thread Group

?%?t recordCount =|input.Count(); %§§%§%§

CD SRveRSTY AMDQ
of applied sciences and arfs together we advance_

The actual number of available input records can be queried with the Count()
function in the node input object.

226

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

Work Graph Concepts — "coalescing" Launches g~

hadir("nﬁtgﬁ")]l — Thread Group

odelLaunch("coalescin

[NumThreads (4, 4, 1)]g/

void Node(....
MaxR ds(4
ér‘iﬁpﬁlggg;éui;ecord“Jol:

) EEEE

uint recordCount = input. Thread Group

, PR

CD SRveRSTY AMDQ
ot oppd stnces and s

227 together we advance_

As we are programming a thread group, we have full control over how many
threads we want per thread group and how these thread should be organized
as a three-dimensional grid.

Here we have 4 x 4 = 16 threads. We then also have full control over how
incoming records are mapped to these threads.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 227

Work Graph Concepts — "coalescing" Launches g~

[CoalescingExample.hlsl ——————————

[Shader("node")] Thread Group
| 2 |

[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]— |
void Node(
[MaxRecords(4)]
GroupNodeInputRecords<Job

) _
uint recordCount = input. Thread Group

, PR

COBURG
wUNIVERSIYY AMDn
228 of applied sciences and orts to@ether we advance_

As we have at most four incoming records, we can assign a row of four
threads to each of these records. Each of these threads can then process
parts of the incoming record. For example, if incoming data are colors with four
components (red, green, blue and alpha), each thread can process one color
component.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 228

Work Graph Concepts — "coalescing" Launches g~
[CoalescingExample.hlsl

[Shader("node™)] Thread Group
[NodeLaunch("coalescing")]

[NumThreads(4, 4, 1)]— |
void Node(
[MaxRecords(4)] 4
GroupNodeInputRecords<Job

’

H

uint recordCount = input. Thread Group

PR

COBURG
w UNIVERSITY AMDn
of applied sciences and orts to@ether we advance_

229

So far, we’ve seen how we process multiple records separately in parallel with
"coalescing"-nodes. Additionally, as all threads of our thread group have
access to all incoming records, we can also perform operations such as
reductions across all incoming records.

229

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

Work Graph Concepts — "coalescing" Launches g~

[NodeLaunch("coalescing")]
[NumThreads(1, 1, 1)]
[NodeId("MergeRectangle")] JE:
void MergeRectangleNode(6‘
[MaxRecords(2)] <
GroupNodeInputRecords<RectangleRecord>
inputRecords,

Thread G
[MaxRecords(2)] read Group

[NodeTd("Fil1Rectangle")] PR

NodeOutput<RectangleRecord> output) {
}

CD SRveRSTY AMDQ
230 of applied sciences and orts to@ether we advance_

Implementing such a reduction is part of Task 2 and Task 3 in the Node
Launches tutorial.

Start by opening tutorials/tutorial-2/NodelLaunches.hlsl and follow
the instructions for [Task 2].

As a first step, implement a MergeRectangle node as shown above. This
node will take in up to two rectangles and pass them through to the
FillRectangle node. Later, we will implement the reduction by merging
rectangles into a single one if they share an edge.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 230

Work Graph Concepts — "coalescing" Launches g~

B ' Work Graph Playground — [m] X
torials tior

CD SRveRSTY AMDQ
of applied sciences and art « together we advance_

Once you are done with Task 2, the Work Graph Playground App should still
look the same.

Continue with instructions for [Task 3] to implement the reduction.

Complete the sub-call to the ComputeCombinedRect helper method. If this
helper returns "true", then you must emit a single record to the
"FillRectangle" node.

Position and size of this rectangle are given by the "ComputeCombinedRect"
helper. For the color of this rectangle, you can re-use the color from any of the
input records (e.g., record[0]).

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 231

Work Graph Concepts — "coalescing" Launches g~

B ' Work Graph Playground — [m] X

dspter: A0 Radeon R 7980 KTX Wark craph Playground by A4D & HS Caburg

CD SRveRSTY AMDQ
232 of applied sciences and arts together we advance_

Once you're done, you should now see the same area being filled, but this
time with just three instead of five rectangles. As five is not divisible by two,
there's also one rectangle which could not be merged and is passed through
as-is from the MergeRectangle node to the FillRectangle node.

232

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

Work Graph Concepts — "broadcasting" Launches "

(O 1. Change FillRectangle to dynamic dispatch grid
O 2. Implement pass-through coalescing node
O 3. Merge adjacent rectangles

(O 4. Non-deterministic coalescers

CO ke AMDQ
of applied sciences and ot tOgether we advance_

With Task 2 and Task 3 completed, we can continue to Task 4 and the non-
deterministic nature of "coalescing"-nodes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 233

Work Graph Concepts — "coalescing" Launches g~

B ' Work Graph Playground — [m] X

Tukorials | Sampls Salukion

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg

COBURG
(do)i AMDQ
234 of applied sciences and orts to@ether we advance_

Increase the dispatch grid of the Entry node in x dimension to emit more
rectangles.

You should now see the merged rectangles flickering...

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 234

Work Graph Concepts — "coalescing" Launches g~

B ' Work Graph Playground — [m] X

dspter: A0 Radeon R 7980 KTX Wark craph Playground by A4D & HS Caburg

CD SRveRSTY AMDQ
235 of applied sciences and arts together we advance_

...between different ways of merging the rectangles. As the input to the
coalescer node is non-deterministic and depends on the timing of the different
thread groups of the "Entry" node. Thus, every frame different rectangles are
merged.

This step is omitted from the sample solution.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 235

Work Graph Concepts — "coalescing" Launches g~

00

Thread Group

PR

CD SRveRSTY AMDQ
286 AP of opplied sciences and arts together we advance_

Additionally, the order in which the incoming records are passed to the node
function is also not deterministic, ...

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 236

Work Graph Concepts — "coalescing" Launches g~

999

Thread Group

PR

COBURG
(do)i AMD{1
237 of applied sciences and orts to@ether we advance_

...can change with every execution of the work graph.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 237

Work Graph Concepts — "coalescing" Launches g~

o9 <

Thread Group Thread Group

PR PR

CD SRveRSTY AMDQ
288 AP of opplied sciences and arts together we advance_

There is also no guarantee that a group always receives the specified number
of records. However, all records sent to a "coalescing"-node will eventually

be processed by it — even if this means invoking the node with just a single
record.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

238

239

Work Graph Concepts — Launches "

|
"broadcasting" "coalescing" "thread"
Unspecified!

Thread Group

PR 0

Thread Groups

e

—_—

COBURG
(doti AMDQ
of applied sciences and ot tOgether we advance_

In summary, we’'ve now seen the three different launch modes available in
Work Graphs: "broadcasting”, "coalescing" and "thread". Together with
nodes and records, these form the three core concepts of Work Graphs, and
we are now ready to move on to more advanced uses of Work Graphs.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

239

COBURG
AM D ' UNIVERSITY
of applied sciences and arts

Advanced Work Graphs

In this section, we put all concepts, i.e., nodes, records, and launches,
together to create an advanced use-case for Work-Graphs. Plus, we are going
to learn about a powerful Work Graphs feature called “Node Arrays”. We
demonstrate this at the practical example of Material Shading.

240

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Problem: Material Shading

CD SRveRSTY AMDI1
241 of applied sciences and orts to@ether we advance_

So, what is the problem of Material Shading? Consider this simple scene with
a background, a plane, and a sphere.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 241

Problem: Material Shading

return float4(e.4, 0.7, 1, 1);

COBURG
w UNIVERSITY AMDQ1
242 of applied sciences and orts to@ether we advance_

The objects and therefore the rendered pixels have a different material,
highlighted with different colors here. For example, the sky could have a very
simple material, such as a constant color. But computing the material for the
sphere or the plane could be quite involved. They could, in fact, be different
materials, requiring different algorithms with different costs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 242

Problem: Material Shading

COBURG
w UNIVERSITY AMDQ1
243 of applied sciences and orts to@ether we advance_

What is the problem then? To explain that, let’'s change to a coarser version of
that image. You see the individual pixels of the image here using three distinct
colors. Each color represents a different material type.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 243

GPU Hardware

EEREEEEE
EEREEEEE

Problem: Material Shading

Graphics Memory

- Thread . Shared Memory I:l Thread Group

COBURG
w UNIVERSITY AMDQ1
244 of applied sciences and orts to@ether we advance_

And let’s not forget that we are running our computation on a GPU.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 244

Problem: Material Shading

CD SRveRSTY AMDQ
25 of applied sciences andort: together we advance_

So, let’s see how a GPU thread group would compute that image.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 245

Problem: Material Shading

CD SRveRSTY AMDQ
246 of applied sciences andort: together we advance_

To make it a little more readable, our example thread group only has four
threads.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 246

Problem: Material Shading

CD SRveRSTY AMDI1
247 of applied sciences and orts to@ether we advance_

Our thread group can then compute a 2x2 grid of pixels in a SIMD fashion.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 247

Problem: Material Shading

CD SRveRSTY AMDI1
248 of applied sciences and orts to@ether we advance_

Each thread group computes a subset of those 2x2 blocks.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 248

Problem: Material Shading

CD SRveRSTY AMDQ
249 of applied sciences andort: together we advance_

Things become interesting at the highlighted block here, where different
materials need to be evaluated.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 249

Problem: Material Shading

'-----
T i ||

CD SRveRSTY AMDQ
250 of applied sciences andort: together we advance_

Each of the four pixels is evaluated with one thread in our thread group. Let’s
consider how the computation is carried out over time.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 250

Problem: Material Shading

'-----
T i ||

CD SRveRSTY AMDQ
251 of applied sciences andort: together we advance_

The computation of each pixel is scheduled to one thread. Ideally, the four
pixels can be executed in parallel and take equally long.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 251

Problem: Material Shading

CD SRveRSTY AMDQ
252 of applied sciences andort: together we advance_

However, some materials are faster to compute, like the sky (blue), while
others take a lot longer. In a thread group, the short code paths must wait for
long ones to finish.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 252

Problem: Material Shading

AMDQO
dors together we advance_

The threads of our thread group are executed on a SIMD core. That means
the same instruction must be executed on all SIMD lanes at the same time.

Since the three different materials have different instructions, they cannot be
executed in parallel. Instead, only those threads that share the same
instructions can physically run in parallel. All other threads must defer their
computation to a later point in time. This goes by the name “thread
divergence” and can become a huge performance bottleneck on GPUs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 253

Problem: Material Shading Solution: Work Graphs

COBURG
w UNIVERSITY AMDQ1
254 of applied sciences and orts to@ether we advance_

Where SIMD cores can deliver a huge performance boost is when the thread
code is coherent, for example here in the group of red pixels.

In the following sections, we’ll take a look at how Work Graphs can help us
eliminate thread divergence by creating specialized nodes for each material.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 254

Problem: Material Shading

[NumThreads(8, 8, 1)]

void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);
switch (hit.material) {

}

CD SRveRSTY AMDQ
255 of applied sciences and orts to@ether we advance_

To start with, consider this compute shader example.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 255

Problem: Material Shading

[NumThreads(8, 8, 1)]
|void RenderScene(uint2 dtid : SV_DispatchThreadId)|{
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CD SRveRSTY AMDQ
256 of applied sciences and orts to@ether we advance_

It is called RenderScene and we get a unique global thread id dtid that gives
a 2D integer pixel coordinate for the pixel that we wish to shade.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 256

Problem: Material Shading

|[NumThreads(8, 8, 1)H
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CD SRveRSTY AMDQ
257 of applied sciences and orts to@ether we advance_

Each thread group uses an 8x8 grid of threads, so that, each thread group
computes 64 pixels.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 257

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV DispatchThreadId) {
|const RayHit hit = TraceRay(...)ﬂ

switch (hit.material) {

}

CD SRveRSTY AMDQ
258 of applied sciences and orts to@ether we advance_

For each thread, we trace a ray, to find the closest hit...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 258

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CD SRveRSTY AMDQ
259 of applied sciences andort: together we advance_

... and then carry out the shading, depending on the material that our ray hit.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 259

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {
case RayHit::Sky:
color = ShadeSky(ray); break;
case RayHit::Sphere:
color = ShadeSphere(ray, hit.distance); break;
case RayHit::Plane:
color = ShadePlane(ray, hit.distance); break;

CD SRveRSTY AMDQ
260 of applied sciences and orts to@ether we advance_

Here, we have the switch statement, which is the root of the thread divergence
problem. Depending on the material, we must take a different code path. If
those code paths don’t share the same instruction, we effectively serialized the
code.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 260

Recap — Work Graph — Nodes

|[Shader(“node")ﬂ

[NumThreads (8, 8, 1)]

void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

COBURG
UNIVERSITY
261 of applied sciences and orfs

We want to solve this by using Work Graphs.

To turn a compute shader into a Work Graph node, we start by adding a
[Shader("node™)] attribute before the function definition. Nodes are
basically compute-shaders with this node attribute.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

261

Recap — Work Graph — Records

struct Record {

b

[Shader("node")]

[NumThreads(8, 8, 1)]

void RenderScene(uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

v CD SRveRSTY AMDQ

of applied sciences and ot tOgether we advance_

As this is no longer a compute shader, but a work graph nodes, we cannot
dispatch it with e.g. the Dispatch command. Instead, we must send a record to
our newly created node. Thus, we declare a Record struct above with all the
data that we want to pass to our node, e.g., a camera view-projection matrix.
The actual contents of the struct are omitted here for simplicity.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 262

Recap — Work Graph — Records

struct Record {
}s

[Shader("node")]
[NumThreads(8, 8, 1)]
void RenderScend(NodeInputRecord<Record> inputRecordL
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CD SRveRSTY AMDQ
263 of applied sciences and orts to@ether we advance_

To make our RenderScene node a consumer receiving such a record, we must
declare a NodeInputRecord with our record as template argument.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 263

Recap — Work Graph — Records

struct Record {
}s

[Shader("node")]
[NumThreads (8,

8, 1
void Render‘ScenodeInputRecord<Record> inputRecord,

uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CO ke AMDQ
264 of applied sciences and orts to@ether we advance_

As we’ve seen before, the specific type of NodeInputRecord depends on the
launch mode for the node, which we have not yet selected in our example.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

264

Recap — Work Graph — Launches
struct Record { ... };

[Shader("node")]
|[NodeLaunch("broadcasting")1|
[NumThreads(8, 8, 1)]
void RenderScene(NodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CO ke AMDQ
265 of applied sciences and orts to@ether we advance_

The compute shader implementation that we started out with was dispatched
with multiple thread groups in both x and y direction to cover all the pixels in
our render target.

This behavior is mimicked by the "broadcasting” node launch, which
dispatches a grid of thread groups for each incoming record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

265

Recap — Work Graph — Launches
struct Record { ... };

[Shader("node")]
[NodeLaunch("broadcasting")]

[NumThreads(8, 8, 1
void RenderScen (DispatchﬂodelnputRecord<Record> inputRecord,

uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CO ke AMDQ
266 of applied sciences and orts to@ether we advance_

For "broadcasting” nodes, the input record must be declared as
DispatchNodeInputRecord. All thread groups of the dispatch have a read-
only view on the same inputRecord.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 266

Recap — Work Graph — Launches

struct Record { ... };

[Shader("node")] Dispatch(480, 270, 1)
[NodeLaunch("broadcasting")]

[[NodeDispatchGrid(48e, 270, 1)]|
[NumThreads (8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,

uint2 dtid : SV_DispatchThreadId) {

const RayHit hit = TraceRay(...);

switch (hit.material) {

CO ke AMDQ

of applied sciences and orts to@ether we advance_

Next, we must specify the dispatch grid for our node, or in other words, how
many thread groups we want to launch for each incoming record.

Here, we set it to launch a grid of 480x270x1 thread groups for every record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

267

Recap — Work Graph — Launches
0 tutorial-3/MaterialShading.hlsl

struct Record { ... }; Dispatch(48e, 270, 1)

[Shader("node")]
[NodeLaunch("broadcasting")] 8x8
[[NodeDispatchGrid(480, 270, 1)]
[NumThreads (8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CD SRveRSTY AMDQ
268 of applied sciences and orts to@ether we advance_

As each thread group has 8x8 threads...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 268

Recap — Work Graph — Launches

struct Record { ... }; Dispatch(48e, 270, 1)

[Shader("node")]
[NodeLaunch("broadcasting")]
[[NodeDispatchGrid(48e, 270, 1)]
[NumThreads (8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

COBURG
CO ke AMD{1
269 of applied sciences and orts to@ether we advance_

... that makes grid of 3840 x 2160 threads in total. That is enough to cover a
4K Ultra HD (UHD) image with one thread per pixel. That is, however, now a
fixed grid size. That means, we would always launch 3840 x 2160 threads. But
what if we want to keep that size more flexible, for example, if we want to
make our window smaller?

Hint: In case you wonder, 8 threads in x direction and 480 blocks in x direction
makes 8 x 480 = 3840. Likewise, for the y direction we get 8 x 270 = 2160.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

269

Recap — Work Graph — Launches

struct Record { ... };

[Shader("node")]
[NodeLaunch("broadcasting")]

[[NodeMaxDispatchGrid(480, 270, 1)]|
[NumThreads (8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,

uint2 dtid : SV_DispatchThreadId) {

const RayHit hit = TraceRay(...);

switch (hit.material) {

}

270

CD SRveRSTY AMDQ

of applied sciences and orts to@ether we advance_

To get that flexibility, we add a Max there. This specifies an upper bound for the
number of thread groups.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

270

Recap — Work Graph — Launches

struct Record {
fuint3 dispatchGrid : SV_DispatchGrid;|

%

[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid(480, 270, 1)]

[NumThreads(8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {

CO ke AMDQ
271 scien

of applied sciences and orts to@ether we advance_

The producer of the Record struct is then tasked with setting the actual
number of thread groups. This information is passed to the work graph runtime
by annotating a variable with SV_DispatchGrid.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 271

Recap — Work Graph — Launches

struct Record {
uint3 dispatchGrid : SV_DispatchGrid;

%

[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid(480, 270, 1)]

[NumThreads(8, 8, 1)]

void RenderScene{DispatchNodeInputRecord<Record> inputRecord)
uint2 dtid : SV_DispatchThreadId) {

CD SRveRSTY AMDQ
272 scier

of applied sciences and orts to@ether we advance_

Remember, the Record struct and thus by extension the variable with
SV_DispatchGrid semantic are tied to our node through the
DispatchNodeInputRecord declaration.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 272

Material Shading

struct Record { ... };

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {

}

CO ke AMDQ
273 scier

of applied sciences and orts to@ether we advance_

Thus far, we have turned our initial compute shader into a broadcasting node
with a dynamic dispatch grid.

Our goal, however, was to solve the issue of thread divergence caused by the
switch-case statement for executing the material shaders.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 273

Material Shading

[Shader("node")]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {
case RayHit::Sky:
color = ShadeSky(ray); break;
case RayHit::Sphere:
color = ShadeSphere(ray, hit.distance); break;
case RayHit::Plane:
color = ShadePlane(ray, hit.distance); break;

AMDQO

s together we advance_

274

To reiterate, these shading functions use different instructions and thus cannot
run in parallel on the SIMD-architecture of our GPU.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

274

Material Shading

[Shader("node")]
void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
uint2 dtid : SV_DispatchThreadId) {
const RayHit hit = TraceRay(...);

switch (hit.material) {
case RayHit::Sky:
color =|ShadeSky(ray); |break;
case RayHit::Sphere:
color = ShadeSphere(ray, hit.distance); break;
case RayHit::Plane:
color = ShadePlane(ray, hit.distance); break;

CO ke AMDQ
275 of applied sciences and orts to@ether we advance_

The underlying idea is to move these different shading functions into separate
nodes and use work graphs to send records to these nodes based on the ray
tracing result.

We start by moving the ShadeSky function...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 275

Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;

1

[Shader("node")]
[NodeLaunch("thread")]
void| ShadePixel Sky|[ThreadNodeInputRecord<PixelRecord> inputRecord) {

const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

CDS‘%E‘éggrv AMDQ
of applied sciences and orts to@ether we advance_

276

...to a new node named ShadePixel Sky.

276

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;
}s

[Shader("node")]

|[NodeLaunch("thread")H

void ShadePixel Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

CO ke AMDQ
217 of applied sciences and orts to@ether we advance_

As this node only processes a single pixel, we can use the "thread" launch
mode, which assigns a single thread to each incoming record (i.e., each
incoming pixel).

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 277

Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;
}s

[Shader("node")]

[NodeLaunch("thread"

void ShadePixel_ Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

AMDQO

278 e together we advance_

As we'’re using the "thread" launch mode, we must declare the node input
with ThreadNodeInputRecord.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 278

Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;

};

[Shader("node")]

[NodeLaunch("thread")]

void ShadePixel_ Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

CO ke AMDQ
279 of applied sciences and orts to@ether we advance_

The record data itself is defined in the PixelRecord struct above. Here we
pass the coordinate of the pixel we wish to shade, the ray that was traced for
this pixel along with the ray length.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 279

Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;
}s

[Shader("node")]

[NodeLaunch("thread")]

void ShadePixel Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
|const PixelRecord record = inputRecord.Get();|

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

AMDQO

280 e together we advance_

For convenience, we store the incoming record to a local variable called
record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 280

Material Shading

struct PixelRecord {
uint2 pixel;
Ray ray;
float hitDistance;

1

[Shader("node")]

[NodeLaunch("thread")]

void ShadePixel_ Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
const PixelRecord record = inputRecord.Get();

const float4 color = ShadeSky(record.ray);
WritePixel(record.pixel, color);

CD GRSy AMDI1
281 of applied sciences andort: together we advance_

We can then call the underlying ShadeSky function with the data from the
record to compute the shaded color and write it to our pixel with the help of the
WritePixel function.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 281

Material Shading

[Shader("node™)]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread

void ShadePixel_ ThreadNodeInputRecord<PixelRecordy inputRecord) {}

[Shader("node™)]
[NodeLaunch("thread")]

void ShadePixel|Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

CO ke AMDQ
of applied sciences and orts to@ether we advance_

282

We repeat the same steps for the Sphere and Plane material as well, thus
creating a ShadePixel Sphere and ShadePixel_Plane node. We can use
the same PixelRecord struct that we declared earlier for these new nodes as

well.

282

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Material Shading

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8. 8. 1)1
void Rende Max. 256 Records €InputRecord<Record> i [Shader("node")]
void ShadePixel Sky(...)
[MaxRecords(8 * 8)]
NodeOutput<PixelRecord> ShadePixel_SkyJ

uint2 dtid : SV_DispatchThreadId) b

CD SRveRSTY AMDQ
283 of applied sciences and art « together we advance_

To send records to our newly declared nodes, we must declare a NodeOutput
in our RenderScene node for each material. We show this at the example of
the NodeOuput for the ShadePixel Sky node.

As all 8x8 pixel in our thread group might have the same material, we must
declare all these node outputs with this worst case, i.e. 8 * 8 records.

However, this would mean that we would reach the output limit of 256 records
with just four materials (8 * 8 * 4 = 256). Contrast this with the hundreds of
materials used by modern AAA games and we can immediately see that this
approach of declaring separate node outputs does not scale very well.

We can solve this problem by using a work graph feature specially designed
for such use-cases called node arrays.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 283

Node Arrays

[Shader("node™)]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node™)]
[NodeLaunch("thread")]
void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

CO ke AMDQ
84 A ofeplied sciencesondorts together we advance_

Consider our different material nodes from before. They all use the same
launch mode and input record...

284

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Node Arrays

[Shader("node")]
[NodeId("ShadePixel", 0]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

Node Array Index

[Shader("node™)]

[NodeId("ShadePixel", 1]

[NodeLaunch("thread")]

void ShadePixel Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]

[NodeId("ShadePixel", 2]

[NodeLaunch("thread")]

void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

COBURG
CO ke AMD{1
285 of applied sciences and orts to@ether we advance_

...thus we can combine them into a single node array named ShadePixel. To
do this, we add a [NodeId("ShadePixel", @] attribute to each node. The
first part (i.e. the node id name) is the same for all nodes, but we must assign
a different node array index to each node.

In our example, use the following mapping:
0 — sky material

1 — sphere material

2 — plane material

This mapping aligns with the RayHit enum values that we were using for the
switch-case statement before.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 285

Node Arrays

ShadePixel
[e]: Sky
[1]: Sphere

[2]: Plane

CO ke AMDQ
286 of applied sciences and orts to@ether we advance_

In our Work Graph, we can then address these nodes as a node array named
ShadePixel.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 286

Material Shading

[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid(480, 270, 1)]

[NumThreads (8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> input,

[MaxRecords(8 * 8)]
NodeOutputArray<PixelRecord> ShadePixel,

uint2 dtid : SV_DispatchThreadId) {

CD SRveRSTY AMDQ
287 of applied sciences and orts to@ether we advance_

We can then target this node array by declaring a NodeOutputArray. Note
that we do not target any individual node, but rather the whole array at once.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 287

Material Shading

[Shader("node™)]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid (480, 270, 1)]

[NumThreads(8, 8, 1)]

void RenderScene(DispatchNodeInputRecord<Record> input,

[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,

uint2 dtid : SV_DispatchThreadId) {

CO ke AMDQ
of applied sciences and orts to@ether we advance_

288

However, the D3D12 runtime must still be able to validate that all the nodes we
expect in this node array are present in the graph. Thus, we must add a
[NodeArraySize(...)] attribute with the expected number of nodes in the
array, which in our case is three.

288

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Material Shading

void RenderScene(DispatchNodeInputRecord<Record> input,
[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,
uint2 dtid : SV_DispatchThreadId) {

ThreadNodeOutputRecords<PixelRecord> outputRecord =
ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

outputRecord.Get().pixel dtid;
outputRecord.Get().ray ray;
outputRecord.Get().hitDistance = hit.distance;

outputRecord.OutputComplete();

AMDQO

s together we advance_

289

Allocating records to be sent to this node array is very similar to the plain node
outputs that we've seen before...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 289

Material Shading

void RenderScene(DispatchNodeInputRecord<Record> input,
[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,
uint2 dtid : SV_DispatchThreadId) {

ThreadNodeOutputRecords<PixelRecord> outputRecord =
ShadePixel[hit.material]}GetThreadNodeOutputRecords(1);

outputRecord.Get().pixel
outputRecord.Get().ray N
outputRecord.Get().hitDistance = hit.distance;

Node Array Index

outputRecord.OutputComplete();

CO ke AMDQ
290 of applied sciences and orts to@ether we advance_

...the main difference is the bracket-operator, with which we specify the node
array index, to which we want to send the record.

In our case, this index is determined by the ray tracing result.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

290

Material Shading

void RenderScene(DispatchNodeInputRecord<Record> input,
[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,
uint2 dtid : SV_DispatchThreadId) {

ThreadNodeOutputRecords<PixelRecord> outputRecord =
ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

outputRecord.Get().pixel dtid;
outputRecord.Get().ray ray;
outputRecord.Get().hitDistance = hit.distance;

outputRecord.OutputComplete();

wsaszzgw AMDI1
291 of applied sciences and ort: < together we advance_

Writing data to the record is unchanged...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 291

Material Shading

void RenderScene(DispatchNodeInputRecord<Record> input,
[MaxRecords(8 * 8)]
[NodeArraySize(3)]
NodeOutputArray<PixelRecord> ShadePixel,
uint2 dtid : SV_DispatchThreadId) {

ThreadNodeOutputRecords<PixelRecord> outputRecord =
ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

outputRecord.Get().pixel dtid;
outputRecord.Get().ray ray;
outputRecord.Get().hitDistance = hit.distance;

|outputRecor‘d.OutputComplete();| ; O ‘
}

AMDQO

dors together we advance_

202

... and so is sending the record off to the Work Graph runtime for processing.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 292

Classify & Execute

Classify & Execute
ShadePixel
Sky

RenderS
enderScene Sphere

Plane

COBURG
wUNIVERSIYY AMDn
293 of applied sciences and orts to@ether we advance_

This is our work graph. First, the RenderScene node classifies the pixel and
emits a record to the corresponding index in the ShadePixel node array.

Second, the ShadePixel node array executes the shaders for each pixel in a
SIMD friendly way.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

293

SIMD Efficiency

RenderScene ShadePixel
Sky

Sphere

Plane

Executon ________________________~

CD SRveRSTY AMDI1
294 of applied sciences and orts to@ether we advance_

Why are node arrays SIMD friendly? Let’s go back to our coarse pixel grid for
demonstration purposes.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 294

SIMD Efficiency

RenderScene ShadePixel
Sky

Sphere

Plane

w SRveRSTY AMDQ
295 of applied sciences and orts to@ether we advance_

The classifier node “RenderScene” classifies each pixel and...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 295

SIMD Efficiency

RenderScene ShadePixel
Sky

Sphere

Plane

Exccuton

w SRveRSTY AMDQ
296 of applied sciences and orts to@ether we advance_

...creates a record for the consumer node in the ShadePixel node array based
on the material index.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 296

SIMD Efficiency

RenderScene ShadePixel

Sky
EEEEEEEEEEEEEENEEEEEEEEEEEEEE

rJ|

Plane
EEEEEEEEEE

_Exeouton

w SRveRSTY AMDQ
297 of applied sciences and orts to@ether we advance_

These records are then sent to the individual nodes of the node array.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 297

SIMD Efficiency

ShadePixel
Sky
SEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Thread
Sphere 0123
|mmm
t
Plane
EEEEEEEEEE B hread
COBURG AMD,
COFEn . ANDD e,

Even though we specified these nodes as “thread” launch nodes, they are still
executed in thread groups...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 298

SIMD Efficiency

ShadePixel
Thread
Sphere 0123
|ma
t
Plane
EEEEEEEEEE B hread
(do)ii AMDI
299 of applied sciences and orts to@ether we advance_

...with one record (i.e., pixel) assigned to each thread. All threads of a thread
group now run in SIMD lock step, thereby reducing thread-divergence.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 299

SIMD Efficiency

ShadePixel

Sky

EEEEEEEEEEEEEEEEEEEEEEEEEEEEE Thread
012 3

Plane ¢

EEEEEEEEEE B hread
CO e AMDI
300 of applied sciences and orts to@ether we advance_

Likewise, for the other materials, too.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 300

SIMD Efficiency

ShadePixel
ot e, B
Sky ;
Ly P
H ' Thread
’ 0123
Sphere
PI d
ane
CCCeemnEs - [l thread
COBURG AMD,
COFEn . ANDD e,

We’ve seen how work graphs, in combination with node arrays can help us
reduce thread-divergence for classify-and-execute applications.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 301

Conclusion

ShadePixel
Sky
RenderS
enderScene Sphere

Plane

COBURG
wUNIVERSIYY AMDn
302 of applied sciences and orts to@ether we advance_

The code in these slides is available in the Work Graph Playground under
tutorials/tutorial-3/MaterialShading.hlsl. Please follow the
instructions there to get a hands-on experience with node arrays.

However, note, that in this materials-example, you will see little to no
performance gains. This is because we kept our shader code simple, such that
thread-divergence is not an issue. Our goal here is to teach you the principle
of how node arrays work.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 302

Conclusion

ShadePixel
Material 0
Material 1

ShadeMaterial
Material 2

3, Download today on GPUOpen

Material N

COBURG
wUNIVERSIYY AMDn
of applied sciences and orts to@ether we advance_

303

You can also find a standalone sample of this classify-and-execute work graph
on GPUOpen.

303

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/learn/rgp-work-graphs/

Summary

"broadcasting” "thread" "coalescing”

Node Array

Records # Dispatches ‘ ‘ %
) B —
¢ | |]
Threadgroups. Unspecified! Thre eadg roup :
i3 I

Node Launch Types

Dataflow through Node Arrays

Records

304

In summary, we've seen how work graphs allow for GPU-driven dataflow
through records. We’ve seen how and when to use the different launch modes
available in work graphs. And lastly, we've seen how node arrays can help
simplify our code and help us manage hundreds or thousands of nodes in a

classify-and-execute scenario.

304

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

COBURG
AM D ' UNIVERSITY
of applied sciences and arts

Advanced Work Graphs

305

Next, we are going to look at how recursion is possible with Work Graphs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 305

306

Recursion

Node

Directed
Acyclic*
Graph

Node Node —‘ Node

CO ke AMDQ
of applied sciences and orts to@ether we advance_

We have seen before that a work graph can be classified as a directed acyclic
graph. Thus, a cycle as shown here is not allowed.

Implementing recursive algorithms with acyclic graphs is difficult, however, the
Work Graphs specification allows a small exception to the acyclic constraint.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

306

307

Recursion

Node

Directed
Acyclic*
Graph

Node Node Node

* with self-recursion

CO ke AMDQ
of applied sciences and ot tOgether we advance_

Self-recursion, or in other words, trivial cycles from one node to itself are
allowed. These self-recursive cycles can also have a payload amplification,
meaning for every incoming record, a node that’s part of a self-recursive cycle
can emit multiple records to itself.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

307

Recursion

Procedural Generation Subdivision Fractals

COBURG
(do)i AMD{1
308 of applied sciences and orts to@ether we advance_

There are many different applications or algorithms that can be implemented
as such self-recursive nodes. These can range from different algorithms for
procedural generation or subdivision (e.g., Catmull-Clark subdivision surfaces)
to mathematical concepts, such as recursively evaluated fractals.

We will take a closer look at self-recursive graphs for procedural generation.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 308

Recursion

Co GRveRSITY AMDD
toppiedscincescndars fooethor we AUVANCE.

For now, we focus on a simpler example: the Koch Snowflake fractal. This
fractal is part of the fourth tutorial in our Work Graph Playground App and you
can find the implementation in tutorials/tutorial-4/Recursion.hlsl.

In simple terms, the Koch Snowflake recursively subdivides each line segment
into four new line segments which form a small triangle in the middle of the
original line segment, as you can see on the right part of the slide.

We start with an initial equilateral triangle with three line segments, as shown
on the left.

309

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Recursion

CD GRveRSITY AMDD
s10 toppiedscincescndars fooethor we AUVANCE.

After one iteration, you can see the newly formed triangles on the edges of the
initial triangle, thus transforming the initial triangle into a star shape.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 310

Recursion

CD GRveRSITY AMDD
a1t toppiedscincescndars fooethor we AUVANCE.

After two iteration, we can start to see the snowflake shape forming.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 311

312

Recursion

UNIVERSITY

w COBURG

of applied sciences ant

dar

v

AMDQO

together we advance_

The third...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

312

Recursion

CD GRveRSITY AMDD
o1 toppiedscincescndars fooethor we AUVANCE.

...and fourth iteration then further refine the snowflake shape.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 313

Recursion

[Shader("node")]

[NodeLaunch("thread")]

[NodeId("Snowflake")]

void SnowflakeNode(
ThreadNodeInputRecord<Line> inputRecord

) A
}

COBURG
CO ke AMD{1
314 of applied sciences and orts to@ether we advance_

So how does this self-recursion look like in the shader code? Let’s consider
this thread node shown in the slide. This is already part of the tutorial, but
there will be similar exercise for you as homework.

314

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Recursion

O tutorial-4/Recursion.hlsl

[Shader("node")]

[NodeLaunch("thread")]

[NodeId("Snowflake")]

void SnowflakeNode(
ThreadNodeInputRecord<Line> inputRecord,

[MaxRecords(4)]
[NodeId("Snowflake")]
NodeOutput<Line> recursiveOutput

)
}

COBURG
w UNIVERSITY AMDQ1
315 of applied sciences and orts to@ether we advance_

Recursive nodes declare a NodeOutput to itself.

315

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Recursion

[Shader("node")]

[NodeLaunch("thread")]

|[NodeId("Snowflake")]|

void SnowtlakeNode(
ThreadNodeInputRecord<Line> inputRecord,

[MaxRecords(4)]
[[NodeId("Snowflake")]|
NodeOutput<Line> recursiveOutput

){-on
)

CD SRveRSTY AMDQ
316 of applied sciences and orts to@ether we advance_

Note how we use the [NodeId("Snowflake™)] attribute to both identify the
node itself and the NodeOutput with the same node id. Thus, the node is
recursively outputting records to itself.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 316

Recursion

[Shader("node")]

[NodeLaunch("thread")]

[NodeMaxRecursionDepth(4)]

[NodelId(Snowflake)]

void SnowflakeNode(
ThreadNodeInputRecord<Line> inputRecord,

[MaxRecords(4)]
[NodeId("Snowflake")]
NodeOutput<Line> recursiveOutput

){..o
)

CD SRveRSTY AMDQ
317 of applied sciences and orts to@ether we advance_

Self-recursion is, however, limited to fixed number of iterations, which must be
set using the [NodeMaxRecursionDepth(...)] attribute.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 317

Recursion

[Shader("node")]
[NodeLaunch("thread")]
[NodeMaxRecursionDepth(4)]
[NodeId(Snowflake)]

void SnowflakeNode(

) A

// Check if we have reached the recursion limit.
const bool hasOutput = GetRemainingRecursionLevels()|!= 9;

CD SRveRSTY AMDQ
318 of applied sciences and orts to@ether we advance_

In each recursive iteration, we can then query the number of remaining
iterations with the GetRemainingRecursionLevels() intrinsic. If this intrinsic
returns 9, then the node is no longer allowed to emit self-recursive records.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 318

Recursion

Node Depth = 3

Node Node Node Node

CO ke AMDQ
319 ied scie

of applied sciences and ot tOgether we advance_

As a reminder, the longest chain of nodes can not exceed the limit of 32
nodes. When computing this longest chain of nodes, the maximum number of

recursive iterations ([NodeMaxRecursionDepth(...)]) add to the chain
length.

In this example the node on the far-right has a node depth in the graph of
three.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

319

Recursion

Node Depth = 4

Node Node r Node ~‘ Node

[NodeMaxRecursionDepth(1)]

CD SRveRSTY AMDQ
320 of applied sciences and orts to@ether we advance_

If we add a self-recursion loop to the graph, this node depth increases by the
value of the [NodeMaxRecursionDepth(...)] attribute.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 320

Recursion

Node Depth = 5

Node Node r Node ~‘ Node

[NodeMaxRecursionDepth(2)]

CD GRSy AMDI1
321 of applied sciences andort: together we advance_

Increasing [NodeMaxRecursionDepth(...)] further increases the node
depth of the last node.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 321

Recursion

w GRveRSITY AMDD
322 of applied sciences and arts.

together we advance_

As a homework assignment, your task is to implement another recursive
fractal in the Work Graph Playground App: the Menger sponge.

Follow the instructions in tutorials/tutorial-4/Recursion.hlsl and

implement the fractal. You can verify your solution by comparing it to the
provided sample solution.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 322

COBURG
AM D ' UNIVERSITY
of applied sciences and arts

Advanced Work Graphs

323

Another aspect for advanced work graphs is synchronization of thread groups
in broadcasting launches.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 323

Synchronization

Threadgroup Threadgroup

Record {
.dispatchGrid = uint3(2, 2, 1) %% %%%
) Sy) | S

Node

CO ke AMDQ
of applied sciences and orts to@ether we advance_

Before, we dive into the code, let's quickly explain what we mean by this.
Consider a broadcasting node that is part of a longer chain of nodes, e.g., a
chain of image filters. In such a chain, we might have data-dependencies
between different nodes in the chain, i.e., we can only launch the next node, if
all thread groups of the previous node have finished executing.

In our example, our node receives an incoming record. Our node is using the
broadcasting launch mode. The record sets the dispatch grid of the node to
2x2 thread groups. We assume that these thread groups all run in parallel on
our GPU.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 324

Synchronization

Record { Threadgroup Threadgroup
.dispatchGrid = uint3(2, 2, 1) e St
} Threadgroup Threadgroup Qo

\ /
® Node 00 -

Execution 4

w SRveRSTY AMDQ
325 of applied sciences and orts to@ether we advance_

After a while, the thread groups terminate one after the other...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 325

Synchronization

Record { Y P
.dispatchGrid = uint3(2, 2, 1) e e

} Threadgroup oo
e

CD SRveRSTY AMDQ
326 of applied sciences and orts to@ether we advance_

...until only one thread group remains.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 326

Synchronization
Record {
.dispatchGrid = uint3(2, 2, 1)
} Threadgroup
& -
€
- Node
327 wgﬁﬁzmmm ﬁgﬂ?ﬂad\mnm_

Synchronization in broadcasting nodes allows this last thread group to realize
that it is in fact the last one.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 327

Synchronization

Record {
.dispatchGrid = uint3(2, 2, 1)
} Threadgroup{
& ¥

Node

CO ke AMDQ
328 ied scie

of applied sciences and orts to@ether we advance_

Thus, it can carry out a final special operation, such as emitting a record for
the next node, as we now know that all thread groups in our broadcasting
node have finished execution and any data that they might have produced is
now ready to be processed by a following node(s).

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

328

Synchronization

dspter: A0 Radeon R 7980 KTX Wark craph Playground by A4D & HS Caburg

CD SRveRSTY AMDQ
329 of applied sciences and arts together we advance_

In the fifth tutorial of the Work Graphs Playground App, we are going to use
such synchronization to draw a bounding box around this dancing trail of
circles.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 329

Synchronization

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(32, 1, 1)]
[NumThreads (32, 1, 1)]

void ComputeBoundingBox(

DispatchNodeInputRecord<Record> inputRecord

) A

DrawRect(...);

CO ke AMDQ
of applied sciences and ot tOgether we advance_

330

In the tutorial, we're using a node with "broadcasting” launch mode. The
node is dispatched with 32 thread groups and 32 threads in each thread group.
Each thread then computes a position and radius of a circle and draws the
circle on screen.

We now want to compute the bounding box of all circles. Once all of the thread
groups have finished computing the bounding box in parallel, we want to have
the last thread group draw the resulting bounding box to the screen.

330

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Synchronization

[Shader("node")]
[NodeLaunch("broadcasting™)]
[NodeDispatchGrid(32, 1, 1)]
[NumThreads (32, 1, 1)]

void ComputeBoundingBox(

DispatchNodeInputRecord<Record> inputRecord

) A

if(ﬂinputRecord.FinishedCrossGroupSharing()b return;

DrawRect(...);

CD GRSy AMDI1
331 of applied sciences andort: together we advance_

With FinishedCrossGroupSharing(), Work Graphs provide a method on the
input record, that returns true, if the calling thread group is the last one to call
this method.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 331

Synchronization

struct |[[NodeTrackRWInputSharing]| Record {
}s
[Shader("node")]

void ComputeBoundingBox(

DispatchNodeInputRecord<Record> inputRecord

)

if(!inputRecord.FinishedCrossGroupSharing()) return;

DrawRect(...);

CO ke AMDQ
332 of applied sciences and orts to@ether we advance_

Since this is carried out on the input record, the input record needs to be
prepared to support such an operation. Therefore, you must add the
[NodeTrackRWInputSharing] attribute to the record struct, as shown above.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 332

Synchronization

struct [NodeTrackRWInputSharing] Record {
}s
[Shader("node")]

void ComputeBoundingBox(

|[RWDispatchNodeInputRecord<Record>| inputRecord

)

if(!inputRecord.FinishedCrossGroupSharing()) return;

DrawRect(...);

COBURG
CO ke AMD{1
333 of applied sciences and orts to@ether we advance_

As FinishedCrossGroupSharing “writes” into the record, you need to adjust
the input record declaration to use RWDispatchnodeInputRecord.

Note that this adds an even more powerful capability: The RW prefix allows you
to communicate between thread groups in broadcasting mode.

For "thread" and "coalescing" node launches, the input node declaration
receives the same RW prefix, if you want write to your record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 333

Synchronization

[Shader("node")]
v01d ComputeBoundlngBox(

RWDispatchNodeInputRecord<Record> inputRecord
) A

|InterlockedMax(1nputRecord Get().aabbmax.y, ...);|

1f('1nputRecord FinishedCrossGroupSharing()) return;

DrawRect(...);

(do)i AMDQ
334 of applied sciences and orts to@ether we advance_

We use this ability to write to a shared record in our tutorial: We compute the
bounding box with atomic min/max operations, where all threads of our
dispatch write to same input record.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 334

Synchronization

[Shader("node")]
v01d ComputeBoundlngBox(

RWDispatchNodeInputRecord<Record> inputRecord
) A

InterlockedMax(inputRecord.Get().aabbmax.y, ...);

|Bar‘r‘1er‘(NODE INPUT_MEMORY, DEVICE SCOPE | GROUP_SYNC);|

1f('1nputRecord FinishedCrossGroupSharing()) return;

DrawRect(...);

CD ShneRsiry AMDQ
335 of applied sciences and orts to@ether we advance_

Since we write to record memory from all threads concurrently, we must use a
barrier before reading back the resulting bounding box.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 335

Synchronization

Adspter: AMD Radeon RX 7988 KTX Wark craph Playground by A4D & HS Caburg

COBURG
(do)i AMD{1
336 of applied sciences and orts to@ether we advance_

Now, we have a nice bounding box!

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 336

COBURG
AM D ' UNIVERSITY
of applied sciences and arts

Advanced Work Graphs

337

In this section, we want to show you how Work Graphs can be used for
procedural generation.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 337

Procedural grass rendering

ion with GPU Work Graphs
Real-Time GPU Tree Generation

#Building the sample

We will present four examples that are based on two papers [Kuth et al. 2024,
Kuth et al. 2025], some blog posts, and samples that we have published.

Blog Posts:

https://gpuopen.com/learn/work graphs mesh nodes/work graphs mesh no
des-getting started/

https://gpuopen.com/learn/work graphs mesh nodes/work graphs mesh no
des-intro/

https://gpuopen.com/learn/work graphs mesh nodes/work graphs mesh no
des-procedural generation

https://gpuopen.com/learn/work graphs mesh nodes/work graphs mesh no
des-tips tricks best practices/ https://qithub.com/GPUQOpen-
LibrariesAndSDKs/WorkGraphsHelloMeshNodes

Samples:
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work graphs learning sample/

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 338

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work_graphs_learning_sample/

339

Houdini

To get started, let's look at existing procedural software. An obvious mention is

Houdini.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

339

Second one would be Blender with its geometry nodes.

Logo from https://www.blender.org/about/logo/

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 340

But also Unreal Engine now has a built-in system named PCG.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 341

Houdini As)blender |Unreal Engine

Pommsaam >

All these tools have one thing in common: The generation is controlled by
designing node graphs consisting of reusable nodes.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 342

Houdini |Unreal Engine

@blender'
L L

| = | =
s s
| - d s

CD SRveRSTY AMDQ
of applied sciences and orts to@ether we advance_

When we look at how or where these tools generate, we can see that this
usually happens on CPU. Then the result gets exported to a polygon format
onto disk. Finally, the ready-made model is then uploaded to the GPU for
rendering by a game engine.

With the new Unreal Engine PCG system, the export step is skipped: as the
generation happens in-engine, there is no need for an export.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 343

Houdini [|Unreal Engine ours

,@blender'

L -

(L0

| = | =
s s
| - d s

CD SRveRSTY AMDQ
344 of applied sciences and ot tOgether we advance_

What we want to do with Work Graphs today is to totally skip the CPU part:
The GPU generates everything it needs for rendering.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 344

Radius 1.18
Height 1.04
Folds 70

CD SRveRSTY AMDQ
345 of applied sciences and art = together we advance_

We already mentioned the node graphs that control the procedural generation,
but what are the edges connecting the nodes? We call the data that flows
between the edges control parameters. A node receives control parameters
and outputs control parameters. A very simple example for this would be
generation of this muffin: Three parameters control the shape of it.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 345

Radius 1.18
Height 1.04
Folds 70

Control parameters do not have to be scalar values: how about a bounding
box controlling the generation of a chair. By changing the bounds, we can turn

it into a bench or adjust the height of the back support.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

346

Radius 1.18
Height 1.04
Folds 70

cccccc
(doti AMDQ
T QAP of opplied sciences and arts together we advance_

Or what about a polygon controlling the shape of an entire building?

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

347

Let's start with our first example: a procedural market.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 348

For this, we went on a research trip to the Coburg marketplace and observed
the following: the overall shape of it can be described by a polygon. From each
corner, a path leads towards the center of the market. These paths are
connected by rings of paths. In the regions between the paths, there are the
booths. So, we call this the booth islands and should place some fitting assets
there like tents or tables. In the center of there market, there is usually a
special area with a special asset, like a tree or a well.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 349

Figure 1: (a) Polygon hierarchy and (b) straight skeleton

This market layout is very close to something called the straight skeleton of a

Jourme of Universal Computer Sience, wi. 1, na. 12 (1995, 752.761
bwined. 1711195, accepsed. 21295, appeared 2012095 © Springer Pub. Co.

A Novel Type of Skeleton for Polygons

Oewin Aickbolaee
Fr

e i s
David Abers

Tukusts

Absteact A new internal steucture for simple polygons, the straight skelecon, is in-
troduced and discussed. 1t is compased of picces of angular bisectores which partition
the iateriar of a given n-gon P in 4 tree-like fashion iato n monotone polygons. Its
straight-line structure and its lower combinatoeial complexity may make the straight
skeleton preferable to the widely used medial axis of & polygon. As a semingly un-
related application, the straight skeleton provides & canonical way of constructing a
polygosal roof above a general layout of graund walls.

Keywords: Simple polygon, angalar bissctors, internal skeleton, roof conseruction

1 Introduction and basic propertics

The purpase of this paper s to introduce and discuss a new and interesting
internal structure for simple polygons in the plane. The new structure, called
the straight skeleton, i solely made up of straight line segments whi
of anguls bisectors of polygon edges It uniquely partitons the in
given n-gon P into n monotone polygons, ane for each edge of

‘The straight skeloton, in general, differs from the well kmmu medial azis of
P which conista of ll ot ary

Othrwive the e aI axis contains parabolically curved sogmen

borbood ofrefiex vartlas of P whih are avekded by the traght slaletn. If P is

rectilinear then the straight skeleton is the medial axis of the Lo-metric
o innkde i omisicle commputer SCwco 4

)
- dingran- e concept,the srsght deltcn
10t dafiond g o dlatance firction bt taile Ly an spgeopriats ariaking
nda conte: ds P

-parallel manner ai | t
edges might decrease or increase in this process. Eac
the angulas bisector of its incides

boundary does not

polygon by Aichholzer and coworkers [Aichholzer et al. 1995].

Figure 1(a) and (b) from [Aichholzer et al. 1995].

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

350

Figure 1: (a) Polygon hierarchy and (b) straight skeleton

COBURG
CO ke AMDQ1
31 P of applied sciences and arts together we advance_

For generating it, a polygon is shrunk till one of two possible events occur.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 351

merge

Figure 1: (a) Polygon hierarchy and (b) straight skeleton

CD SRveRSTY AMDQ
382 AP of applied sciences and arts together we advance_

The merge event, where two points of the polygon merge into one.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 352

AMDQO

353 together we advance_

And the split event, where the polygon gets split into two.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 353

CD SRveRSTY AMDQ
354 of applied sciences and arts together we advance_

Now let's start with our market generation. A node of a work graph receives a
polygon as input.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 354

|
&3
static const int maxMarketPoints = 32; ;

struct MarketRecord {

float2 points[maxMarketPoints];
¥

[Shader("node")]
[NodeLaunch("broadcasting™)]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]

<void Market (
DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,

H

CD SRveRSTY AMDQ
355 of applied sciences and orts to@ether we advance_

Let's look at how this would look like in code:

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 355

|
&3
static const int maxMarketPoints = 32; ;

struct MarketRecord {

Ifloatz points[maxMarketPoints]; |

3

[Shader("node")]
[NodeLaunch("broadcasting™)]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]

< void Market(
DispatchNodeInputRecordfMarketRecordy inputRecord,

uint gtid : SV_GroupThreadld,

CD SRveRSTY AMDQ
356 of applied sciences and arts

together we advance_

Our market receives a market record as input, consisting of up to 32 points.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 356

|
&3
static const int maxMarketPoints = 32; ;

struct MarketRecord {

float2 points[maxMarketPoints];
¥

[Shader("node")]
[NodeLaunch("broadcasting™)]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]

< void Market(
DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,

CD SRveRSTY AMDQ
357 of applied sciences and arts

together we advance_

And we launch the market node as one thread group of 32 threads.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 357

|
&3

CD SRveRSTY AMDQ
358 of applied sciences and arts together we advance_

Before shrinking the polygon, we need to check when the next straight
skeleton event occurs.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 358

I
&3
;‘?\
L}

float closestEvent = WaveActiveMin(distance); |

‘ e

CD SRveRSTY AMDQ
359 of applied sciences and art « together we advance_

We assign each thread to a corner of the polygon and compute when its event
occurs. By using the wave intrinsic WaveActiveMin, we can find the closest
event.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

359

S~

|
|
Cﬂ:
float closestEvent = WaveActiveMin(distance); |
\ Y

e

i
]
]
®
'
]
]
]
(2)

360

CD SRveRSTY AMDQ
ol opd scnces and s

together we advance_

So, in this case it is thread or point 2, but the polygon can still shrink quite a bit
before.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

360

|
&3

COBURG
(do)i AMDQ1
361 of applied sciences andort: together we advance_

After shrinking, the market node writes output records to a node for drawing
paths.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 361

|
31 51+ Path

COBURG
(do)i AMD{1
362 of applied sciences and orts to@ether we advance_

And for the booth islands, we make a little bit of space.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 362

Boothlisland

363

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 363

364

{3 Boothlsland

COBURG
UNIVERSITY
of applied sciences and arte

AMDQO

together we advance_

Next, let's look at how a work graph can output geometry for drawing.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

364

{3 Boothlsland

yd

Draw List BVH Instance List Mesh Nodes

. Execute Indirect ®
int index;

InterlockedAdd(drawMeshArgumentCounter, 1, index);
drawMeshArguments[index] = args;

CD SRveRSTY AMDQ
365 of applied sciences and orts to@ether we advance_

One way would be to append a draw command to a draw list and then
dispatch that list after the work graph has finished using execute indirect. To
allow for ray-tracing, one can also write to an instance list and then build a
TLAS from it after the work graph has finished.

Finally, mesh nodes can draw the generated geometry straight from the work
graph to the scene.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

365

I
30 131~ Path
{3 Boothlsland

COBURG
wUNIVERSIYY AMDn
366 of applied sciences and orts to@ether we advance_

Alright, let's get back to our market, where we have just finished one ring. To
do the next ring, the market node simply recurses with the new polygon.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 366

367

COBURG
UNIVERSITY
of applied sciences and arte

Boothlisland

Path

AMDQ1
together we advance_

For this ring, we do the same as for the last.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

367

31 £~ Path
Market
{3 Boothlsland

&

Oe(Path
Market
Y Boothisland

COBURG
w UNIVERSITY AMDQ1
368 of applied sciences and orts to@ether we advance_

Now we must handle our first event: the polygon splits into two if we continue
shrinking.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 368

i

369

&

Market

COBURG
UNIVERSITY
of applied sciences and arte

I 4~ Path
@'@&
&
I Path
arket
l‘[O°/v_
(Market |

AMDQ1
together we advance_

To resolve this, the market node recurses into two markets

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

369

370

&

Oe(Path
Market
&> /_Boothlsland
(Market] <

Market

COBURG
UNIVERSITY
of applied sciences and arte

31 £~ Path
{3 Boothlsland

AMDQ1
together we advance_

For the smaller side, we do not have enough space for another ring and finish

with a market center.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

370

COBURG
w UNIVERSITY AMDQ1
371 of applied sciences and orts to@ether we advance_

For the other side, we can generate one more ring.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 371

Boothlisland

(Market

Center

CD SRveRSTY AMDQ
372 of applied sciences and orts to@ether we advance_

And finish with a market center.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 372

- '.;. Pv. <
,3 , Market | <
Path
Wi =
?;1. Center

Boothlisland

(Market

Center

CD SRveRSTY AMDQ
373 of applied sciences and orts to@ether we advance_

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 373

608 0.96ms

Instances Generation Time

And with this, we have finished out market generation. Let's see it in action.
Because it runs every frame in less than a millisecond, we can see the
changes instantly.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 374

0.95ms

neration Time

There is one thing, we have not mentioned, yet: You might have spotted these
garlands spanning in-between rings. But these are generated independently of
each other, so how do we find the connecting points?

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 375

This is something we call dependent generation. Here is an example of it from
Unreal Engine. In the video, you can see the user dragging around the central
structure. When the structure marked with the red box instersects with
something, a bridge made of a stam is generated towards the center. The
structure in the blue box does not intersect with anything and thus no bridge is
generated.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 376

A spatial GPU data- ...fast creation and update ...and fast access
structure... time...
90
L~

l Raytracing g
 Fim

Draw List BVH Instance List Mesh Nodes

[Shader("node")]
int index; [NodeLaunch("mesh")]

InterlockedAdd(drawMeshArgumentCounter, 1, index); [OutputTopology(“triangle")]
drawMeshArguments[index] = args;

void Meshshader(...)

So, for our system, we need a spatial GPU data structure that is fast to create
and update and fast to access. This is exactly what a ray tracing BVH is for.
Creating and accessing it is just a matter of issuing API calls, and we have
already established earlier that we can output for BVH generation.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

377

During generation, we add these red bounding boxed to our BVH with a
separate instance flag to prevent hitting them when ray-tracing for shading
effects. Next a garland starting points shoots rays into its vicinity to find points
to connect to.

378

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

And with this, we can have garlands from market elements generated
independently from each other.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 379

Let's look at another example for dependent generation: lvy ontop of existing
geometry.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 380

—J_’—{ IvyBranch J

I
while(growin - -
: shootRays();I -
updatePosition(); - -
drawAssets();
e

if(random) split();

CD SRveRSTY AMDQ
381 of applied sciences and orts to@ether we advance_

An IvyBranch node is given a transformation as the input record. For growing,
it runs a loop that shoots rays into its vicinity to find a surface, updates the
transformation based on the result, and draws fitting assets like leaves and a
stem. Finally, there is a chance that the ivy branches into two which we solve
with recursion.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 381

—J_’ —>| IvyBranch |

while(gr‘owing){. --
|updatePosition(),‘| ---
e .

if(random) split();

COBURG AMDD1
382 w of applied s ore together we advance_

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 382

—J_’—>| IvyBranch |

[|
while(growing){ ---

shootRays (); I
- 11
|
1
I
i N
]

if(random) split();

CD SRveRSTY AMDQ

383 of applied sciences and orts to@ether we advance_

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 383

—‘1—’ —> IvyBranch D

while(growing){
shootRays();
updatePosition();
drawAssets():
Ii-F(r'andom) split();l
}

CO AMDQ
of applied sciences and orts to@ether we advance_

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 384

J">| IvyBranch D‘T*

while(growing){
shootRays();
updatePosition();
drawAssets():
Ii-F(r'andom) split();l
}

CO AMDQ
of applied sciences and orts to@ether we advance_

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 385

_k —»[IvyBranch Dj—'

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

COBURG
UNIVERSITY
386 of applied sciences and arfs

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

386

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

387

Here you can see an example video of this for more realistic assets.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 387

— IvyArea]—&{ IvyBranch J—»

CO ke AMDQ
388 of applied sciences and orts to@ether we advance_

Let's extend on this idea and add a parent to IvyBranch, the IvyArea. It
receives a bounding volume as input, uses rays to find fitting starting locations
for ivy to grow and then outputs work records to IvyBranch.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

388

389

— —{ IvyArea }—-&—{ IvyBranch J—»

— "T

& o) 4

#Work Graph Ivy Generation Sample

@ Building the sample

@ Prerequisites
To build the Work Graphs Ivy Generation Sample, you must first install the following tools:

o CMake 317

o Visual Studio 2019 DA

her we advance_

Here you can see an example video of this. We have published a sample of
this if you want to play around with the generation yourself.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

389

View Mode Render Draw Calls
Baseline 27.74 ms 79,710

Overview
79,710 / 79,710

Market Baseline
20,859 / 24,068

Let's talk about timings. We generate our scene from two perspectives, an
overview where we generate everything, and a view from the market only,
where we can cull some of the generation.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 390

View Mode Generation Render Draw Calls

Overview Baseline 3.24 ms 27.74 ms 79,710

79,710 79,710

Market Baseline 2.34 ms 8.06 ms 20,859
20,859 /m

Here you can see the number of instances generated.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 391

View Mode Render Draw Calls
Baseline 27.74 ms 79,710

Overview
79,710 / 79,710

Market Baseline
20,859 / 24,068

As you can see, right now, the render timings go through the roof for the
overview perspective.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 392

View Mode Render Draw Calls
Baseline 27.74 ms 79,710

Overview
79,710 / 79,710

Market Baseline
20,859 / 24,068

The reason for this can be seen on the right. We have one draw call per
instance. We need instancing to optimize this.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 393

(=l ® | @ ||| @ [)| § ||

\ 4

[DrawAssetCoalescer }

[Shader("node"
[NodeLaunch
[NumThreads(32, 1,

void DrawAssetCoalescer(
[MaxRecords(256)]
GroupNodeInputRecords<DrawAssetRecord> input)
[MaxRecords (256)]

NodeOutput<MeshNodeRecord> DrawAsset

CD SRveRSTY AMDQ
ggggggggg sciencesondorts together we advance_

304

For this, we utilize a node in coalescing launch mode. It receives up to 256
records for drawing an asset and output up to 256 records. But ideally, we are
able to combine some of these using instancing.

394

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

L]]| eew o § |®

\ 4

DrawAssetCoalescer

v

[DrawAsset J [DrawAsset J [DrawAsset J [DrawAsset J

DrawAsset

CD SRveRSTY AMDQ
395 of applied sciences and art « together we advance_

By sorting by asset, we can significantly reduce the number of draw calls.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 395

View Mode Generation Render Draw Calls
Overview Baseline 3.2;1 ms 27.74 ms 79,310
910 475110 Coalescing 3.14 ms 0.62 ms 965
Market Baseline 2.34 ms 8.0? ms 20,i359
20859724068 Coalescing 2.29 ms 0.51 ms 493
e ¥ N N\
[DrawAsset J [DrawAsset J [DrawAsset J [DrawAsset J
COMEr ~ AMDD .

Here you can see the improvement, the number of draw calls was significantly
reduced, same with the render timings.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 396

Instead of placing existing assets, for our last two examples, we want our work
graph to generate all the geometry from scratch.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 397

Generate
vegetation that...

...point towards the camera...
S W R -
L)

...is in the frustum...

398

COBURG
(doYi AMDQ
of applied sciences and orts to@ether we advance_

More specifically, for a given camera matrix, we want to only generate
everything that is in the camera frustum, faces the camera, and only in the

detail required.
The first one is easy: just omit dispatch records for work outside the frustum.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

398

ClutterGrid

struct ClutterTileRecord {
uint2 size : SV_DispatchGrid;
int2 offset;

ClutterTile

(GrassPatch J(ShroomPatch)(BeePatch]
=

3

w SRveRSTY AMDQ
399 P of applied sciences and orts together we advance_

For our ground clutter, we find the 2D grid that encloses our camera frustum.
Finer culling is then done inside the individual thread groups. We have a node

array of mesh nodes for generating different kinds of clutter like grass, low
LOD grass, mushrooms or insects.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

399

COBURG
(do)i AMDQ
400 of applied sciences and orts to@ether we advance_

For our trees, we omit outputting records of a, e.g., branch of a tree, when its
bounding capsule lies outside the frustum.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 400

z- <T
0 dr X 1
=cos| max|— —, —
dz 1 —x2 COn AMDQ
401 of applied sciences andort: together we advance_

To only generate front facing triangles, we analyzed how far around a stem we
have to tessellate given the tree growth direction, the change in stem radius,
and the camera orientation.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 401

Front-face

Back-face

In this video, you can see this in action.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

402

l
v=4004) v=-—
A
S. . f=4004) -~
_ 2- Bfrom *Tfrom
f= A
™ sample distance QO AMPRL

For continuous LOD, we employ fractional tessellation.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

403

359.09 K Triangles

And in this video, you can see it in action.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 404

3.54 M Triangles

We do something similar with our leaf LOD.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 405

Another thing you can do with real-time generation is animation: simply adjust
the generation based on the current timestamp.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 406

Or how about adding seasonal detail based on a real number indicating the
time of year.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 407

Apple Tree Config

Branches

Branch Length

Bee= Attraction Up

Fruit Chance

over 150 more parameters!

And here you can see real-time edits of our final tree model. Edits effecting an
entire forest happen within the next frame.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

408

:

Level of Detail Factor

1.000

Tree Triangles (G-Buffer only)
30.24 M

With a continuous LOD, one can also adjust the image quality smoothly based
on the current frame time.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 409

15
40
=
2 130 2
EIO (7
°© —
2 « |2 E
= 20 =
=l
>) Z
10
0 0
[“ =
CD SRveRSTY AMDQ
410 of applied sciences and orts to@ether we advance_

Here is a performance measurement we did on a camera path. Frame-to-
frame times vary based on image complexity between 13 — 40ms.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 410

15
o /
£10 N \
i N \ — =
Pt \ 2 DA B R e
= e = < \ i/

1% \:.o7
5 s
0

Frame-to-Frame Time
~ =~ - Frame-to-Frame Auto-LOD Time

120 Hz Target Time

40
f =
| =
| 30 &
I! 5
[»
120 E
B
Z

10

0

a1

COBURG
UNIVERSITY
of applied sciences and

AMDQO

ons together we advance_

With an automatic LOD, the performance peaks can be mitigated.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

411

B NeNs

This concludes the procedural generation part of this course.

412

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

COBURG
AM D ' UNIVERSITY
of applied sciences and arts

Advanced Work Graphs

As part of the Advanced Work Graphs Section, we would like to present ideas
of how Work Graphs might potentially be implemented on a GPU.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 413

How does it work?

14

So, so far, we’ve seen what Work Graphs is, how it allows us to schedule work
directly on the GPU, and how that can help us solving different use-cases.

But how does this “launching work from the GPU” work?

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 414

How does it work?

|commandList->Dispatch(480, 270, 1);|
commandQueue->ExecuteCommandLists(1, &commandList);

CD SRveRSTY AMDQ
415 of applied sciences and orts to@ether we advance_

To understand this, we first need to look at how any launch of work on the
GPU works. In Direct3D12, we record commands, as for example this
Dispatch, into a commandList.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 415

How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);|

CD SRveRSTY AMDQ
416 of applied sciences and art « together we advance_

To execute this commandList, we chose a commandQueue and submit our
command list to it.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 416

How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists (1, EcommandList';

GPU driver

Micro Engine Scheduler

COBURG
w UNIVERSITY AMDH
of applied sciences and orts to@ether we advance_

0] cPU

¢
ol

[e9 GPU

To then actually execute the commandList, the GPU driver will copy the
command list (=) into GPU-visible memory...

417

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1l, &commandList);

GPU driver

0] cPU

Micro Engine Scheduler

GFX0 GFX 1 | Compute 0 Compute 1 -

[ea GPU

CO AMDQ
of applied sciences and orts to@ether we advance_

... and passes an execute-command through a ring buffer to the GPU.

418

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Micro Engine Scheduler

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
of applied sciences and orts to@ether we advance_

e GPU

On the GPU, this ring buffer is connected to the command processor (red box)

419

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Micro Engine Scheduler

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

e GPU

Or more specifically the Micro Engine Scheduler, which is a part of the
command processor.

The Micro Engine scheduler is responsible for handling commands, such as
the one to execute the command list coming from the CPU.

420

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Micro Engine Scheduler

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

e GPU

To process any of the incoming commands, the Micro Engine Scheduler has
access to different queues.

There are two types of queues: graphics queues (GFX 0, GFX 1 in the slide)
and compute queues (Compute 0, Compute 1, ..., in the slide).

421

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

e GPU

Micro Engine Firmware

S | Kino)

Buffer,
GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

The Micro Engine Scheduler selects one of those queues — in this case

Compute 0 — and maps the incoming command to its input ring buffer.

Each of these queues is a small processor which is programmed through the

firmware to execute the commands.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

422

How does it work?

Dispatch(48e, 270, 1) [=le[lalRs{ele(V]l=;

GFX0 GFX 1 Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

e GPU

In this case, we want to execute our command list, so the command processor
fetches one command after the other from memory, parses, and executes it.

In our example here, we have the dispatch command from before.

423

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Dispatch(48e, 270, 1) [=le[lalRs{ele(V]l=;

GFX0 GFX 1 Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

ea GPU

Compute queue 0 then sets up and invokes the SIMDs in order to carry out the
dispatch command. This is a very simplified view of the GPU, as we are only
interested in how commands such as dispatches are handled and not the
specifics of how the actual thread groups of the dispatch are mapped and set
up to GPU hardware components.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 424

. 2 commandList->Dispatch (480, 270, 1);
How does it work? commandQueue - >ExecuteCommandLists(1, 8

Micro Engine Scheduler

Memory

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
of applied sciences and orts to@ether we advance_

e GPU

We've seen that we can place a command buffer in GPU memory and have
the command processor execute it.

425

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Micro Engine Scheduler

Memory

GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
of applied sciences and orts to@ether we advance_

e GPU

This would mean that if we want to schedule work from the GPU itself, we can
just write to such a command buffer in GPU-visible memory and have the

command processor execute it.

426

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Micro Engine Scheduler
GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

e GPU

In the case of Work Graphs, we‘re not writing a command list, but we‘re writing
records. To allow for a continuous cycle of writing and launching these records,
we can store these records in a ring buffer.

427

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Micro Engine Scheduler
| -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

e GPU

As we have different records for different nodes, we need multiple ring buffers,
one for each node.

Here we have a very simple Work Graph with nodes A, B, C and D. A can send
records to B and C, i.e., thread groups that run code for node A can write
records to the ring buffers of node B and C.

Nodes B and C can both send records to node D.

428

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

M

Micro Engine JEsiss

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
of applied sciences and orts to@ether we advance_

e GPU

The compute processor can then scan these ring buffers in memory for
available records and decide what records to launch and how to launch them.

429

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does-it2aaxi2

Record {
.dispatchGrid = uint3(2, 1, 1)

}

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

e GPU

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

As an example, we have placed a record in the ring buffer of node A. Node A is
using a dynamic dispatch grid and the record specifies that two thread groups

should be launched.

430

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does-it2aaxi2

Record {
.dispatchGrid = uint3(2, 1, 1)
}

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

e GPU

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CD SRveRSTY AMDI1
431 of applied sciences and orts to@ether we advance_

Compute queue 0 can then find this record in the ring buffer and launch two
thread groups for it. In our simplified GPU, we’ve mapped each of these thread
groups to on SIMD.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 431

How does-it2aaxi2

Record {
.dispatchGrid = uint3(2, 1, 1)

}

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

e GPU

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
of applied sciences and orts to@ether we advance_

Each of these thread groups then want to send two records to node B and two
records to node C. These records are visualized by small yellow boxes at the
top of each of the SIMDs.

432

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Micro Engine Scheduler

GFX1 | Compute 0 Compute 1 -

D SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

e GPU

Each of these thread groups can then write their outputs to the respective ring
buffers of the nodes. Here the first thread group writes its four records...

433

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD
SIMD SIMD

w SRveRSTY AMDI1
434 of applied sciences and orts to@ether we advance_

ea GPU

...and so does the second thread group.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 434

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CD SRveRSTY AMDI1
435 of applied sciences and orts to@ether we advance_

e GPU

Once writing is complete these records are ready to be picked up by command
queue 0 and launched.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 435

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

ea GPU

Command queue 0 therefore launches thread groups for each of the records in
the ring buffer of node B and node C. In our example, each of these records
will launch a single thread group, this yielding four thread groups for running
code for node B and four thread groups running code for node C.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 436

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

ea GPU

Each of these thread groups then want to send between one and two records
to node D. These are again visualized with small yellow boxes in each of the
thread groups.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 437

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

ea GPU

Each of these thread groups then writes their output to the ring buffer of node
D. The first thread group of node B writes a single record, ...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 438

How does it work?

ea GPU

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD
SIMD SIMD SIMD

CO AMDQ1
of applied sciences and orts to@ether we advance_

..the third one writes two records,

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

439

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
ﬂ SIMD SIMD SIMD

CO AMDQ1
440 of applied sciences and orts to@ether we advance_

ea GPU

... and the third one writes a single record again.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 440

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD m SIMD SIMD

CO AMDQ1
QAP of opplied sciences and arts together we advance_

ea GPU

And finally the last thread group of node B writes two records.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 441

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD

ea GPU

The same process continues for al the thread groups for node C. The first
thread group starts by writing two records to the ring buffer of node D.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 442

How does it work?

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD

e GPU

The second thread group wants to write two records to the ring buffer of node
D.

However, the ring buffer for node D is now full, thus no more records can be
written to it. Simultaneously, all SIMDs of the GPU are busy, thus the
command queue cannot launch any records to free up space in the ring buffer
for node D.

This is obviously a problem, since we are now in a deadlock. So maybe this
launching work from the GPU is not as simple as initially assumed. Let’'s go
back a few steps to see what we missed.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 443

Forward Progress

Micro Engine Scheduler
| -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

COBURG
w UNIVERSITY AMDn
444 of applied sciences and orts to@ether we advance_

es GPU

Node C Node D

We return to the state just before we started launching the records in the ring
buffers of node B and node C. Currently, we have four record in each of these
ring buffers.

In order to avoid the deadlock from before, the work graphs runtime must
ensure a forward progress guarantee.

What does the forward progress guarantee mean?

Essentially, once the graph is kicked of, it needs to be able to process all its
records without any deadlocks.

444

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Forward Progress

Micro Engine Scheduler

[MaxRecords(2)]

| -
NodeOutput<...> NodeD

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
of applied sciences and orts to@ether we advance_

e GPU

This is ensured with the output limits for each node. We've seen in the
beginning of this course, that we need to annotate all outputs of a node with
the maximum number of records that we intend to send.

445

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Forward Progress

Micro Engine Scheduler

[MaxRecords(2)]

| -
NodeOutput<...> NodeD

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

e GPU

With this limit, the work graph runtime, i.e. the firmware running on the
compute queue, can then make a reservation into the ring buffer of node D.

As each thread group of node B can send up to two records to node D, the
compute queue reserves the first two slots in the ring buffer of node D.

446

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Forward Progress

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

ea GPU

This continues for the second record in the ring buffer of node B, thus the
command queue reserved two more slots in the ring buffer of node D.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 447

Forward Progress

Micro Engine Scheduler

GFX0 GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
448 of applied sciences and orts to@ether we advance_

ea GPU

The same process happens for the third...

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 448

Forward Progress

Micro Engine Scheduler
| -

Node B Node B Sl il
Node B Node B SIMD SIMD

cccccc
(doYi AMDQ
of applied sciences and orts to@ether we advance_

es GPU

Node C Node D

2
&

...and fourth record in the ring buffer of node B.

Now, the ring buffer of node D is full with output reservation of all the thread
groups of node B. This guarantees that every one of these thread groups can
write up to two records into the ring buffer of node D without overflowing the
ring buffer.

On the other hand, this also means that we cannot launch any further thread
groups that can produce records for node D. In our example, we cannot launch
the four records available in the ring buffer of node C.

As you can see, this forward progress guarantee can impact the overall GPU
occupancy. This can be solved by choosing appropriate sizes for the ring
buffers.

So, now we've seen how launching new work directly from the GPU can work.
We've seen the challenges that come along with this and we’ve seen how the
work graph runtime can avoid deadlocks, whilst operating with limited
resources.

449

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Mesh Nodes

450

But so far, we’ve only looked at the compute-only node and how the compute
queues of the command processor execute the work graph.

But what about mesh nodes?

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 450

Mesh Nodes

[Shader("node")]

[NodeLaunch("mesh")]

[NodeId("LineMeshNode", ©)]

[NodeDispatchGrid(1, 1, 1)]

[NumThreads (32, 1, 1)]

[OutputTopology("triangle")]

void LineMeshShader(
DispatchNodeInputRecord<Line> ing

"mesh"

<

out indices uint3 outputIndices[4], Thread Groups
out vertices Vertex outputVertices[6]) §§§§§§§§§§§§
{ :
}
451 wgﬁﬁzmmm ﬁgﬂ?ﬂad\mnm_

As a reminder, with mesh nodes you can directly output primitives to the
rasterizer.

Mesh Nodes consist of a mesh shader, an optional pixel shader, and all other
state associated with a pipeline state. The mesh shader is almost identical to
the mesh shading pipeline.

Mesh Nodes come with a new launch mode "mesh" that works the same as
broadcasting launch mode. That means a grid of thread groups is launched.
Each thread group outputs a meshlet, i.e., a small mesh consisting of a vertex
buffer and an index buffer. This one gets then passed to the rasterizer. The
Mesh Node must, however, not output any records. Therefore, a Mesh Node is
bound to be a leaf node of the Work Graph.

© Advanced Micro Devices, Inc and Coburg University of Applied Sciences and Arts. All rights reserved. 451

Mesh Nodes

Micro Engine Scheduler
GFX0 GFX 1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CD SRveRSTY AMDI1
452 of applied sciences and orts to@ether we advance_

e GPU

One limitation of the compute queues, which we used before for compute
nodes, is that they cannot set up the graphics state, which is required for
launching a mesh node.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 452

Mesh Nodes

M

Firmware

GFX1 | Compute 0 Compute 1 -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

Micro Engine Scheduler

e GPU

Therefore, we need to use a graphics queue for mesh nodes. Graphics
queues are also programmed by firmware and thus can scan the ring buffers

assigned to mesh nodes in GPU memory.

453

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Mesh Nodes

Micro Engine Scheduler

= | ComDUte ° -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ
of applied sciences and orts to@ether we advance_

e GPU

To allow the graphics and compute queue share the work load of a work
graph, we can change the Micro Engine Scheduler command to a so called
gang submit. This joins up a graphics (GFX 0) and compute queue. They can
now work together on processing the records.

454

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Mesh Nodes

Micro Engine Scheduler

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

(o) AMDQ1
of applied sciences and orts to@ether we advance_

es GPU

Mesh Node

Graphics Queue 0 (GFX 0) can then scan the ring buffer for the mesh node(s)
(here shown as the ring buffer on the bottom) and launch mesh shader thread

groups.

To launch a mesh node, the graphics queue will also set up the graphics state
(e.g. back-face culling or blend state) for each different mesh node. Thus, with
a single DispatchGraph you can now switch between Pipeline State Objects.
This is something that you couldn’t do before with a regular draw command.

455

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Mesh Nodes

Micro Engine Scheduler

= | ComDUte ° -

SIMD SIMD SIMD SIMD
SIMD SIMD SIMD SIMD

CO AMDQ1
of applied sciences and orts to@ether we advance_

e GPU

In this example, GFX0 scanned the ring buffer for “Mesh Node”, found one
record, and launched four thread groups for the mesh node.

456

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Mesh Nodes

@ Micro Engine Scheduler

ea GPU

Pixel Shader
S—

w SRveRSTY AMDI1
457 of applied sciences and orts to@ether we advance_

With this, we can have mesh nodes (with their mesh and pixel shaders) and
‘regular” compute nodes running in parallel.

457

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Mesh Nodes

Compute Shader

ea GPU

SIMD SIMD

Pixel Shader
S—

w SRveRSTY AMDI1
458 of applied sciences and orts to@ether we advance_

Thus, the GPU can feed itself enough work to completely fill it, all without any
barriers or other involvement from the CPU.

458

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

Summary

GPU-driven Guaranteed

GPU-managed

Deadlock-free
Memory

Execution

Producer-Consumer
Networks

CD SRveRSTY AMDI1
459 of applied sciences and orts to@ether we advance_

So this concludes our advanced session. With Work Graphs, we have an
entirely GPU-driven Producer-Consumer Network that you as programmer can
specify using a shading language. The advantage is the memory management
is handled by the Work Graphs system, while also guaranteeing you a
deadlock-free execution.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 459

460

AMDAl CO

Summary

COBURG
UNIVERSITY

of applied sciences and arts

We have seen Work Graphs, its core concepts, and exciting applications.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

460

Summary

Records # Dispatches

N\
<

Dataflow through GPU-driven

Node Launch Types Producer-Consumer
Networks

Records

w SRveRSTY AMDQ
461

With Work Graphs you model data flow through a directed acyclic graph with
trivial self-recursive cycles. The data flow is represented by records that you
send from one node to another. Records are not dispatches, but eventually

trigger dispatches. The specifics of these dispatches are specified by one of
three different launch modes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 461

Summary

GPU-driven
Producer-Consumer
NEWY S

Guaranteed
Deadlock-free
Execution

GPU-managed
Memory

w SRveRSTY AMDQO
462 AP of applied sciences and arts. together we advance_

Combining all these concepts gives you a producer-consumer network running
entirely on the GPU.

The memory for these records is managed by the Work Graphs system.
Further, the Work Graphs system guarantees a deadlock-free execution under
limited resources.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 462

Work Graph Playground

Hello Work Graphs E,I Records CJ Node Launches G Material Shading G
Recursion /| Synchronization 4 Recursive Grids Mesh Nodes

RN

COBURG
wUNIVERSIYY AMDn
463 of applied sciences and orts to@ether we advance_

In this course, we have walked you through the first six tutorials of our Work
Graph Playground App.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 463

Work Graph Playground

' Work Graph Playground
Tutorialz | s

COBURG
(do)i AMDQ
464 of applied sciences and orts to@ether we advance_

For the Recursive Grids tutorial, you'll need to combine everything that you've
learned so far: nodes, records, different launch modes, recursion, and
synchronization.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 464

Work Graph Playground

| Work Graph Pl

torials | Sap

Adaptar: #Y0 Radson RX 7989 KTX ek Gragh Plagaraund by 0 b 1S Gobucy |
L

CD SRveRSTY AMDQ
465 of applied sciences and art

o together we advance_

With the latest update, we've also added support for mesh nodes and a
dedicated mesh nodes tutorial. You can find mesh-nodes enabled versions of

the playground in our releases: https://github.com/GPUQOpen-
LibrariesAndSDKs/WorkGraphPlayground/releases

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 465

https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground/releases
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground/releases

Work Graph Playground e

Real-Time GPU Tree Generation

&1 Work Graph Playground - o x

CD SRveRSTY AMD1
466 of applied sciences and orts to@ether we advance_

We've also released a more complex sample for our procedural tree
generation. This sample runs in the Work Graph Playground App.

You can find the sample source code here: https://github.com/Bloodwyn/gptree

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 466

https://github.com/Bloodwyn/gptree

Samples

COBURG
w UNIVERSITY AMDQ1
487 of applied sciences and orts to@ether we advance_

We also have more standalone samples available on GPUOpen.

For example, you can find this compute rasterizer example here:
https://gpuopen.com/learn/work_graphs_learning_sample/

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 467

https://gpuopen.com/learn/work_graphs_learning_sample/

Samples =

Procedural generation

CO AMDQ
of applied sciences and orts to@ether we advance_

468

If you're interested in procedural generation with mesh nodes, we have
additional samples available here:
https://github.com/search?q=topic%3Ameshnodes+org%3AGPUOpen-
LibrariesAndSDKs&type=repositories

468

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution.

https://github.com/search?q=topic%3Ameshnodes+org%3AGPUOpen-LibrariesAndSDKs&type=repositories
https://github.com/search?q=topic%3Ameshnodes+org%3AGPUOpen-LibrariesAndSDKs&type=repositories

AMD 1
Developer Community

Connect with us

& Discord

fa gpu-work-graphs

discord.q

Join the gpu-work-graphs channel on the AMD Developer Community Discord
server at https://discord.gg/amd-dev

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 469

https://discord.gg/amd-dev

Big thanks also go out to:

« Carsten Faber and Seyedmasih Tabaei from the
Coburg University

T h a n k yo u ! « the whole team at AMD, especially Dominik

Baumeister, Niels Frohling, Pirmin Pfeifer
and many more

* Matthaus Chajdas

CO ke AMDQ
470 of applied sciences and orts to@ether we advance_

This concludes our course today. Big thanks go out to our undergraduate and
graduate students at Coburg University, the Work Graphs team at AMD, and
Matthaus.

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 470

References

« Mark J. Kilgard. 1999. NV_register_combiners. Khronos Group

« Lindholm, Mark J. Kilgard, and Henry Moreton. 2001. A user-programmable vertex engine. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH'01). ACM, New York, NY, USA, 149-158

« Tomas Akenine-Méller, Eric Haines, and Naty Hoffman. 2018. Real-Time Rendering, Fourth Edition (4th ed.). A. K. Peters, Ltd., USA
« David Blythe. 2006. The Direct3D 10 system. ACM Trans. Graph. 25, 3 (jul 2006), 724-734.
« Jeff Andrews and Nick Baker. 2006. Xbox 360 System Architecture. IEEE Micro 26, 2 (2006), 25-37

. M. NieRner, B. Keinert, M. Fisher, M. Stamminger, C. Loop, and H. Schafer. 2016. Real-Time Rendering Techniques with Hardware Tessellation, Computer Graphics Forum
35, 1(2016), 113-137

+ Mark Peercy, Mark Segal, and Derek Gerstmann. 2006. A performance-oriented data parallel virtual machine for GPUs. In ACM SIGGRAPH2006 Sketches (Boston,
Massachusetts) (SIGGRAPH '06). ACM, New York, NY, USA, 184—es 2007.

* NVIDIA, NVIDIA CUDA Compute Unified Device Architecture, Release 1.0 — Programming Guide. Nvidia
+ Hubert Nguyen. 2007. GPU gems 3 (first ed.). Addison-Wesley Professional

+ Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, and
Martin Stich. 2010. OptiX: a general purpose ray tracing engine. ACM Trans. Graph. 29, 4, Article 66 (jul2010)

. Christoph Kubisch, Pat Brown, Jeff Bolz, Daniel Koch, Piers Daniell, and Pierre Boudier. 2018. VK_NV_mesh_shader. Khronos Group.
* Microsoft Cooperation. 2024, D3D12 Work Graphs, https://microsoft.github.io/DirectX-Specs/d3d/WorkGraphs.html

+ Bastian Kuth, Max Oberberger, Carsten Faber, Dominik Baumeister, Matthdus Chajdas, and Quirin Meyer. 2024. Real-Time Procedural Generation with GPU Work Graphs.
Proc. ACM Comput. Graph. Interact. Tech. 7, 3 (Aug. 2024).

. Bastian Kuth, Max Oberberger, Carsten Faber, Pirmin Pfeifer, Seyedmasih Tabaei, Dominik Baumeister, and Quirin Meyer. 2025. Real-Time GPU Tree Generation. In
Proceedings of High-Performance Graphics (HPG). ACM, Copenhagen, Denmark

+ Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gértner. 1995. A novel type of skeleton for polygons. Springer.

CD GRSy AMDI1
an of applied sciences andort: together we advance_

© Advanced Micro Devices, Inc. All rights reserved. Confidential — Not for distribution. 471

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.
AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make
changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, RDNA, Ryzen, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective

owners. DirectX is either a registered trademark or trademark of Microsoft Corporation in the US and/or other countries. Vulkan and the Vulkan logo are

registered trademarks of the Khronos Group Inc. Xbox is a registered trademark of Microsoft Corporation in the US and/or Other countries.

CD SRveRSTY AMDQ
a2 of applied sciences and orts to@ether we advance_

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 472

AMDZY

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 473

	Introduction & Foundations
	Slide 1
	Slide 2: GPU Work Graphs – Instructors
	Slide 3: GPU Work Graphs – Timeline
	Slide 4: GPU Work Graphs – Timeline
	Slide 5: GPU Work Graphs – Timeline
	Slide 6: GPU Work Graphs – Timeline
	Slide 7: GPU Work Graphs – Timeline
	Slide 8: Work Graph Playground App
	Slide 9: GPU Work Graphs – Timeline
	Slide 10: GPU Work Graphs – Timeline
	Slide 11: GPU Work Graphs – Timeline
	Slide 12: GPU Work Graphs – Course Agenda
	Slide 13: Introduction & Foundations
	Slide 14: Introduction & Foundations
	Slide 15: GPU History
	Slide 16: GPU History
	Slide 17: Programmable Vertex & Pixel Shader Pipeline
	Slide 18: Programmable Vertex & Pixel Shader Pipeline
	Slide 19: Programmable Vertex & Pixel Shader Pipeline
	Slide 20: Programmable Vertex & Pixel Shader Pipeline
	Slide 21: Programmable Vertex & Pixel Shader Pipeline
	Slide 22: Programmable Vertex & Pixel Shader Pipeline
	Slide 23: Programmable Vertex & Pixel Shader Pipeline
	Slide 24: Programmable Vertex & Pixel Shader Pipeline
	Slide 25: Programmable Vertex & Pixel Shader Pipeline
	Slide 26: Programmable Vertex & Pixel Shader Pipeline
	Slide 27: Programmable Vertex & Pixel Shader Pipeline
	Slide 28: Programmable Vertex & Pixel Shader Pipeline
	Slide 29: Programmable Vertex & Pixel Shader Pipeline
	Slide 30: Programmable Vertex & Pixel Shader Pipeline
	Slide 31: Programmable Vertex & Pixel Shader Pipeline
	Slide 32: Programmable Vertex & Pixel Shader Pipeline
	Slide 33: Programmable Vertex & Pixel Shader Pipeline
	Slide 34: Programmable Vertex & Pixel Shader Pipeline
	Slide 35: Programmable Vertex & Pixel Shader Pipeline
	Slide 36: Programmable Vertex & Pixel Shader Pipeline
	Slide 37: Programmable Vertex & Pixel Shader Pipeline
	Slide 38: Programmable Vertex & Pixel Shader Pipeline
	Slide 39: Programmable Vertex & Pixel Shader Pipeline
	Slide 40: Programmable Vertex & Pixel Shader Pipeline
	Slide 41: Programmable Vertex & Pixel Shader Pipeline
	Slide 42: Programmable Vertex & Pixel Shader Pipeline
	Slide 43: Programmable Vertex & Pixel Shader Pipeline
	Slide 44: Programmable Vertex & Pixel Shader Pipeline
	Slide 45: Graphics Pipeline – 2002 Vertex & Pixel Shader Pipeline
	Slide 46: Graphics Pipeline – 2002 Vertex & Pixel Shader Pipeline
	Slide 47: Graphics Pipeline – 2006 Geometry Shaders
	Slide 48: Graphics Pipeline – 2006 Unified Shader Model
	Slide 49: Graphics Pipeline – 2006 Unified Shader Model
	Slide 50: Graphics Pipeline – 2009 Compute Shaders
	Slide 51: Graphics Pipeline – 2009 Compute Shaders
	Slide 52: Graphics Pipeline – 2009 Compute Shaders
	Slide 53: Graphics Pipeline – 2009 Compute Shaders
	Slide 54: Graphics Pipeline – 2009 Compute Shaders
	Slide 55: Graphics Pipeline – 2009 Compute Shaders
	Slide 56: Graphics Pipeline – 2009 Compute Shaders
	Slide 57: Graphics Pipeline – 2009 Compute Shaders
	Slide 58: Graphics Pipeline – 2009 Compute Shaders
	Slide 59: Graphics Pipeline – 2009 Compute Shaders
	Slide 60: Graphics Pipeline – 2009 Compute Shaders
	Slide 61: Graphics Pipeline – 2009 Compute Shaders
	Slide 62: Graphics Pipeline – 2009 Compute Shaders
	Slide 63: Graphics Pipeline – 2009 Compute Shaders
	Slide 64: Graphics Pipeline – 2009 Compute Shaders
	Slide 65: Graphics Pipeline – 2009 Compute Shaders
	Slide 66: Graphics Pipeline – 2009 Compute Shaders
	Slide 67: Graphics Pipeline – 2009 Hardware Tessellation
	Slide 68: Graphics Pipeline – 2009 Hardware Tessellation
	Slide 69: Graphics Pipeline – 2009 Hardware Tessellation
	Slide 70: Graphics Pipeline – 2018 Mesh Shading
	Slide 71: Graphics Pipeline – 2018 Mesh Shading
	Slide 72: Graphics Pipeline – 2018 Mesh Shading
	Slide 73: Graphics Pipeline – 2018 Mesh Shading
	Slide 74: Graphics Pipeline – 2018 Mesh Shading
	Slide 75: Graphics Pipeline – 2018 Mesh Shading
	Slide 76: Graphics Pipeline – 2018 Mesh Shading
	Slide 77: Graphics Pipeline – 2018 Mesh Shading
	Slide 78: Graphics Pipeline – 2018 Mesh Shading
	Slide 79: Graphics Pipeline – 2018 Mesh Shading
	Slide 80: Graphics Pipeline – 2018 Mesh Shading
	Slide 81: Graphics Pipeline – 2018 Mesh Shading
	Slide 82: Graphics Pipeline – 2018 Mesh Shading
	Slide 83: Graphics Pipeline – Execute Indirect
	Slide 84: Graphics Pipeline – Execute Indirect
	Slide 85: Graphics Pipeline – Without Execute Indirect
	Slide 86: Graphics Pipeline – Without Execute Indirect
	Slide 87: Graphics Pipeline – Without Execute Indirect
	Slide 88: Graphics Pipeline – Without Execute Indirect
	Slide 89: Graphics Pipeline – With Execute Indirect
	Slide 90: Graphics Pipeline – With Execute Indirect
	Slide 91: Graphics Pipeline – With Execute Indirect
	Slide 92: Graphics Pipeline – With Execute Indirect
	Slide 93: Graphics Pipeline – Execute Indirect – Problems
	Slide 94: Graphics Pipeline – Execute Indirect – Problems
	Slide 95: Graphics Pipeline – Execute Indirect – Problems
	Slide 96: Graphics Pipeline – Execute Indirect – Problems
	Slide 97: Graphics Pipeline – Execute Indirect – Problems
	Slide 98: Graphics Pipeline – Mesh Shading – Problems
	Slide 99: Graphics Pipeline – Mesh Shading – Problems
	Slide 100: Graphics Pipeline – Mesh Shading – Problems
	Slide 101: Graphics Pipeline – Mesh Shading – Problems
	Slide 102: Graphics Pipeline – Mesh Shading – Problems
	Slide 103: Graphics Pipeline – Mesh Shading – Problems
	Slide 104: Why Work Graphs?
	Slide 105: Why Work Graphs?
	Slide 106: Work Graph Playground App
	Slide 107: Work Graph Playground App
	Slide 108: Work Graph Playground App
	Slide 109: Work Graph Playground App
	Slide 110: Work Graph Playground App
	Slide 111: Work Graph Playground App
	Slide 112: Work Graphs HLSL Cheat Sheet
	Slide 113: Connect with us
	Slide 114: GPU Work Graphs – Course Agenda

	Work Graph Concepts - Nodes
	Slide 115: Work Graph Concepts
	Slide 116: Work Graphs
	Slide 117: Work Graphs
	Slide 118: Work Graphs
	Slide 119: Work Graphs
	Slide 120: Work Graphs
	Slide 121: Work Graphs
	Slide 122: Work Graphs
	Slide 123: Work Graphs
	Slide 124: Work Graphs
	Slide 125: Work Graphs
	Slide 126: Work Graphs
	Slide 127: Work Graphs
	Slide 128: Work Graphs
	Slide 129: Work Graphs
	Slide 130: Work Graph Concepts – Nodes
	Slide 131: Work Graph Compilation Model
	Slide 132: Work Graph Compilation Model
	Slide 133: Work Graph Compilation Model
	Slide 134: Work Graph Compilation Model
	Slide 135: Work Graph Compilation Model
	Slide 136: Work Graph Concepts – Nodes
	Slide 137: Work Graph Concepts – Nodes
	Slide 138: Work Graph Concepts – Nodes
	Slide 139: Work Graph Concepts – Nodes
	Slide 140
	Slide 141: Work Graph Concepts – Nodes
	Slide 142: Work Graph Concepts – Nodes
	Slide 143: Work Graph Concepts – Nodes
	Slide 144: Work Graph Concepts – Nodes
	Slide 145: Work Graph Concepts – Nodes
	Slide 146: Work Graph Concepts – Nodes
	Slide 147: Work Graph Concepts – Nodes
	Slide 148: Work Graph Concepts – Nodes
	Slide 149: Work Graph Concepts – Nodes
	Slide 150: Work Graph Concepts – Nodes
	Slide 151: Work Graph Concepts – Nodes
	Slide 152: Work Graph Concepts – Nodes
	Slide 153: Work Graph Concepts – Nodes

	Work Graph Concepts - Records
	Slide 154: Work Graph Concepts
	Slide 155: Work Graph Concepts – Records
	Slide 156: Work Graph Concepts – Records
	Slide 157: Work Graph Concepts – Records
	Slide 158: Work Graph Concepts – Records
	Slide 159: Work Graph Concepts – Records
	Slide 160: Work Graph Concepts – Records
	Slide 161: Work Graph Concepts – Records
	Slide 162: Work Graph Concepts – Records
	Slide 163: Work Graph Concepts – Records
	Slide 164: Work Graph Concepts – Records
	Slide 165: Work Graph Concepts – Records
	Slide 166: Work Graph Concepts – Records
	Slide 167: Work Graph Concepts – Records
	Slide 168: Work Graph Concepts – Records
	Slide 169: Work Graph Concepts – Records
	Slide 170: Work Graph Concepts – Records
	Slide 171: Work Graph Concepts – Records
	Slide 172: Work Graph Concepts – Records
	Slide 173: Work Graph Concepts – Records
	Slide 174: Work Graph Concepts – Records
	Slide 175: Work Graph Concepts – Records
	Slide 176: Work Graph Concepts – Records
	Slide 177: Work Graph Concepts – Records
	Slide 178: Work Graph Concepts – Records
	Slide 179: Work Graph Concepts – Records
	Slide 180: Work Graph Concepts – Records
	Slide 181: Work Graph Concepts – Records
	Slide 182: Work Graph Concepts – Records
	Slide 183: Work Graph Concepts – Records
	Slide 184: Work Graph Concepts – Records
	Slide 185: Work Graph Concepts – Records
	Slide 186: Work Graph Concepts – Records
	Slide 187: Work Graph Concepts – Records
	Slide 188: Work Graph Concepts – Records
	Slide 189: Work Graph Concepts – Records
	Slide 190: Work Graph Concepts – Records
	Slide 191: Work Graph Concepts – Records
	Slide 192: Work Graph Concepts – Records
	Slide 193: Work Graph Concepts – Records
	Slide 194: Work Graph Concepts – Records
	Slide 195: Work Graph Concepts – Records
	Slide 196: Work Graph Concepts – Records
	Slide 197: Work Graph Concepts – Records
	Slide 198: Work Graph Concepts – Records
	Slide 199: Work Graph Concepts – Records

	Work Graph Concepts - Launches
	Slide 200: Work Graph Concepts
	Slide 201: Work Graph Concepts –
	Slide 202: Work Graph Concepts –
	Slide 203: Work Graph Concepts –
	Slide 204: Work Graph Concepts –
	Slide 205: Work Graph Concepts –
	Slide 206: Work Graph Concepts –
	Slide 207: Work Graph Concepts –
	Slide 208: Work Graph Concepts –
	Slide 209: Work Graph Concepts –
	Slide 210: Work Graph Concepts –
	Slide 211: Work Graph Concepts –
	Slide 212: Work Graph Concepts –
	Slide 213: Work Graph Concepts –
	Slide 214: Work Graph Concepts –
	Slide 215: Work Graph Concepts –
	Slide 216: Work Graph Concepts –
	Slide 217: Work Graph Concepts –
	Slide 218: Work Graph Concepts –
	Slide 219: Work Graph Concepts –
	Slide 220: Work Graph Concepts –
	Slide 221: Work Graph Concepts –
	Slide 222: Work Graph Concepts –
	Slide 223: Work Graph Concepts –
	Slide 224: Work Graph Concepts –
	Slide 225: Work Graph Concepts –
	Slide 226: Work Graph Concepts –
	Slide 227: Work Graph Concepts –
	Slide 228: Work Graph Concepts –
	Slide 229: Work Graph Concepts –
	Slide 230: Work Graph Concepts –
	Slide 231: Work Graph Concepts –
	Slide 232: Work Graph Concepts –
	Slide 233: Work Graph Concepts –
	Slide 234: Work Graph Concepts –
	Slide 235: Work Graph Concepts –
	Slide 236: Work Graph Concepts –
	Slide 237: Work Graph Concepts –
	Slide 238: Work Graph Concepts –
	Slide 239: Work Graph Concepts –

	Advanced Work Graphs: Use-case: Material Shading
	Slide 240: Advanced Work Graphs
	Slide 241: Problem: Material Shading
	Slide 242: Problem: Material Shading
	Slide 243: Problem: Material Shading
	Slide 244: Problem: Material Shading
	Slide 245: Problem: Material Shading
	Slide 246: Problem: Material Shading
	Slide 247: Problem: Material Shading
	Slide 248: Problem: Material Shading
	Slide 249: Problem: Material Shading
	Slide 250: Problem: Material Shading
	Slide 251: Problem: Material Shading
	Slide 252: Problem: Material Shading
	Slide 253: Problem: Material Shading
	Slide 254: Problem: Material Shading
	Slide 255: Problem: Material Shading
	Slide 256: Problem: Material Shading
	Slide 257: Problem: Material Shading
	Slide 258: Problem: Material Shading
	Slide 259: Problem: Material Shading
	Slide 260: Problem: Material Shading
	Slide 261: Recap – Work Graph – Nodes
	Slide 262: Recap – Work Graph – Records
	Slide 263: Recap – Work Graph – Records
	Slide 264: Recap – Work Graph – Records
	Slide 265: Recap – Work Graph – Launches
	Slide 266: Recap – Work Graph – Launches
	Slide 267: Recap – Work Graph – Launches
	Slide 268: Recap – Work Graph – Launches
	Slide 269: Recap – Work Graph – Launches
	Slide 270: Recap – Work Graph – Launches
	Slide 271: Recap – Work Graph – Launches
	Slide 272: Recap – Work Graph – Launches
	Slide 273: Material Shading
	Slide 274: Material Shading
	Slide 275: Material Shading
	Slide 276: Material Shading
	Slide 277: Material Shading
	Slide 278: Material Shading
	Slide 279: Material Shading
	Slide 280: Material Shading
	Slide 281: Material Shading
	Slide 282: Material Shading
	Slide 283: Material Shading
	Slide 284: Node Arrays
	Slide 285: Node Arrays
	Slide 286: Node Arrays
	Slide 287: Material Shading
	Slide 288: Material Shading
	Slide 289: Material Shading
	Slide 290: Material Shading
	Slide 291: Material Shading
	Slide 292: Material Shading
	Slide 293: Classify & Execute
	Slide 294: SIMD Efficiency
	Slide 295: SIMD Efficiency
	Slide 296: SIMD Efficiency
	Slide 297: SIMD Efficiency
	Slide 298: SIMD Efficiency
	Slide 299: SIMD Efficiency
	Slide 300: SIMD Efficiency
	Slide 301: SIMD Efficiency
	Slide 302: Conclusion
	Slide 303: Conclusion
	Slide 304: Summary

	Advanced Work Graphs: Recursion
	Slide 305: Advanced Work Graphs
	Slide 306: Recursion
	Slide 307: Recursion
	Slide 308: Recursion
	Slide 309: Recursion
	Slide 310: Recursion
	Slide 311: Recursion
	Slide 312: Recursion
	Slide 313: Recursion
	Slide 314: Recursion
	Slide 315: Recursion
	Slide 316: Recursion
	Slide 317: Recursion
	Slide 318: Recursion
	Slide 319: Recursion
	Slide 320: Recursion
	Slide 321: Recursion
	Slide 322: Recursion

	Advanced Work Graphs: Synchronization
	Slide 323: Advanced Work Graphs
	Slide 324: Synchronization
	Slide 325: Synchronization
	Slide 326: Synchronization
	Slide 327: Synchronization
	Slide 328: Synchronization
	Slide 329: Synchronization
	Slide 330: Synchronization
	Slide 331: Synchronization
	Slide 332: Synchronization
	Slide 333: Synchronization
	Slide 334: Synchronization
	Slide 335: Synchronization
	Slide 336: Synchronization

	Advanced Work Graphs: Procedural Generation
	Slide 337: Advanced Work Graphs
	Slide 338: Advanced Work Graphs
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370
	Slide 371
	Slide 372
	Slide 373
	Slide 374
	Slide 375
	Slide 376
	Slide 377
	Slide 378
	Slide 379
	Slide 380
	Slide 381
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Slide 393
	Slide 394
	Slide 395
	Slide 396
	Slide 397
	Slide 398
	Slide 399
	Slide 400
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412

	Advanced Work Graphs: Work Graphs under the Hood
	Slide 413: Advanced Work Graphs
	Slide 414: How does it work?
	Slide 415: How does it work?
	Slide 416: How does it work?
	Slide 417: How does it work?
	Slide 418: How does it work?
	Slide 419: How does it work?
	Slide 420: How does it work?
	Slide 421: How does it work?
	Slide 422: How does it work?
	Slide 423: How does it work?
	Slide 424: How does it work?
	Slide 425: How does it work?
	Slide 426: How does it work?
	Slide 427: How does it work?
	Slide 428: How does it work?
	Slide 429: How does it work?
	Slide 430: How does it work?
	Slide 431: How does it work?
	Slide 432: How does it work?
	Slide 433: How does it work?
	Slide 434: How does it work?
	Slide 435: How does it work?
	Slide 436: How does it work?
	Slide 437: How does it work?
	Slide 438: How does it work?
	Slide 439: How does it work?
	Slide 440: How does it work?
	Slide 441: How does it work?
	Slide 442: How does it work?
	Slide 443: How does it work?
	Slide 444: Forward Progress
	Slide 445: Forward Progress
	Slide 446: Forward Progress
	Slide 447: Forward Progress
	Slide 448: Forward Progress
	Slide 449: Forward Progress
	Slide 450: Mesh Nodes
	Slide 451: Mesh Nodes
	Slide 452: Mesh Nodes
	Slide 453: Mesh Nodes
	Slide 454: Mesh Nodes
	Slide 455: Mesh Nodes
	Slide 456: Mesh Nodes
	Slide 457: Mesh Nodes
	Slide 458: Mesh Nodes
	Slide 459: Summary

	Summary
	Slide 460: Summary
	Slide 461: Summary
	Slide 462: Summary
	Slide 463: Work Graph Playground
	Slide 464: Work Graph Playground
	Slide 465: Work Graph Playground
	Slide 466: Work Graph Playground
	Slide 467: Samples
	Slide 468: Samples
	Slide 469: Connect with us
	Slide 470

	References
	Slide 471: References

	Disclaimer
	Slide 472: Disclaimer
	Slide 473

