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SIGGRAPH 2025 Course

GPU Work Graphs

Bastian Kuth Max Oberberger Quirin Meyer

Welcome to our GPU Work Graphs Course here at SIGGRAPH 2025 in
Vancouver.
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GPU Work Graphs – Instructors

MTS Software Engineer

AMD

PhD Student

Coburg University

Computer Graphics Professor

Coburg University

Max Oberberger Quirin MeyerBastian Kuth 

Before we start, allow us to introduce ourselves. We are Bastian Kuth from 
Coburg University, Max Oberberger from AMD, and I am Quirin Meyer, also 
from Coburg University.
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GPU Work Graphs – Timeline

Aug 25

SIGGRAPH 

Course

Jan 23

AMD & Coburg

Project

We are teaching a course here today at SIGGRAPH on Work Graphs. 

Coburg University and AMD have been jointly focusing on the practical 
exploration of Work Graphs since January 2023 with funding from the state of 
Bavaria.

In the last two and a half years, Work Graphs has been dominating our work 
life, and we would like to tell you briefly what we and others have done so far 
with this new technology.
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GPU Work Graphs – Timeline

▪ Work Graphs Preview

https://gpuopen.com/learn/gpu-work-graphs/gpu-work-graphs-intro/ 

▪ Sample Code
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloWorkGraphs 

▪ Vulkan Support
https://gpuopen.com/gpu-work-graphs-in-vulkan/ 

▪ Work Graph Samples
https://gpuopen.com/learn/rgp-work-graphs/ 

https://gpuopen.com/learn/work_graphs_learning_sample/ 

Aug 25

SIGGRAPH 

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan 

Support

Aug/Oct 23

Samples

While we were conducting our research, Work Graphs occurred as preview 
with sample code, Vulkan support was added, and AMD published multiple 
Work Graphs samples.
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GPU Work Graphs – Timeline

Aug 25

SIGGRAPH 

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan 

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

https://www.youtube.com/watch?v=QQP6-JF64DQ 

https://gpuopen.com/events/amd-at-gdc-2024/ 

https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/ 

Jul 24

HPG 24

Paper

https://gpuopen.com/download/publications/Real-

Time_Procedural_Generation_with_GPU_Work_Graphs-GPUOpen_preprint.pdf 

At the Game Developer Conference (GDC) 2024, we presented our first demo 
using Work Graphs. We published our research results at High Performance 
Graphics (HPG) 2024.
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GPU Work Graphs – Timeline

Aug 25

SIGGRAPH 

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan 

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

https://www.youtube.com/watch?v=QQP6-JF64DQ 

https://gpuopen.com/events/amd-at-gdc-2024/ 

https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/ 

Jul 24

HPG 24

Paper

Jul 24

DX12

Mesh Nodes

Oct 24

Vulkan

Mesh Nodes

▪ DX 12 Mesh Nodes & Blog Posts
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-

getting_started/

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/ 

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-

procedural_generation

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-

tips_tricks_best_practices/ https://github.com/GPUOpen-

LibrariesAndSDKs/WorkGraphsHelloMeshNodes 

▪ Vulkan Mesh Nodes
https://gpuopen.com/learn/gpu-workgraphs-mesh-nodes-vulkan/ 

Our research makes use of Mesh Nodes, which were made available in the 
third quarter of 2024. We also wrote several blog posts teaching about work 
graphs and mesh nodes. 

You can find a video of our demo, which highlights some of the benefits of 
Work Graphs here: https://gpuopen.com/learn/gdc-2024-workgraphs-
drawcalls/ 
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GPU Work Graphs – Timeline

Aug 25

SIGGRAPH 

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan 

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

Jul 24

HPG 24

Paper

Jul 24

DX12

Mesh Nodes

Oct 24

Vulkan

Mesh Nodes

Nov 24

GPC 

Master Class

https://gpuopen.com/gpc-2024/ Work Graph Playground App
https://gpuopen.com/learn/work-graph-playground/ 

Our GDC demo and our HPG paper raised some excitement, so we got invited 
to teach a Master Class at the Graphics Programming Conference in Breda, 
Netherlands in 2024. This is where we released our Work Graph Playground 
App for the first time. We are going to use this app in this course, too. In case 
you brought your laptop, you can join us experimenting with our Work Graph 
Playground App.
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1. Go to: https://wgpa.short.gy/ 

github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground

2. Download the Latest Release

3. Unzip WorkGraphsPlayground.zip 

4. Open Folder WorkGraphsPlayground

5. Run WorkGraphPlayground.exe

6. Optional: DownloadWarpAdapter.bat

If you need Software Emulation

Work Graph Playground App

Testing adapter "Microsoft Basic Render Driver": Failed 
to create D3D12 device.
WARP adapter does not support D3D feature level 12.2 
and work graphs.
 See readme.md#running-on-gpus-without-work-graphs-
support for instructions on installing latest WARP 
adapter or run DownloadWarpAdapter.bat if you are using 
pre-built binaries.
No device with work graphs support was found.

To install the app as a binary, follow these steps. We encourage you to do this 
right away. In ca. half an hour, you are invited to actively use it.

If your GPU does not support Work Graphs, use the WARP (i.e., software 
emulation) adapter. Use the DownloadWarpAdapter.bat batch script to 
download the corresponding DLL.

You can build it from source, too, by following the instruction in the GitHub 
repository. 
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GPU Work Graphs – Timeline

Aug 25

SIGGRAPH 

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan 

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

Jul 24

HPG 24

Paper

Jul 24

DX12

Mesh Nodes

Oct 24

Vulkan

Mesh Nodes

Nov 24

GPC 

Master Class

Mar 25

GDC

Demo

https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-

driven-games/909736 

Besides the app, we created a demo for GDC 2025, where we generated 
vegetation directly on the GPU with Work Graphs.
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Our demo is full of research findings that we were able to share at HPG 2025 
just a couple of weeks ago.

You can watch a recording of Bastian’s talk at HPG here:

https://www.youtube.com/watch?v=SPWDLMc-9h4&t=26050s 

The full paper is available here:

https://diglib.eg.org/bitstream/handle/10.2312/hpg20251168/hpg20251168.pdf 
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GPU Work Graphs – Timeline

 Not even 1.5y old since official release

Goal for today:

  Teach how to use Work Graphs
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Mar 25

GDC

Demo

Jun 25

HPG

Paper

1y 4m 23d

In June, we celebrated two years of work graphs when including the preview 
phase. The official announcement of  Work Graphs dates back only less than 
one and a half year. So, it is a rather new technology.

Our goal in this course is that we teach you how to use Work Graphs and that 
you can use it for your own applications.
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GPU Work Graphs – Course Agenda

Introduction & Foundations 14:00 – 14:30

Concepts 14:30 – 15:30

Nodes

Records

Launches

Break 15:30 – 15:45

Advanced Work Graphs 15:45 – 16:45

Material Shading

Recursion & Synchronization

Procedural Generation

Under the hood

Wrap-Up 16:45 – 17:00

Here is a brief overview of the topics that we will cover today.
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Introduction & Foundations

 GPU Concepts for Work Graphs

 Why Work Graphs?

You have just seen some applications demonstrating the power of Work 
Graphs. Before going into details, we want to first answer the main question: 

Why even Work Graphs?

That comes with questions concerning alternative approaches and why you 
should prefer Work Graphs over them. But before that, we provide a summary 
of GPU concepts that are important for Work Graphs.
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Introduction & Foundations

 GPU Concepts for Work Graphs

   SIMD

   Work Item

   Work Amplification, Work Reduction

   Compute Shaders

   Mesh Shaders

 GPU Concepts for Work Graphs

We believe that those concepts are important for Work Graphs.
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GPU History

1999
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Processing

2002

Shader Model 2

 Programmable 

Vertex/Pixel 

Shader Pipeline

2004

Shader Model 3

Dynamic 

Control Flow

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2006

“GPGPU”

ATI 

Close-to-the-Metal

2007

CUDA

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading & 

Hardware 

Raytracing 

Mar 2024

Work Graphs

GDC

I can best explain these concepts using a brief history of the GPU evolution.

The demand for greater flexibility has driven the evolution of GPU 
programmability throughout the past decades. Early register combiners 
allowed rudimentary fragment processing [Kilgard 1999], and later vertex 
processing became programmable [Lindholm et al. 2001]. In 2002, the DirectX 
9.0 Shader Model 2.0 is considered to be the first programmable hardware 
vertex- and pixel-shader pipeline. Two years later, Shader Model 3.0 added 
dynamic control flow [Akenine-Möller 2018]. Geometry shaders [Blythe 2006] 
followed with programmable per-primitive processing. Hardware tessellation 
[Andrews and Barker 2006] allowed for fast on-chip geometry amplification 
[Niessner et al. 2016]. The introduction of compute-shaders [Peercy et al., 
Nvidia 2007] exposed a hardware-oriented programming model – the 
beginning of GPGPU. It allowed the GPU to execute high-performance 
graphics and non-graphics applications, as shown for example in the GPU 
Gems 3 book [Nguyen 2007]. Also, modern GPU ray tracing [Haines and 
Akenine-Möller 2019] on hardware originates back to compute-shader-based 
ray-tracing implementations [Parker et al. 2010]. With indirect execution or 
execute indirect, the sizes of draw-calls and dispatches are taken from GPU 
memory, allowing for GPU-driven work creation. Amplification and mesh 
shaders [Kubisch 2018] provide a single-level, non-recursive amplification 
pipeline for rasterization workloads, following the programming model of 
compute shaders.

Work Graphs [Microsoft 2024] increase GPU programmability by providing 
multi-level, self-recursive amplification of both compute and rasterization 
workloads.
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GPU History

2002

Shader Model 2

 Programmable 

Vertex/Pixel 

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

We find those milestones sufficient to explain the basic concepts of GPU 
pipelines…
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Programmable Vertex & Pixel Shader Pipeline

2002

Shader Model 2

 Programmable 

Vertex/Pixel 

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

… and we start off with Shader Model 2 which introduced programmable 
vertex and pixel shading.
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

2002

Shader Model 2

 Programmable 
Vertex/Pixel 

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Here is a simplified version of the pipeline. The blue and yellow boxes are the 
different pipeline stages.
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger
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Vertex Shader

Rasterizer
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1
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0
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12

0 300

11

3

2

Given a triangle mesh with vertices, shown as circles. The black edges 
connect the vertices to form triangles. The vertex coordinates are 4D 
coordinates shown as column vectors.

They are input to the pipeline, shown on the right.

As output, you get pixel graphics, as shown in the pixel grid on the lower left of 
the slide.
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader
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The vertex coordinates are stored in an array called vertex buffer. 
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader
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Index Buffer

And the vertex indices are stored in what is called an index buffer.
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Input Assembler

2
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Vertex Shader

Rasterizer

1 20 3

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

Vertex Buffer

Let’s recap what happens when we input a vertex- and an index buffer into the 
pipeline.

First, each element of the index buffer is fed into the input assembler.
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The input assembler then gathers the elements from the vertex buffer and 
makes them available at its outputs.
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Programmable Vertex & Pixel Shader Pipeline
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The input assembler can operate on each element independently. This 
enables GPUs to have a high degree of parallelism. 
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader
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Then the vertices are fed into the next stage: the vertex shader.
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader
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buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

In the vertex shader, you as a programmer can write shader code, as shown 
on the left.
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

−1
0
0
1

You define a struct, describing the output of the input assembler. At the same 
time, it serves as input to the vertex shader. For each vertex that the input 
assembler outputs, the GPU launches one vertex shader thread. 

Let’s do an example with the first vertex.
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Programmable Vertex & Pixel Shader Pipeline
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buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

−1
0
0
1

The vertex inside the yellow box serves as input to one vertex shader thread.
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Programmable Vertex & Pixel Shader Pipeline
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buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}
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With that input, the vertex shader thread carries out the operations a 
programmer specified…

29© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



30 |

Programmable Vertex & Pixel Shader Pipeline
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buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}
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… and writes the output, that a programmer defined with the struct shown in 
the blue box.
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Programmable Vertex & Pixel Shader Pipeline
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Output Merger
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buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}
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The result is then made available at the vertex shader output.
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VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer
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buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}
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All other vertices undergo the same fate: They pass through the same vertex 
shader code, however, using different inputs.
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Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader
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Single Instruction 

Multiple Data

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

This is a very important concept. The same piece of code is executed on 
different data items.

In other words, a single instruction operates on multiple data. Hence the name 
Single Instruction, Multiple Data…
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Single Instruction Multiple Data

Programmable Vertex & Pixel Shader Pipeline
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 GPU Concepts for Work Graphs

   SIMD

   Work Item

   Work Amplification, Work Reduction

   Compute Shaders

   Mesh Shaders

… or short SIMD.

SIMD is the underlying parallel computing model of GPUs and it is very 
important for their performance. Since Work Graphs run on a GPU, they make 
use of the SIMD model.

Side note: In the context of GPUs, the massively parallel underlying computing 
model is sometimes also referred to as SIMT (Single Instruction, Multiple 
Threads).
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Single Instruction Multiple Data

Programmable Vertex & Pixel Shader Pipeline
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Work Items

From an abstract perspective, the vertices attributes, as the D (data) in SIMD, 
are Work Items…
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Single Instruction Multiple Data
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 GPU Concepts for Work Graphs

   SIMD

   Work Item

   Work Amplification, Work Reduction

   Compute Shaders

   Mesh Shaders

… that flow through a pipeline.

In a pipeline, one stage acts as a producer, and the subsequent stage as a 
consumer. A stage can consume and produce items at the same time.

The items that flow through the pipeline are called work items.

From that point of view, the graphics pipeline is already providing a data-flow-
oriented model which is also used in Work Graphs, however, in a much more 
sophisticated way. 
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Single Instruction 

Programmable Vertex & Pixel Shader Pipeline
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But going back to what you are already familiar with: Our vertex-pixel-shader 
pipeline.

The vertex shader has just transformed the vertices.
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Programmable Vertex & Pixel Shader Pipeline
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 GPU Concepts for Work Graphs

   SIMD

   Work Item

   Work Amplification, Work Reduction

   Compute Shaders

   Mesh Shaders

The rasterizer then gathers three-tuples of vertices and discretizes the 
triangles into fragments.

This can be considered work amplification. Consider a triangle an input data 
item. We amplify that input data item to a much  larger number of output items, 
i.e., our fragments.
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Programmable Vertex & Pixel Shader Pipeline
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 GPU Concepts for Work Graphs
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   Work Item

   Work Amplification, Work Reduction

   Compute Shaders

   Mesh Shaders

But the rasterizer can also reduce work entirely, for example by removing 
triangles that do not produce fragments.
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Programmable Vertex & Pixel Shader Pipeline

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Pixel Shader
float4 PS_main(VertexOut v) : SV_TARGET {
float c = v.q.y + 0.5;
return float4(c, c, c, 1.0);

}

The pixel shader is again a program using the SIMD model. Each fragment is 
its input work item …
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float4 PS_main(VertexOut v) : SV_TARGET {
float c = v.q.y + 0.5;
return float4(c, c, c, 1.0);

}

Programmable Vertex & Pixel Shader Pipeline

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Pixel Shader

… and gets executed by one thread on the GPU …
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float4 PS_main(VertexOut v) : SV_TARGET {
float c = v.q.y + 0.5;
return float4(c, c, c, 1.0);

}

Programmable Vertex & Pixel Shader Pipeline

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Pixel Shader

… which computes its output color …
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Programmable Vertex & Pixel Shader Pipeline

Input Assembler

Vertex Shader

Rasterizer

Output Merger

Pixel Shader

Each fragment shader thread then passes its output data item to the output 
merger.
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Output Merger

Programmable Vertex & Pixel Shader Pipeline

Input Assembler

Vertex Shader

Rasterizer

Pixel Shader

The output merger then merges the fragments with the existing ones to form 
the final image.
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2002

Shader Model 2

 Programmable 

Vertex/Pixel 

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Graphics Pipeline – 2002 Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

This concludes our talk about the vertex- and pixel-shader pipeline from 2002.

We have seen that some concepts that we will use for Work Graphs already 
existed back then.
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Vertex/Pixel 

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Graphics Pipeline – 2002 Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Fixed Function Programmable

Distinct

Hardware

Units

Distinct

Hardware

Units

The pipeline has two programmable stages and several configurable fixed-
function stages.
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Vertex/Pixel 

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Graphics Pipeline – 2006 Geometry Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Fixed Function Programmable

SIMD

on Vertices

SIMD

on Pixels

SIMD

on Primitives

The vertex shader is SIMD on vertices; the fragment shader is SIMD on 
fragments. In 2006, D3D10 introduced geometry shaders, another 
programmable stage. That stage uses SIMD on triangles and other primitives.

The hardware designers observed that all programmable stages use the same 
underlying SIMD principle.
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Graphics Pipeline – 2006 Unified Shader Model

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Shader Core

Shared Memory

Work Group Processor

GPU Hardware

To provide a common abstraction, they created the unified shader model.

Each thread maps onto a shader core. Multiple shader cores are grouped into 
a work group processor. For example, on the AMD RDNA  3 architecture, we 
have 128 shader cores per work group processor. 

The shader cores of a work group processor can communicate over a shared 
memory, which has 128 KiB on AMD RDNA  3 GPUs.
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Graphics Memory

Graphics Pipeline – 2006 Unified Shader Model

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Shader Core

Shared Memory

Work Group Processor

GPU Hardware

Several such work group processors are on a GPU. On The AMD Radeon  
RX 7800 XT, we have 30 work group processors.

The work group processors share a common Graphics Memory. Today, that is 
several GiBs large.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

2002

Shader Model 2

 Programmable 

Vertex/Pixel 

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Shader Core

Shared Memory

Work Group Processor

GPU Hardware

Now with such an abstract model of the GPU, it was just obvious to define new 
shader types. This gave rise to compute shaders.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

GPU Abstraction

Thread

Group Shared Memory

Thread Group

GPU Abstraction

Shader Core

Shared Memory

Work Group Processor

GPU Hardware

Compute shaders require a GPU abstraction.

That contain threads, which access a common group shared memory. Threads 
are mapped onto shader cores and group shared memory maps to shared 
memory.

Threads are clustered into thread groups. On GPU hardware, a thread group 
is executed on a work group processor.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

GPU Abstraction

Thread

Group Shared Memory

Thread Group

// 1D, 2D, 3D Grid of Max. 1024 threads
uint3 gtid : SV_GroupThreadID;

In a compute shader program, the SV_GroupThreadID semantic provides a 
3D index in a grid of up 1024 threads of a thread group.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

GPU Abstraction

Thread

Group Shared Memory

Thread Group

// 1D, 2D, 3D Grid of Max. 1024 threads
uint3 gtid : SV_GroupThreadID;

// 1D, 2D, 3D Grid of Max. 65536 thread groups
// in each dimension
uint3 gid : SV_GroupID;

Device Memory

To locate a thread group, the SV_GroupID semantic provides the programmer 
with a 3D index into the grid of thread groups.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Thread

Group Shared Memory

Thread Group

Device Memory

struct Data {
float3 u;
float2 v;

};
StructuredBuffer<Data> A   : register(t0);
StructuredBuffer<Data> B   : register(t1);
RWStructuredBuffer<Data> C : register(u0);
[numthreads(128, 1, 1)]
void main(uint3 gtid : SV_GroupThreadID, 

uint3 gid : SV_GroupID) {
const uint t = gtid.x + gid.x * 128;
C[t].u = A[t].u + B[t].u;
C[t].v = A[t].v * B[t].v;

}

Compute shaders are programmed using shader programs that adhere to the 
SIMD model.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

struct Data {
float3 u;
float2 v;

};
StructuredBuffer<Data> A   : register(t0);
StructuredBuffer<Data> B   : register(t1);
RWStructuredBuffer<Data> C : register(u0);
[numthreads(128, 1, 1)]
void main(uint3 gtid : SV_GroupThreadID, 

uint3 gid : SV_GroupID) {
const uint t = gtid.x + gid.x * 128;
C[t].u = A[t].u + B[t].u;
C[t].v = A[t].v * B[t].v;

}

Thread

Group Shared Memory

Thread Group

Device Memory

When knowing the thread-group size (in this example 128 threads), 
SV_GroupThreadID and SV_GroupID can be used to uniquely identify a 
thread. We use such a unique ID to index into memory (in this example a 
StructuredBuffer) to perform our computations.
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 GPU Concepts for Work Graphs

   SIMD

   Work Item

   Work Amplification, Work Reduction

   Compute Shaders

   Mesh Shaders

Thread

Group Shared Memory

Thread Group

Device Memory

So, we got our fourth concept “Compute Shaders.”
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger
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Vertex Shader
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Compute Shader

Graphics 

Memory

CPU GPU

But how do compute shaders interact with the graphics pipeline?

57© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



58 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics 

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU GPU

Dispatch I/O

In this example, a compute shader gets dispatched from the CPU. On the 
GPU, the threads of the compute shader process a list of instances coming 
from graphics memory. 

As an example, we assume that the compute shader’s task is to cull instances 
outside the view frustum. The compute shader writes only the visible instances 
back to graphics memory.

58© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



59 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics 

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

CPU GPU

Dispatch I/O

Next, the graphics pipeline renders only the visible instances. It reads them 
from graphics memory and generates a 2D image. That one is written back to 
graphics memory.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics 

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU GPU

Dispatch I/O

Then, we dispatch another compute shader. This could, for example, do some 
post-processing on the image. Therefore, we read all the pixels, transform 
them, and write them back to graphics memory.
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Graphics Pipeline – 2009 Compute Shaders

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU GPU

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics 

Memory

 Compute Shader Problems

   Barriers

  Communication over Graphics Memory

Dispatch I/O

But there are two problems. The first problem is: The barriers. They are 
required to avoid read/write hazards between pipelines. A pipeline must finish 
its entire computation before any other pipeline can even start. This is assured 
by barriers.

This can leave many work group processors idle, especially when a pipeline 
computation is about to finish.
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Graphics Pipeline – 2009 Compute Shaders

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU GPU

 Compute Shader Problems

   Barriers

   Device Memory I/O

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics 

Memory

Dispatch I/O

The second problem is: The communication between pipelines happens over 
graphics memory, which can become a limiting factor.
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s
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Interconnect 

Bandwidth

GPU Memory 

Bandwidth

Here are some numbers: In comparison to other memory buses we have in 
our system, 1 TiB/s between the work groups processor of a GPU and 
graphics memory seems huge.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

GPU

Adapted from: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall. 

RiseLab Medium Blog Post, University of Califonia Berkeley, 2021, March 29. (MIT License)
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However, as we can see in this plot, over the last years, the growth in GPU 
Compute Performance has outpaced the growth in GPU Memory Bandwidth.

Source: Image adapted from https://github.com/amirgholami/ai_and_memory_wall/blob/main/imgs/pngs/hw_scaling.png

From the paper: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall. RiseLab Medium Blog Post, University of Califonia Berkeley, 
2021, March 29.

Available on https://github.com/amirgholami/ai_and_memory_wall/blob/main/README.md

MIT License

Copyright (c) 2021 Amir Gholami

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

GPU

ca. 1
TiB

s

Graphics Memory

So even with a bandwidth of 1 TiB/s to graphics memory…
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Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

GPU

ca. 1
TiB

s

Graphics Memory

 Low

Latency

Shared Mem.

… inside the cores, we have the shared memory which is much faster. In fact, 
it has a very low latency compared to graphics memory.

However, it is much smaller in memory capacity.
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Graphics Pipeline – 2009 Hardware Tessellation

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

2002

Shader Model 2

 Programmable 

Vertex/Pixel 

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

So back in 2009, I/O was, of course, already a problem. To save I/O, hardware 
tessellation was introduced in 2009.
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Graphics Pipeline – 2009 Hardware Tessellation
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Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

It contains two more programmable stages, hull shader and domain shader, 
and a fixed-function hardware tessellator.
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Graphics Pipeline – 2009 Hardware Tessellation

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Hardware tessellation allows to amplify geometry from a couple of control 
points to a larger number of triangles. But the rather rigid tessellation patterns 
do not offer the desired degree of freedom on topology.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer
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2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs Compute Shader

This is why in 2018, mesh shading was added to the pipeline. Mesh shading is 
important for Work Graphs, too.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader
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Compute Shader

Graphics 

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU

Dispatch I/O

So, what problem does mesh shading solve? Consider a compute shader that 
creates or transforms geometry. However, the compute shader must write its 
output to graphics memory.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

Graphics 

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

CPU

Dispatch I/O

Then, the graphics pipeline can read from graphics memory. Therefore, we 
have one memory write and one memory read, which we could save. 
Remember, graphics memory access is rather expensive.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

Graphics 

Memory

// Process with Mesh Shader
commandList->SetPipelineState(...);
commandList->DispatchMesh(...);

CPU

Dispatch I/O

The idea of mesh shading is to directly feed the rasterizer from the compute 
shader. This saves the extra graphics memory access.

73© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



74 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

CPU

Pixel Shader

Output Merger

Rasterizer

Mesh Shader// Process with Mesh Shader
commandList->SetPipelineState(...);
commandList->DispatchMesh(...);

This gives us a third pipeline: the Mesh Shading Pipeline.
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[outputtopology("triangle")]
[numthreads(128, 1, 1)]
void main(
  uint3               gtid : SV_GroupThreadID,
  uint3               gid : SV_GroupID,
  out vertices float3 smallVertexBuffer[256],
  out indices uint3   smallIndexBuffer[256])
{
  
}

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

Small Vertex Buffer

Small Index Buffer

GPU

Meshlet 

Like a compute shader, you launch a grid of mesh shader thread groups. So, 
in the code, we have our SV_GroupThreadID and SV_GroupID semantics. 
Each mesh shader thread group can have up to 128 threads. We can output 
triangles (or other primitives) to a small vertex and  index buffer with up to 256 
vertices and triangles each. A mesh shader output is like a small mesh. 
Therefore, it is commonly called a meshlet.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader[outputtopology("triangle")]
[numthreads(128, 1, 1)]
void main(
  uint3               gtid : SV_GroupThreadID,
  uint3               gid : SV_GroupID,
  out vertices float3 smallVertexBuffer[256],
  out indices uint3   smallIndexBuffer[256])
{
  
}

GPU

Meshlets 

With multiple mesh shader thread groups, we can output multiple meshlets.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

V = 128

T = 256

If you want to render a larger model, you first decompose it into multiple 
meshlets in a preprocess.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

And then run a mesh shader thread group for each meshlet.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

The mesh shader thread groups then transform these meshlets and pass them 
over to the rasterizer.
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 GPU Concepts for Work Graphs

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

More info: 

Mesh shaders on AMD RDNA  graphics cards
https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/

 GPU Concepts for Work Graphs

   SIMD

   Work Item

   Work Amplification, Work Reduction

   Compute Shaders

   Mesh Shaders

Mesh shading is a super light-weight version of work graphs. 

For more information see this blog post series: 
https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/ 
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

 GPU Concepts for Work Graphs

 Why Work Graphs?

 GPU Concepts for Work Graphs

But now that we have mesh shading, we have all concepts together that we 
need for work graphs.
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Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

 Why Work Graphs?

The question now is: why do we even need Work Graphs?
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Graphics Pipeline – Execute Indirect
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Shader Pipeline
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Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

To answer that question, let’s first look what another addition to the pipelines 
attempt to solves: I am speaking of  “execute indirect.”
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Compute 

Pipeline

Graphics 

Pipeline

Graphics Pipeline – Execute Indirect

Suppose you have a compute pipeline and a graphics pipeline.
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Graphics Pipeline – Without Execute Indirect

Compute Pipeline Graphics Pipeline

Barrier

CPU

GPU
Graphics Memory

Time

Dispatch GPU I/O

And you kick of your compute pipeline from the CPU.

The GPU then does some computation using the compute pipeline. To that 
end, it reads data from graphics memory and writes its results back to graphics 
memory.

To make sure that everything is written into graphics memory, we must include 
a barrier. 

Only after we have reached  the barrier, we can kick off the graphics pipeline. 

So, we must wait. The graphics pipeline can then read the data from memory 
and produce the pixels output. After that we need another barrier. 

These barriers can become a severe performance problem, because your 
system must wait actively. 
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Graphics Memory

Graphics Pipeline – Without Execute Indirect

Producer Consumer

N Data

CPU

GPU

Time

BarrierDispatch GPU I/O

The situation gets even more severe when the producer (i.e., the compute 
kernel) produces a varying number of data entries.

As an example, imagine a scene with tens of thousands of objects. The task of 
the producer is to cull invisible objects. After the producer kernel has run, it 
outputs 5000 visible objects to data. There, it writes N = 5000.
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Graphics Memory

Graphics Pipeline – Without Execute Indirect

Producer Consumer

N Data

CPU

GPU

N &Data
Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

N &Data

The consumer then renders the 5000 objects. But to do so, the CPU must 
configure the draw call and it must know that number N.

So, the CPU must read N from the GPU. Therefore, we must include a fence 
that synchronizes CPU and GPU. Only after that fence can the CPU read the 
number N and properly configure the draw call.
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Graphics Memory

Graphics Pipeline – Without Execute Indirect

Producer Consumer

N Data

CPU

GPU

N &Data

N

&Data

Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

With that handle to the data and the number of objects, the CPU can dispatch 
5000 draw calls to the visible objects.

Note that producer and consumer need to agree up-front on the handle to data 
(&Data).
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&N &Data&N &Data&N &Data

Graphics Memory

Graphics Pipeline – With Execute Indirect

Producer Consumer

N Data

CPU

GPU

Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

With “execute indirect”, we also get a handle to where the number N is stored. 
Let’s see why that can improve things.
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Graphics Memory

Graphics Pipeline – With Execute Indirect

Producer Consumer

N Data

CPU

GPU

&N

&Data

&N &Data
Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

The producer gets both handles: &N and &Data. As before, it writes out the 
visible objects (Data) and the number of visible objects (N).
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Graphics Memory

Graphics Pipeline – With Execute Indirect

Producer Consumer

N Data

CPU

GPU

&N

&Data

&N &Data&N &Data
Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

Now the CPU knows the location of the handles on the GPU but not the actual 
values behind it. So, there is no need to transfer the actual values.

And therefore, no need for fence.
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&N &Data

Graphics Memory

Graphics Pipeline – With Execute Indirect
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Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

All the CPU needs to do is call the consumer with handles as parameters 
instead of the actual values.
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Graphics Memory

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

N Data
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GPU

&N &Data&N &Data
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&Data
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&Data

Time
 Execute Indirect Problems

   Barriers

BarrierDispatch GPU I/O GPU-CPU I/OFence

However, we still need the barriers, since the producer and consumer still 
communicate over graphics memory. 
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Graphics Memory

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

Data

CPU

GPU

&N &Data&N &Data

&N

&Data

&N

&Data

N = 0

Time
 Execute Indirect Problems

   Barriers

   Empty Launches

 

BarrierDispatch GPU I/O GPU-CPU I/OFence

Additionally, if N = 0, there would not be any reason for the CPU to dispatch 
the Consumer. But the CPU has no idea about N being 0, so it must dispatch 
the draw call no matter what. 

That is not dangerous, but we have the overhead of a launch including the 
barrier.
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Graphics Memory

Data

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

N Output
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GPU
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&N
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&Data
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Time
 Execute Indirect Problems
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   Empty Launches

   Wasted Memory

 

BarrierDispatch GPU I/O GPU-CPU I/OFence

Another problem with execute indirect is, that we have to reserve memory for 
what could end up in data. Going back to the culling example, we could end up 
rendering all objects or zero objects. Since we do not know that up front, we 
must always be prepared for the worst case and thus potentially waste 
memory.
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Graphics Memory

Data

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

N Output

CPU

GPU
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&N

&Data

&N

&Data

Overflow

Time
 Execute Indirect Problems

   Barriers

   Empty Launches

   Wasted Memory

   Worst-Case Allocation

BarrierDispatch GPU I/O GPU-CPU I/OFence

We must always account for the worst-case scenario. If not, we could run into 
dangerous memory overflow situations.
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Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

 Execute Indirect Problems

   Barriers

   Empty Launches

   Wasted Memory

   Worst-Case Allocation

BarrierDispatch GPU I/O GPU-CPU I/OFence

So those are all existing execute-indirect problems.
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Graphics Pipeline – Mesh Shading – Problems 

Pixel Shader

Output Merger

Rasterizer

Producer

ConsumerMesh Shader

Amplification

Could we solve those with mesh shaders? I have not yet  mentioned the 
amplification shader stage of the mesh-shading pipeline.

An amplification shader can control the number of mesh shader thread groups 
to launch directly on the GPU. In essence, this is a little consumer-producer 
pipeline. So, for very simple scenarios, mesh shading, can solve some of the 
issues.
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Consumer

Graphics Pipeline – Mesh Shading – Problems 

Producer  Mesh Shading Problems

   Graphics Only

 Execute Indirect Problems

   Barriers

   Empty Launches

   Wasted Memory

   Worst-Case Allocation

But mesh shading is graphics only. It has no compute support.
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Consumer & Producer

Graphics Pipeline – Mesh Shading – Problems 

Producer Consumer  Mesh Shading Problems

   Graphics Only

   Self-Recursion

 Execute Indirect Problems

   Barriers

   Empty Launches

   Wasted Memory

   Worst-Case Allocation

It breaks, if you want something like self-recursions, as for example with 
recursive subdivision.
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Producer Consumer & Producer Consumer & ProducerProducer Consumer & Producer Consumer & Producer

Graphics Pipeline – Mesh Shading – Problems 

Producer Consumer & Producer Consumer & Producer  Mesh Shading Problems

   Graphics Only

   Self-Recursion

   Long Chains

 Execute Indirect Problems

   Barriers

   Empty Launches

   Wasted Memory

   Worst-Case Allocation

The mesh-shading pipeline has only one or two programmable stages. Long 
chains are therefore not possible…
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Graphics Pipeline – Mesh Shading – Problems 

Producer Consumer & Producer Consumer & Producer

Producer Consumer & Producer Consumer & Producer

Producer Consumer & Producer Consumer & Producer

Consumer & Producer  Mesh Shading Problems

   Graphics Only

   Self-Recursion

   Long Chains
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 Execute Indirect Problems
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   Empty Launches

   Wasted Memory

   Worst-Case Allocation

… or even multiple different shader chains.
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Graphics Pipeline – Mesh Shading – Problems 

Producer Consumer & Producer Consumer & Producer

Consumer & Producer Consumer & Producer

Consumer & Producer Consumer & Producer

 Mesh Shading Problems

   Graphics Only

   Self-Recursion
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 Execute Indirect Problems

   Barriers
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   Wasted Memory

   Worst-Case Allocation

Diverging branches in a shader chain such as with the classify-and-execute 
pattern (see later in the Material Shading section of this course) is also not 
possible.

103© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



104 |

Why Work Graphs?

 Compute Shader Problems

   Barriers

   Device Memory I/O

 GPU Concepts for Work Graphs

 Why Work Graphs?

 Execute Indirect Problems

   Barriers

   Empty Launches

   Wasted Memory

   Worst-Case Allocation

 Mesh Shading Problems

   Graphics Only

   Self-Recursion

   Long Chains

   Parallel Chains

   Classify-and-Execute

Those problems give us good reasons to define Work Graphs to solve all 
these problems.
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Why Work Graphs?

Work Graphs can solve all these problems.

 Compute Shader Problems

   Barriers

   Save I/O

 GPU Concepts for Work Graphs

 Why Work Graphs?

 Execute Indirect Problems

   Barriers

   Empty Launches

   Wasted Memory

   Worst-Case Allocation

 Mesh Shading Problems

   Graphics Only

   Self-Recursion

   Long Chains

   Parallel Paths

   Classify-and-Execute

We will show you that Work Graphs can help you solve these problems. 

Note: To some extent having, multiple compute queues can deal with these 
problems, too. Likewise enhanced barriers (https://microsoft.github.io/DirectX-
Specs/d3d/D3D12EnhancedBarriers.html) help with better managing barriers. 
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1. Go to: https://wgpa.short.gy/ 

github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground

2. Download the Latest Release

3. Unzip WorkGraphsPlayground.zip 

4. Open Folder WorkGraphsPlayground

5. Run WorkGraphPlayground.exe

6. Optional: DownloadWarpAdapter.bat

If you need Software Emulation

7. Open Editor in Folder WorkGraphsPlayground

Work Graph Playground App

Testing adapter "Microsoft Basic Render Driver": Failed 
to create D3D12 device.
WARP adapter does not support D3D feature level 12.2 
and work graphs.
 See readme.md#running-on-gpus-without-work-graphs-
support for instructions on installing latest WARP 
adapter or run DownloadWarpAdapter.bat if you are using 
pre-built binaries.
No device with work graphs support was found.

This is now a reminder to download the latest Work Graph Playground App, 
because in the next section we are going to use it. 

So prepare yourself by opening the folder WorkGraphsPlayground in your 
code editor.
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Work Graph Playground App

Useful Command Line Options

1. Software Emulation of the GPU

--forceWarpAdapter

2. Print out Debug Information (Requires Graphics Tools)

--enableDebugLayer

All you need to do, is edit the HLSL shader files in your editor. 
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Work Graph Playground App

So please open tutorials/tutorial-0/HelloWorkGraphs.hlsl
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Work Graph Playground App

We provide detailed explanation of the tutorial template and the tutorial tasks. 
As we will explain a selection of these tasks in this course, you may wish to 
fold these block comments for easier viewing.

In Visual Studio Code, this can be done with the “Fold All Block Comments” 
command.
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Work Graph Playground App

This should hide the large blocks of comments that might disturb you during 
the course.
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Work Graph Playground App

We also provide a sample solution for each tutorial. You can even open both 
your and our solution in a code-diff editor to compare them.
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Work Graphs HLSL Cheat Sheet

Additionally, for quick reference, we also provide a cheat sheet for you to look 
up common Work Graphs syntax.
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Connect with us

gpu-work-graphs

You can also join the gpu-work-graphs channel on the AMD Developer 
Community Discord server at https://discord.gg/amd-dev, to connect with the 
course instructors or other course participants.
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GPU Work Graphs – Course Agenda

Introduction & Foundations 14:00 – 14:30

Concepts 14:30 – 15:30

Nodes

Records

Launches

Break

Advanced Work Graphs 15:45 – 16:45

Material Shading

Recursion & Synchronization

Procedural Generation

Under the hood

Wrap-Up 16:45 – 17:00

Here is a brief overview of the topics that we will cover today.
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Work Graph Concepts

Nodes

We begin our dive into Work Graphs with the three basic concepts that are key 
for Work Graphs: nodes, records, and launches. We now start with nodes.
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Work Graphs

DispatchDispatch Dispatch

Execution

Command list

Before work graphs, any work that we wish to carry out on the GPU had to be 
submitted as individual commands as part of a command list. For this course, 
we focus on compute work loads, thus, the commands shown here are all 
dispatches. The emphasis with these command lists is really on the list part, 
as the GPU would process these command one after the other, thus limiting 
our options for any type of dynamic decision making on the GPU. In the 
“Introduction & Foundations” part of this course, we have seen the hassle with 
fences, barriers, empty launches, and CPU-GPU communication.
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Work Graphs

Dispatch DispatchDispatchGraph

Execution

Command list

With Work Graphs, we can replace these different dispatch commands with a 
single new command: DispatchGraph.
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Command list

Execution

Node Node NodeNodeNode

Work Graphs

Inside this DispatchGraph command, we no longer have a single compute 
kernel, but rather a series of connected compute kernel called “nodes”. These 
nodes are programmed in a similar way to regular compute kernel/compute 
shaders using the HLSL programming language and we will dive into the 
specific syntax in a bit.
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Work Graphs

Node

Node

Node

Node

Node

Execution

Directed

Acyclic

Graph

The graph topology of a work graph is, however, not limited to a single long 
chain of nodes but instead can be classified as a directed acyclic graph (DAG).

As the name “Work Graphs” might suggest, the execution model of this graph 
is centered around work flowing along the edges of the graph from one node 
to the next. Thus, edges of our graph are directed. Each node can have 
multiple in- and out-going edges, as shown here.

Note that while the graph depicted here has a single root node on the far left, 
work graphs can have multiple such root nodes.

Additionally, cycles* are not allowed in the graph. Therefore, there exists a 
fixed execution order, shown here going from left to right.

*Note: Work Graphs do allow trivial cycles going from one node to itself. More 
on this in the “Advanced Work Graphs” section.
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Work Graphs

Node

Node

Node

Node

Node

Execution

Max Depth:

32 Nodes

The longest chain of nodes from the first producer node (in graph theory often 
referred to as source node) to the last consumer node (also referred to as leaf 
node), is limited to 32 nodes. The Work Graphs specification refers to this as 
the maximum graph depth.
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Record

Work Graphs

Node

Node

Node

Node

Execution

Node

As mentioned before, the execution model is based on work flowing along the 
edges of the graph. These work items are referred to as records.
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Producer

Consumer

Work Graphs

Node

Node

Node

Node

Consumer

Execution

Node

Each node can produce one or more records for one or more other nodes, 
which then consume these records, thus creating a producer-consumer 
relationship between nodes.
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Producer

Work Graphs

Node

Node

Node

Node

Producer

Execution

Node

An inner node, i.e., with both in- and out-going edges, is both a consumer and 
a producer at the same time.
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Producer

Work Graphs

Node

Node

Node

Node

Producer

Execution

Node

These producer-consumer chains repeat until the leaf nodes are reached.

124© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



125 |

Work Graphs

Node

Node

Node

Records ≠ Dispatches

Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

In contrast to other GPU graph programming models, such as CUDA graphs, 
the records of a work graph are not dispatches to a particular node/compute 
kernel. Meaning, if a producer node sends a record to a consumer node, the 
consumer node is not immediately dispatched by the work graph runtime.
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Work Graphs

Node

Node

Node

Records ≠ Dispatches

Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

Instead, you can imagine that there is a virtual queue attached to each node. 
Incoming records are queued up and execution of the node is deferred. It is, 
however, guaranteed that each incoming record will eventually be processed 
by the consumer node.
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Work Graphs

Node

Node

Node

Records ≠ Dispatches

Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node
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Work Graphs

Node

Node

Node

Records ≠ Dispatches

Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

Once the work graph runtime deems enough work is available in the queue, 
the node is executed. This deferred approach allows the work graph runtime to 
more efficiently use the available GPU resources.
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Work Graphs

Node

Node

Node Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

Dispatching the graph is done by sending records (e.g., from the CPU) to an 
entry node. These initial records are often referred to as entry work.

A graph dispatch can contain entry work for multiple nodes. Entry work can 
also target inner nodes, i.e., nodes that are also targeted by other nodes as 
well.
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Work Graph Concepts – Nodes

HelloWorkGraphs.hlsl

[Shader("node")]
[NodeIsProgramEntry]
[NodeLaunch("thread")]
[NodeId("Entry", 0)]
void EntryFunction() {

}

tutorial-0/

Work Graph

Now, let’s have a look at the HLSL syntax for declaring a work graph node.

At its core, a work graph node is an HLSL void-function with additional 
attributes. In our case, we named our function EntryFunction, as it will be 
the entry node to our graph. First, to be able to compile this function as a work 
graph node, we need to annotate it with a [Shader("node")] attribute.

Next, we mark this function as an entry function with the 
[NodeIsProgramEntry] attribute.

Work Graphs support multiple launch modes, which determine how incoming 
records are processed. We set the launch mode with the [NodeLaunch(...)] 
attribute. We cover the available node launches in greater detail later. For now, 
we opt for the "thread" launch mode. In this launch mode, you write the code 
of your node function from the perspective of a single thread. The Work 
Graphs runtime will, of course, attempt to batch multiple threads of the same 
function together in a thread group to increase SIMD efficiency. 

Lastly, we can optionally assign a unique node id to our node with the 
[NodeId(...)] attribute. A node id is a pair consisting of an identifier string 
and an optional index. We uncover what the index is used for, when we 
discuss Material Shading in the Advanced Work Graphs section.

If we omit the [NodeId(...)] attribute, the D3D12 runtime will automatically 
assign a node id based on the node function name. In our example, this auto-
generated node id would be [NodeId("EntryFunction", 0)], as we named 
our function EntryFunction.
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Work Graph Compilation Model

HelloWorkGraphs.hlsl dxc.exe

dxc.exe -T vs_6_0 -E VSMain ...

DXIL Shader

Work Graph

With our shader code complete, we can focus on compiling it for use in a work 
graph.

When we compile regular shaders, i.e., none Work Graph shaders like 
compute-, vertex- or pixel-shaders, we compile HLSL files to a single DXIL 
shader by specifying the shader type (e.g., vs_... for vertex shaders or 
ps_... for pixel shaders) and a shader entry point (i.e., the name of e.g., our 
vertex shader function).

131© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



132 |

Work Graph Compilation Model

HelloWorkGraphs.hlsl dxc.exe

dxc.exe -T lib_6_8 ...

DXIL Library

To compile our source file for use with Work Graphs, we need to compile it as 
a DXIL library, by setting the target to lib_....

DXIL libraries can contain multiple nodes, thus we do not need to specify an 
entry point. Instead, all functions that we annotated with the 
[Shader("node")] attribute are included in the compiled library.
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Work Graph Compilation Model

DXIL Library

DXIL Library

DXIL Library

DXIL Library

We can then assemble one or more of these DXIL libraries into a work graph.
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Work Graph Compilation Model

Execution

Node

Node

Node

Node

Node

Node

The D3D12 runtime takes the nodes in the DXIL libraries and validates 
connections between them.

The graph compilation fails if missing nodes (i.e., producers without a 
matching consumer node) or topological errors (e.g., cycles) are detected.
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Work Graph Compilation Model

Execution

NodeEntry

However, in our example from before, we only have a single node, named 
“Entry”.
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Work Graph Concepts – Nodes

This node is part of the first tutorial in our Work Graph Playground App.

The “Entry” node prints a “Hello Work Graphs!” message along with 
instructions for accessing the tutorial.

In the Work Graphs Playground App, you do not have to worry about 
compilation, as this is fully taken care of by the app. All you need to do to 
follow along with the tutorial is to run the WorkGraphsPlayground.exe and 
open tutorials/tutorial-0/HelloWorkGraphs.hlsl in an editor of your 
choice. 
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Work Graph Concepts – Nodes

Execution

WorkerEntry

With just a single node, however, we cannot show the true capabilities of work 
graphs, thus we want to create a second node. Here, we opt to call this node 
“Worker”.
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Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

[Shader("node")] 
[NodeLaunch("thread")]
[NodeId("Worker", 0)]
void WorkerFunction() {
    ...
}

To specify the “Worker” node, we write another HLSL function called 
WorkerFunction. We again add the same [Shader("node")] and 
[NodeLaunch("thread")] attributes.

To name our node “Worker”, we add a matching [NodeId("Worker", 0)] 
attribute.

You will find this code already in the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl on line 114.
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Work Graph Concepts – Nodes

Nothing exciting is happening so far. If you look at the code in the 
WorkerFunction, you would expect a 

Hello <your name> from the "Worker" node!

to show up somewhere on screen, but it isn’t.

So why is our WorkerFunction not yet working?
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Work Graph Concepts – Nodes

Execution

WorkerEntry

So far, we have only declared both the “Entry” and “Worker” function, but 
crucially, we have not set up the connection between them.
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Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(

) {
}

EmptyNodeOutput WorkernodeOutput
[NodeId("Worker")]
[MaxRecords(1)]

...

To fix this, we need to go back to our EntryFunction and declare a node 
output. Node outputs are part of the function signature and form the edges 
between the nodes in our graph.

Here, we declare a parameter nodeOutput of type EmtpyNodeOutput. The 
type of node output will determine the type of record that we want to send 
between the nodes, but more on those later. For now, we opt for an empty 
record, hence the EmptyNodeOutput type.

To target our previously created “Worker” node, we can use the 
[NodeId(...)] attribute to specify which node we want to send record(s) to. 
This attribute is again optional, and if none is present, the node id will be 
inferred by the name of the node output parameter. Thus, if we want to omit 
the [NodeId(...)] attribute here, we have to write EmptyNodeOutput 
Worker, to target our “Worker” node.

Lastly, we need to declare the maximum number of records that we want to 
send with the [MaxRecords(...)] attribute. In our example, we only send a 
single record.

You will again find this code in the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl on line 64.
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Work Graph Concepts – Nodes

If we check back with the Work Graph Playground App, we still do not see the 
message from the “Worker” node.
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Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(
    [MaxRecords(1)]
    [NodeId("Worker")]
    EmptyNodeOutput nodeOutput
) {
    ...

    //
}

nodeOutput.ThreadIncrementOutputCount(1);

The reason for this is simple: while we have declared an output from “Entry” to 
“Worker” and thus formed a connection between these two nodes, we have 
not actually sent any records yet.

In the tutorial file tutorials/tutorial-0/HelloWorkGraphs.hlsl on line 
106, you’ll find the commented-out code above.
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Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(
    [MaxRecords(1)]
    [NodeId("Worker")]
    EmptyNodeOutput nodeOutput
) {
    ...

}
nodeOutput.ThreadIncrementOutputCount(1);

Uncomment this line!

You can see that we’re now using the nodeOutput parameter that we declared 
before and incrementing the output count by one, thus sending a single record 
to the “Worker” node.
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Work Graph Concepts – Nodes

Save your file in the editor and look at the console output of the Work Graphs 
Playground App. It automatically detects when you change a file and tries to 
recompile it.

There you will also see error messages. If you run into compile errors, the last 
successfully compiled work graph continues to execute.
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Work Graph Concepts – Nodes

Then you should see, that the code of the “Worker” node is executed and the 
message is printed on screen.
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Work Graph Concepts – Nodes

Your next task is to customize the welcome message with your name. 

Warning: Do not copy your answer from your neighbor. We’ll find out!
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Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void WorkerFunction()
{
    ...
    PrintCentered(cursor, "Hello <your name>
}

SIGGRAPH 2025...!");

Head back to the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl and change the message on line 129.

We instructors send out our greetings to everyone at SIGGRAPH 2025.

Save your file in your code editor…
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Work Graph Concepts – Nodes

… look at the console and … wait for it … until the work graph has compiled…
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Work Graph Concepts – Nodes

… and congratulations, you just finished your first work graph tutorial .
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Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(
    [MaxRecords(1)]
    [NodeId("Worker")]
    EmptyNodeOutput nodeOutput
) {
    ...

    nodeOutput.ThreadIncrementOutputCount(1);
}

2

2

Next, let’s see what happens when we send two records to the “Worker” node.

First, we increment the [MaxRecords(...)] attribute from 1 to 2. This 
means, we may now output up to two records. Second, we change the code of 
the EntryFunction itself to increment the output count by two instead of one.
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Work Graph Concepts – Nodes

If we save the file again and go back to the Work Graph Playground App, we 
see no effect. However, in fact, the “Hello SIGGRAPH 2025 from the “Worker” 
node!” is written twice.
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Work Graph Concepts – Nodes

Execution

WorkerEntry

?

The reason why we do not see the message twice is simple: we are sending 
empty records. Thus, while the “Worker” node is executed twice, it is printing 
the same message at the same location every time.

So next, we are going to see how we can add data to our records, to change 
the behavior of a consumer node based on data in the record.
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Work Graph Concepts

Records 

After having learnt about nodes, we learn about records as a way to send data 
between nodes, next.
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Work Graph Concepts – Records

As you have already successfully completed the first tutorial, it is now time to 
move on to the next one.

Select “Tutorial 1: Records” from the menu on the top-left of the Work Graph 
Playground App and open tutorials/tutorial-1/Records.hlsl in your 
code editor.
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Work Graph Concepts – Records

Your Work Graph Playground App should now look like this.
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Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

In this tutorial, we have six tasks in which we are going to learn how to use 
records. We complete the first five tasks one at a time and explain the 
concepts of records along the way.
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Work Graph Concepts – Records

Execution

WorkerEntry

Record

Node Output

So far, we have seen how we can declare nodes, how we can add edges 
between nodes by declaring node outputs, and we have seen how we can 
send empty records from one node to another.

Up until now, we have only used empty records, meaning we only 
communicated to the Work Graphs runtime, that we want to launch a particular 
node, but we have not sent any data.
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Work Graph Concepts – Records

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(

) {
}

EmptyNodeOutput nodeOutput
[NodeId("Worker")]
[MaxRecords(1)]

...

[Shader("node")] 
[NodeLaunch("thread")]
[NodeId("Worker", 0)]
void WorkerFunction() {
    ...
}

Let us summarize the concept of Work Graphs nodes detailed in the previous 
tutorial-0. 

There, we had a producer node, implemented by the EntryFunction that can 
produce at most a single EmptyNodeOutput for the Node Worker.

At the consuming node, Worker, the WorkerFunction executes code once a 
nodeOutput is sent off. Both nodes are connected over the 
[NodeId("Worker")] attribute of nodeOutput.
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Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
[NumThreads(4, 1, 1)]
void Entry(

    [MaxRecords(1)]
    EmptyNodeOutput PrintHelloWorld
) {
}

[NodeId("PrintHelloWorld")]

Now, in this tutorial-1, we also start out by sending an EmptyNodeOutput 
PrintHelloWorld to another consuming node "PrintHelloWorld".
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Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
[NumThreads(4, 1, 1)]
void Entry(
    [MaxRecords(1)]
    EmptyNodeOutput PrintHelloWorld
) {
    // [Task 1]: Emit a single empty record 
    //           to the "PrintHelloWorld" node.

}

One difference with this tutorial is that the Entry node no longer uses the 
"thread" launch mode, but it uses the "broadcasting" launch mode, 
instead. We will cover the specifics of launch modes shortly. For now, the main 
difference of the broadcasting launch mode over the thread launch mode is 
that we are programming a thread group instead of a single thread. In our 
example, our thread group consists of four threads indicated by the 
[NumThreads(4, 1, 1)] attribute. This is very much like you would program 
a compute shader.

When we are using thread-group launch modes (i.e., not "thread") for our 
nodes, the [MaxRecords(...)] attribute declares the maximum number of 
records the entire thread group can send to a particular consumer node. In this 
case, this means that all four threads together can send one single empty 
record to the "PrintHelloWorld" node.

161© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



162 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
[NumThreads(4, 1, 1)]
void Entry(
    [MaxRecords(1)]
    EmptyNodeOutput PrintHelloWorld
) {
    // [Task 1]: Emit a single empty record 
    //           to the "PrintHelloWorld" node.
    PrintHelloWorld.ThreadIncrementOutputCount(1);
}

Thread

Our first task in this tutorial is to send a single record to the 
"PrintHelloWorld“ node. However, if we were to use

PrintHelloWorld.ThreadIncrementOutputCount(1); 

as we did in the previous tutorial, every one of our four threads would 
increment the output count by one, thus sending one empty record per thread.
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Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
[NumThreads(4, 1, 1)]
void Entry(
    [MaxRecords(1)]
    EmptyNodeOutput PrintHelloWorld
) {
    // [Task 1]: Emit a single empty record 
    //           to the "PrintHelloWorld" node.
    PrintHelloWorld.GroupIncrementOutputCount(1);
}

To solve this problem, we would either have to change the code to only have a 
single thread increment the output count, or we can use

PrintHelloWorld.GroupIncrementOutputCount(1);

instead. As the name implies, this will increment the output count, i.e., send an 
empty record once per thread group instead of once per thread.
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Work Graph Concepts – Records

Thread Group

ThreadIncrementOutputCount

To summarize the difference, consider a thread group: Each wiggly line 
represents a thread of the thread group. If we call 
ThreadIncrementOutputCount, every single thread emits a single record, 
indicated by the package at the bottom of each wiggly line.
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GroupIncrementOutputCount

Work Graph Concepts – Records

Thread Group

If you call GroupIncrementOutputCount, instead, the entire group outputs a 
single record. 
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Work Graph Concepts – Records

Once you complete Task 1, i.e., by adding the statement  

 PrintHelloWorld.GroupIncrementOutputCount(1);

at the appropriate location, you should see a Hello World message (without 
the red box) on your screen.

Hint: This will become important again for Task 6 of this tutorial.
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Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

This concludes our first task.
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Work Graph Concepts – Records

Execution

WorkerEntry

?

Before we go on to the next task, we must finally tell you, how to add data to 
the record. So far, all the records that we have sent were empty. 
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Work Graph Concepts – Records

Execution

WorkerEntry

struct PrintBoxRecord {
    ...
};

Next, we will add some data to it to parameterize a node launch.
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Work Graph Concepts – Records

tutorial-1/Records.hlsl

struct PrintBoxRecord {
    // Top-left pixel coordinate for a box.
  int2 topLeft;
  // Index to print inside the box.
  int2 index;
};

In Work Graphs, we use structs to specify the data layout of the record’s 
payload. Here you seen an example of such a struct. 
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Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
void Entry(
    [MaxRecords(4)]
    [NodeId("PrintBox")]
    NodeOutput<PrintBoxRecord> boxOutput    
) {
}

Max. 256 Records

To enable Entry node to emit such a record, we must specify three things:

1. We must specify, that the Entry node emits records, whose data structure 
is defined by struct PrintBoxRecord. We do this by adding 
NodeOutput<PrintBoxRecord> boxOutput to the node’s function 
parameter list. This is similar to the EmptyNodeOutput we were using 
before, but with NodeOutput<...>, we can specify the type of data or 
payload that we want to send with each record.

2. We must specify which node consumes those records. We do this by 
adding the attribute [NodeId("PrintBox")] to the parameter 
boxOutput. Here, the node PrintBox receives those records.

3. Finally, we must provide an upper bound for the number of records the 
producer may output. This is done by yet another attribute attached to 
boxOutput, i.e. [MaxRecords(4)].

You can send up to 256 records per thread group across all of its NodeOutput 
parameters.
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tutorial-1/Records.hlsl

[Shader("node")]
...
void Entry(
    NodeOutput<PrintBoxRecord> boxOutput,
    NodeOutput<...> ...,
    NodeOutput<...> ...,
    NodeOutput<...> ...
) {
}

Max. 32 kiB Output Size

Max. 1024 Outputs

If you have multiple NodeOutputs, make sure that the total number of all 
NodeOutputs of a given node does not exceed 1024 NodeOutputs per thread 
group.

Further, the total amount of memory that all of these NodeOutputs combined 
may produce must not exceed 32 kiB.

172© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



173 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
void Entry(
    [MaxRecords(4)]
    [NodeId("PrintBox")]
    NodeOutput<PrintBoxRecord> boxOutput    
) {
}

What we see here is that this node is capable of sending four output records. 
However, we have not yet seen, how this node does send records.
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[Shader("node")]
...
void Entry(
    ...
    NodeOutput<PrintBoxRecord> boxOutput
) {
    ...
    ThreadNodeOutputRecords<PrintBoxRecord> boxOutputRecord =
    boxOutput.GetThreadNodeOutputRecords(hasBoxOutput ? 1 : 0);

  if (hasBoxOutput) {
    boxOutputRecord.Get(0).topLeft = threadBoxPosition;
    boxOutputRecord[0].index    = dispatchThreadId;
  }

  boxOutputRecord.OutputComplete();
}

threadBoxPosition
dispatchThreadId

Here is how we actually send out records from our node. 

First, we obtain ThreadNodeOutputRecords from the NodeOutput by calling 
GetThreadNodeOutputRecords. The parameter of that function specifies the 
number of output records per thread we want to write and send. Here, we want 
to output either 0 or 1 record per thread. The decision whether a given thread 
wants to output a record is stored in a per-thread boolean hasBoxOutput.

Calling ThreadNodeOutputRecords must be thread-group uniform. That 
means, ThreadNodeOutputRecords must be called by all threads in lock-step 
at the same time by all threads of the thread-group. Otherwise, you can run 
into undefined behavior, which may result in crashes. With the tertiary operator 
(i.e., hasBoxOutput ? 1 : 0) inside the parameter list of 
GetThreadNodeOutputRecords, we can assure that all threads call this 
function, even if some threads (i.e., those with hasBoxOutput = false) do 
not with to output a record. 

If a given thread needs to send an output, we must fill the record. To get 
access to the individual PrintBoxRecord, you can either use the Get function 
or the []-operator on the ThreadNodeOutputRecords. The provided 
parameter is the index to the record. Here, we only have one output per thread 
and its index is 0. 

With the access to the record, you  can read/write the member variables of the 
particular record struct. 

Once all records are filled, you can send it off, by calling OutputComplete() 
on the ThreadNodeOutputRecords variable, again in a thread-uniform 
fashion.
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Execution

PrintBoxRecord { 
  .topLeft = int2(...);
  .index   = int2(...);

};

Entry

[Shader("node")] 
[NodeLaunch("thread")]
void PrintBox() { ... }

PrintBox

Let’s summarize what has happened so far. We obtained, filled, and send the 
record to the PrintBox node…

… but the PrintBox node has no idea that it is supposed to received a record 
…

… and therefore, our Work Graph Playground App crashes.
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> WorkGraphPlayground.exe
Compiling work graph for tutorial "Tutorial 1: Records"...

Failed to re-create work graph:
Operation Failed: system (-2147024809) (80070057): The parameter is incorrect.

Terminal

Here is what you will probably see as an output. We only see the

The parameter is incorrect.

error message. This is hinting to us that something about our work graph is not 
correct.
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> WorkGraphPlayground.exe
Compiling work graph for tutorial "Tutorial 1: Records"...
[D3D12] ID3D12Device::CreateStateObject: Autopopulated node "Entry" targets output 
node PrintBox with an output record size of 16 bytes, but the target node expects an 
input record of size 0 bytes.  These must match.
Failed to re-create work graph:
Operation Failed: system (-2147024809) (80070057): The parameter is incorrect.

Terminal

--enableDebugLayer

output record size of 16 bytes
input record of size 0 bytes

To better understand the crash, we encourage you to execute 
WorkGraphPlaygroundApp.exe with the command line parameter shown 
here*. 

Then, you will get meaningful error messages. Here, for example, you see the 
problem: The producer and consumer node did not agree on the record size. 
The work graph validation will fail and reports an error. 

*Please note that the D3D12 debug layer requires Graphics diagnostic tools to 
be installed. You can find more information here: 
https://learn.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-
runtime-and-visual-studio-graphics-diagnostic-features 
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struct PrintBoxRecord { ... };

[Shader("node")] 
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
    ...
}

To fix this problem, we must specify that the consumer node PrintBox 
accepts an input record. This is by adding 

ThreadNodeInputRecord<PrintBoxRecord> inputRecord 

to the parameter list of the corresponding node function PrintBox. 
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tutorial-1/Records.hlsl

struct PrintBoxRecord { ... };

[Shader("node")] 
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
    ...
}

The template argument is the struct that defines the record’s data layout, 
PrintBoxRecord.
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tutorial-1/Records.hlsl

[Shader("node")] 
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
    const PrintBoxRecord record = inputRecord.Get();
    
    Cursor cursor = Cursor(record.topLeft + ...);
}

To get read access to the payload, we call the .Get() method on the 
inputRecord…
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tutorial-1/Records.hlsl

[Shader("node")] 
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
    const PrintBoxRecord record = inputRecord.Get();
    
    Cursor cursor = Cursor(record.topLeft + ...);
}

… and obtain a const, i.e., read-only, instance to the struct, which we store 
to a local variable record for easier access.
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tutorial-1/Records.hlsl

[Shader("node")] 
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
    const PrintBoxRecord record = inputRecord.Get();
    
    Cursor cursor = Cursor(record.topLeft + ...);
}

We can now access the struct’s members and use it for further processing.
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Execution

struct PrintBoxRecord { 
  int2 topLeft;

    int2 index;
};

struct PrintBoxRecord { 
  int2 topLeft;

    int2 index;
};

Entry PrintBox

With the producer and consumer now using the same record definition, we 
have successfully connected the two nodes. The validation errors are now 
gone.
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Execution

struct PrintBoxRecord { 
  int2 topLeft;

    int2 index;
};

struct PrintBoxRecord { 
    int2   index;
  float2 topLeft;

};

Entry PrintBox

But beware: the Work Graphs validation only ensures that the size of the 
output- and input-record match. This example would still be accepted by the 
validation, even producer and consumer have different definitions of the 
record’s layout. This can cause you hard-to-find errors. 
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1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

Now, you are ready to do Task-2, declare a draw rectangle record.
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tutorial-1/Records.hlsl

Common.h

// Draws the outline of a rectangle spanning from "topLeft" to "bottomRight" in window coordinates with a "thickness" in
// pixels. Thickness extends symmetrically to inside and outside of outline. Use "color" to specify the RGB values of
// the rendered rectangle outline pixels.

void DrawRect(in const float2 topLeft,
       in const float2 bottomRight,
       in const float thickness = 1,
       in const float3 color   = float3(0, 0, 0));

// [Task 2]: Define a struct for the "DrawRectangle" node

Task 2: Create the record struct to draw a rectangle around all boxes. Take a 
look at the prepared stub for the "DrawRectangle" node to see what data 
needs to be passed to the record.

Hint: you see that DrawRect should be called. The function is defined in 
tutorials/Common.h (line 570) and has the following signature

void DrawRect(in const float2 topLeft,

       in const float2 bottomRight,

       in const float thickness = 1,

       in const float3 color   = float3(0, 0, 0))

From this you can infer what your record struct should look like.
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Work Graph Concepts – Records

// [Task 2]: Define a struct for the "DrawRectangle" node

struct DrawRectangleRecord {
  // Pixel coordinate of top-left corner of rectangle.
  int2  topLeft;
  // Pixel coordinate of bottom-right corner of rectangle.
  int2  bottomRight;
  // Color of the rectangle.
  float3 color;
};

Here is our suggested solution.
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1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

We got Task-2 done.
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Common.h

// Draws the outline of a rectangle spanning from "topLeft" to "bottomRight" in window coordinates with a "thickness" in
// pixels. Thickness extends symmetrically to inside and outside of outline. Use "color" to specify the RGB values of
// the rendered rectangle outline pixels.

void DrawRect(in const float2 topLeft,
       in const float2 bottomRight,
       in const float thickness = 1,
       in const float3 color   = float3(0, 0, 0));

[Shader("node")]
...
void DrawRectangle(
    // [Task 3]: Declare a node input with your new.
) {
    // [Task 3]: Use the DrawRect function to draw a rectangle.
}

Next, we draw the rectangle. 

Task 3: Add your record struct as an input to the DrawRectangle node and 
complete the code in the node to draw a rectangle on screen.
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Work Graph Concepts – Records

[Shader("node")]
...
void DrawRectangle(
  // [Task 3 Solution]:
  ThreadNodeInputRecord<DrawRectangleRecord> inputRecord
) {
  // [Task 3 Solution]:
  const DrawRectangleRecord record = inputRecord.Get();
  DrawRect(
        record.topLeft, record.bottomRight, 1, record.color);
}

Here is our suggested solution.
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1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

Next, we have to declare an output record.
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Work Graph Concepts – Records

[Shader("node")]
...
void Entry(
    // [Task 4]: Declare a new "NodeOutput" 
    //           to the "DrawRectangle" node.

) {
...
}

Task 4: Add a node output to the Entry node for DrawRectangle node with 
your newly created record struct. For now, we only care about the boxes 
around the already existing text, thus each thread will emit a single record. Set 
the [MaxRecords(...)] attribute for your accordingly.
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Work Graph Concepts – Records

[Shader("node")]
...
void Entry(
    // [Task 4 Solution]:
    [MaxRecords(4)]
  [NodeId("DrawRectangle")]
  NodeOutput<DrawRectangleRecord> rectangleOutput

) {
...
}

Here is our suggest solution.
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1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

We declared our output, next we have to fill and emit it.
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Work Graph Concepts – Records

[Shader("node")]
...
void Entry(...) {
    // [Task 5]: Emit a record to draw a rectangle.
}

Task 5: Emit the record to the DrawRectangle node from the Entry node.
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Work Graph Concepts – Records

[Shader("node")]
...
void Entry(...) {
  // [Task 5 Solution]:
  ThreadNodeOutputRecords<DrawRectangleRecord> threadRectangleRecord =
    rectangleOutput.GetThreadNodeOutputRecords(hasBoxOutput ? 1 : 0);

  if (hasBoxOutput) {
   threadRectangleRecord.Get().topLeft   = threadBoxPosition;
   threadRectangleRecord.Get().bottomRight = threadBoxPosition + BoxSize;
   threadRectangleRecord.Get().color    = float3(0, 0, 0);
  }

  threadRectangleRecord.OutputComplete();
}

And here is our suggest solution.
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1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

As a homework, look at the last task.
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Work Graph Concepts – Records 

Thread Group

GetThreadNodeOutputRecords

To better give an idea of what awaits you in Task-6, let’s look at another way to 
send out records. Up until now, we have used ThreadNodeOutputRecords, 
i.e., each thread of our thread-group outputs a record.

<Next Animation Slide>

In your homework Task-6, we want that the entire thread-group to output a 
record. This can be done using GroupNodeOutputRecords.

This behavior is similar to ThreadIncrementOutputCount and 
GroupIncrementOutputCount, but for a non-empty record.
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Task 6: Additionally, we now want to draw another rectangle around all of these 
boxes. Update the [MaxRecords(...)] attribute of your node output and 
follow the instructions below to emit a per-thread-group record.

After completing the task, you should see a box around all boxes you have 
drawn so far. So good luck and have fun!
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Launches 

In the last section of the Work Graph Concepts block, we will cover 
“Launches”. We slightly touched on launches in the Nodes and Records 
section, but here we give you the full details. 
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1. Change FillRectangle to dynamic dispatch grid

2. Implement pass-through coalescing node

3. Merge adjacent rectangles

4. Non-deterministic coalescers

Launches 

In this tutorial, we have four tasks in which we are going to learn how these 
different node launch modes work. In the following, we’ll highlight each of 
these tasks and explain the concept of launches and launch modes.
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"thread" "coalescing"

ThreadgroupThreadgroupThread Groups Unspecified! Thread Group

Launches 

"broadcasting"

We’ve seen before that we can specify the “work” in our work graph with 
records. The launch mode then specifies how each node function is 
processing the incoming records. In Work Graphs, we have access to three 
different launch modes: "broadcasting", "thread", and "coalescing". 
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tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
  ...
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

"broadcasting"

Let’s start with the "broadcasting" launch mode, since it is the easiest to 
grasp if you have every worked with compute shaders before. If we use the 
"broadcasting" launch mode, one record is processed by a grid of thread 
groups.
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tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
  ...
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

Launching a node in "broadcasting" launch mode is very similar to 
dispatching a compute shader kernel. Thus, the input record is declared with 
type DispatchNodeInputRecord. This way, thread groups launches for the 
same records all receive a read-only view to the input record.
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tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
  ...
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

As with any regular compute shader, we define the three-dimensional grid of 
threads in each thread group with the [NumThreads(...)] attribute. In our 
example, we’re using 8 × 8 × 1 = 64 threads.
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tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
  ...
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

commandList->Dispatch(6, 6, 1)

Similarly, the three-dimensional grid of thread groups to launch is defined with 
the [NodeDispatchGrid(...)] attribute. 

Here, we a launch a grid of 6 × 6 × 1 = 36 groups. This is similar to launching 
compute shader from the CPU with the Dispatch command.

However, statically setting the dispatch grid through 
[NodeDispatchGrid(...)] means that every incoming record launches the 
same number of thread groups. In many scenarios (e.g. image filters) we 
require a dynamic number of thread groups that fits the current problem size.
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We can see an example of this in the Node Launches tutorial.
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On screen, we see five colored blocks. These blocks are drawn by the 
FillRectangle node. The FillRectangle node uses the "broadcasting" 
launch mode and a fixed dispatch grid of [NodeDispatchGrid(6, 6, 1)].

However, in the node function of the Entry node, we can see that each of 
these rectangles should have a different size, as computed by the 
GetRectanglePositionAndSize helper function.

To then draw each rectangle with the correct size, we must dynamically set the 
dispatch grid for each rectangle (i.e., each record). Follow the instructions for 
[Task 1] in tutorials/tutorial-2/NodeLaunches.hlsl.

1. Start by adding variables for the dispatch grid and rectangle size in the 
"RectangleRecord" struct.

2. Next, change the [NodeDispatchGrid(...)] attribute of the 
"FillRectangle“ node to a [NodeMaxDispatchGrid(...)] and update 
the dispatch size limit in the x dimension.

3. Lastly, set the dispatch grid and rectangle size for the rectangle records in 
the "Entry" node.

In the following, we’ll discuss the sample solution.
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tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
  uint2 dispatchGrid : SV_DispatchGrid;
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

To dynamically set the dispatch grid for each record, we add a variable to the 
record struct and annotate it with the SV_DispatchGrid semantic. This 
semantic tells the work graph system, that this variable should be used as the 
dispatch grid for the broadcasting node. The type of this variable can be uint, 
uint2, uint3 or a 16-bit variant of the aforementioned types.

With this, we have completed the first step of Task 1.
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tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
  uint2 dispatchGrid : SV_DispatchGrid;
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

[NodeMaxDispatchGrid(16, 6, 1)]

Next, we need to change the [NodeDispatchGrid(...)] attribute of the 
FillRectangle node to [NodeMaxDispatchGrid(...)]. Instead of setting a 
fixed dispatch grid for all incoming records, we now define an upper limit for 
the dispatch grid set by each individual record.

Beside replacing NodeDispatchGrid with NodeMaxDispatchGrid, we have to 
determine an upper limit for the grid size. As each thread in the 
FillRectangle node draws a single pixel, we compute the upper limit as 
follows: 

- 6 thread groups for base-size rectangle (48x48)

- 10 thread groups (10x8 = 80 pixels) to cover the size of the 20th thread 
group (48 + 19 * 4)

Gives us a total of 16 thread groups max.

Finally, we need to set the newly added dispatchGrid variable in each of the 
records that we send to FillRectangle. We omitted this step here for 

simplicity, but you can refer to the sample solution or the previous tutorial on 
records for more information on writing data to records.
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Once you're done with Task 1, the rectangles should now cover a continuous 
horizontal rectangle.
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Work Graph Concepts – 

1. Change FillRectangle to dynamic dispatch grid

2. Implement pass-through coalescing node

3. Merge adjacent rectangles

4. Non-deterministic coalescers

"broadcasting" Launches 

This completes our look at Task 1 and the "broadcasting" launch mode. 
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"broadcasting" "thread" "coalescing"

ThreadgroupThreadgroupThread Groups Unspecified! Thread Group

Launches 

Next, we look at the "thread" launch mode.
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tutorial-2/NodeLaunches.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("PrintLabel")]
void PrintLabelNode(
  ThreadNodeInputRecord<PrintLabelRecord> ir
) { ... } Unspecified!

We use the PrintLabelNode to explain the "thread" launch mode. We’ve 
also seen similar used of the "thread" launch mode in the previous tutorials.
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tutorial-2/NodeLaunches.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("PrintLabel")]
void PrintLabelNode(
  ThreadNodeInputRecord<PrintLabelRecord> ir
) { ... } Unspecified!

Again, we use the [NodeLaunch(...)] attribute to provide the launch mode.
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tutorial-2/NodeLaunches.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("PrintLabel")]
void PrintLabelNode(
  ThreadNodeInputRecord<PrintLabelRecord> ir
) { ... } Unspecified!

As we are now dealing with a single thread that accesses the incoming record, 
we use the type TheadNodeInputRecord to declare the input.
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Work Graph Concepts –  "thread" Launches 

Thread Group

Thread Group Shared Memory

Unspecified!

Even though an execution of "thread"-launch nodes is not defined by the 
specification, the underlying work-graphs system still uses thread groups to 
execute these nodes.
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Work Graph Concepts –  "thread" Launches 

Thread Group

Thread Group Shared Memory

Unspecified!

However, access to the group shared memory is not allowed, and…
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Work Graph Concepts –  "thread" Launches 

Thread Group

Thread Group Shared Memory

Unspecified!

…as we only programmed a single thread, operations, such as wave intrinsics 
are also not allowed.

However, executing "thread"-launch nodes with one thread group per record 
is very wasteful of GPU resources.
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Work Graph Concepts –  "thread" Launches 

Thread Group

Thread Group Shared Memory

Unspecified!

Thus, the Work Graphs scheduler tries to combine multiple 
ThreadNodeInputRecords of the same node into thread groups, thereby 
increasing the efficiency of "thread"-launch nodes.

This is fully transparent to the programmer: we program as if there is just one 
single thread. With the exception that some work graph limits – like the 
maximum number of output records – are split up among the invisible group.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 220



221 |

Work Graph Concepts – 

"broadcasting" "thread"

ThreadgroupThreadgroupThread Groups Unspecified!

Launches 

A single thread

Lots of threads in 

thread groups

We looked at the two extremes: 

- "broadcasting" node launch mode. They resemble compute shaders. 
There, we program an entire thread group.

- "thread" launch mode that is how we program vertex or pixel shaders. You 
as a programmer write your code from the perspective of a single thread.

In summary, the "thread" launch mode tries to cluster together records to the 
same node, but communication between the threads is forbidden. They cannot 
use shared memory.

What if we take this idea further and allow for communication?
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Work Graph Concepts – 

"broadcasting" "thread"

ThreadgroupThreadgroupThread Groups Unspecified!

Launches 

"coalescing"

Thread Group

This is where our last launch mode comes in: The "coalescing" launch 
mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 222



223 |

Work Graph Concepts – Launches 

CoalescingExample.hlsl

[Shader("node")] 
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
  [MaxRecords(4)]
  GroupNodeInputRecords<Job> input
){    
  ...
}

"coalescing"

Thread Group

The easiest way to think of the "coalescing" launch mode is as a "thread" 
launch mode with more flexibility and control: We can specify how many 
records to the same node should be grouped together at maximum, and how 
many threads the group that is processing this collection should have.
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Work Graph Concepts – Launches 

CoalescingExample.hlsl

[Shader("node")] 
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
  [MaxRecords(4)]
  GroupNodeInputRecords<Job> input
){    
  ...
}

"coalescing"

Thread Group

So here you see how you define a node in "coalescing" launch mode. We 
start – as before – by setting the [NodeLaunch(...)] attribute to 
"coalescing".
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Work Graph Concepts – Launches 

CoalescingExample.hlsl

[Shader("node")] 
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
  [MaxRecords(4)]
  GroupNodeInputRecords<Job> input
){    
  ...
}

"coalescing"

Thread Group

As we now have multiple records that are shared across a single thread group, 
we use GroupNodeInputRecords to declare the node input (Note the plural 
“s” at the end).

Additionally, we set an upper limit for how many records we want to consume 
with each thread group of our node. Please note, that this is only an upper 
limit.
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Work Graph Concepts – Launches 

CoalescingExample.hlsl

[Shader("node")] 
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
  [MaxRecords(4)]
  GroupNodeInputRecords<Job> input
){    
  uint recordCount = input.Count();
  ...
}

"coalescing"

Thread Group

The actual number of available input records can be queried with the Count() 
function in the node input object.
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Work Graph Concepts – 

CoalescingExample.hlsl

[Shader("node")] 
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
  [MaxRecords(4)]
  GroupNodeInputRecords<Job> input
){    
  uint recordCount = input.Count();
  ...
}

Launches "coalescing"

Thread Group

Thread Group

As we are programming a thread group, we have full control over how many 
threads we want per thread group and how these thread should be organized 
as a three-dimensional grid.

Here we have 4 × 4 = 16 threads. We then also have full control over how 
incoming records are mapped to these threads.
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Work Graph Concepts – 

CoalescingExample.hlsl

[Shader("node")] 
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
  [MaxRecords(4)]
  GroupNodeInputRecords<Job> input
){    
  uint recordCount = input.Count();
  ...
}

Thread Group

Launches "coalescing"

Thread Group

As we have at most four incoming records, we can assign a row of four 
threads to each of these records. Each of these threads can then process 
parts of the incoming record. For example, if incoming data are colors with four 
components (red, green, blue and alpha), each thread can process one color 
component.
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Work Graph Concepts – 

CoalescingExample.hlsl

[Shader("node")] 
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
  [MaxRecords(4)]
  GroupNodeInputRecords<Job> input
){    
  uint recordCount = input.Count();
  ...
}

Thread Group

Launches "coalescing"

Thread Group

So far, we’ve seen how we process multiple records separately in parallel  with 
"coalescing"-nodes. Additionally, as all threads of our thread group have 
access to all incoming records, we can also perform operations such as 
reductions across all incoming records.
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Work Graph Concepts – 

Thread Group

tutorial-2/NodeLaunches.hlsl

[NodeLaunch("coalescing")]
[NumThreads(1, 1, 1)]
[NodeId("MergeRectangle")]
void MergeRectangleNode(
 [MaxRecords(2)]
 GroupNodeInputRecords<RectangleRecord> 
    inputRecords,

 [MaxRecords(2)]
 [NodeId("FillRectangle")]
 NodeOutput<RectangleRecord> output) {
  ...
}

Launches "coalescing"

Implementing such a reduction is part of Task 2 and Task 3 in the Node 
Launches tutorial.

Start by opening tutorials/tutorial-2/NodeLaunches.hlsl and follow 
the instructions for [Task 2].

As a first step, implement a MergeRectangle node as shown above. This 
node will take in up to two rectangles and pass them through to the 
FillRectangle node. Later, we will implement the reduction by merging 
rectangles into a single one if they share an edge.
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Work Graph Concepts – Launches "coalescing"

Once you are done with Task 2, the Work Graph Playground App should still 
look the same.

Continue with instructions for [Task 3] to implement the reduction.

Complete the sub-call to the ComputeCombinedRect helper method. If this 
helper returns "true", then you must emit a single record to the 
"FillRectangle" node.

Position and size of this rectangle are given by the "ComputeCombinedRect" 
helper. For the color of this rectangle, you can re-use the color from any of the 
input records (e.g., record[0]).
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Work Graph Concepts – Launches "coalescing"

Once you're done, you should now see the same area being filled, but this 
time with just three instead of five rectangles. As five is not divisible by two, 
there's also one rectangle which could not be merged and is passed through 
as-is from the MergeRectangle node to the FillRectangle node.
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Work Graph Concepts – 

1. Change FillRectangle to dynamic dispatch grid

2. Implement pass-through coalescing node

3. Merge adjacent rectangles

4. Non-deterministic coalescers

"broadcasting" Launches 

With Task 2 and Task 3 completed, we can continue to Task 4 and the non-
deterministic nature of "coalescing"-nodes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 233



234 |

Work Graph Concepts – Launches "coalescing"

Increase the dispatch grid of the Entry node in x dimension to emit more 
rectangles.

You should now see the merged rectangles flickering…
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Work Graph Concepts – Launches "coalescing"

…between different ways of merging the rectangles. As the input to the 
coalescer node is non-deterministic and depends on the timing of the different 
thread groups of the "Entry" node. Thus, every frame different rectangles are 
merged.

This step is omitted from the sample solution.
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Work Graph Concepts – Launches "coalescing"

Thread GroupThread Group

Additionally, the order in which the incoming records are passed to the node 
function is also not deterministic, …
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Work Graph Concepts – Launches "coalescing"

Thread GroupThread Group

…can change with every execution of the work graph.
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Work Graph Concepts – 

Thread Group

Launches "coalescing"

Thread Group

There is also no guarantee that a group always receives the specified number 
of records. However, all records sent to a "coalescing"-node will eventually 
be processed by it – even if this means invoking the node with just a single 
record.
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Work Graph Concepts – 

"broadcasting"

ThreadgroupThreadgroupThread Groups

"thread"

Unspecified!

Launches 

"coalescing"

Thread GroupThread Group

In summary, we’ve now seen the three different launch modes available in 
Work Graphs: "broadcasting", "coalescing" and "thread". Together with 
nodes and records, these form the three core concepts of Work Graphs, and 
we are now ready to move on to more advanced uses of Work Graphs.
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Advanced Work Graphs

Use-case: Material Shading

In this section, we put all concepts, i.e., nodes, records, and launches, 
together to create an advanced use-case for Work-Graphs. Plus, we are going 
to learn about a powerful Work Graphs feature called “Node Arrays”. We 
demonstrate this at the practical example of Material Shading.
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Problem: Material Shading

So, what is the problem of Material Shading? Consider this simple scene with 
a background, a plane, and a sphere.
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Problem: Material Shading

return float4(0.4, 0.7, 1, 1);

return ?;

The objects and therefore the rendered pixels have a different material, 
highlighted with different colors here. For example, the sky could have a very 
simple material, such as a constant color. But computing the material for the 
sphere or the plane could be quite involved. They could, in fact, be different 
materials, requiring different algorithms with different costs.
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Problem: Material Shading

What is the problem then? To explain that, let’s change to a coarser version of 
that image. You see the individual pixels of the image here using three distinct 
colors. Each color represents a different material type.
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Problem: Material Shading

Thread

Graphics Memory

GPU Hardware

Shared Memory Thread Group

And let’s not forget that we are running our computation on a GPU.
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Problem: Material Shading

Thread

So, let’s see how a GPU thread group would compute that image.
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Problem: Material Shading

Thread

To make it a little more readable, our example thread group only has four 
threads.
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Problem: Material Shading

Thread

Our thread group can then compute a 2x2 grid of pixels in a SIMD fashion.
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Problem: Material Shading

Thread

Each thread group computes a subset of those 2x2 blocks.
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Problem: Material Shading

Thread

Things become interesting at the highlighted block here, where different 
materials need to be evaluated.
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Problem: Material Shading

Thread

𝑡

0 1

2 3

0 1 2 3

Thread

Each of the four pixels is evaluated with one thread in our thread group. Let’s 
consider how the computation is carried out over time.
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Problem: Material Shading

Thread

𝑡

0 1 2 3

0 1

2 3

Thread

The computation of each pixel is scheduled to one thread. Ideally, the four 
pixels can be executed in parallel and take equally long.
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Problem: Material Shading

Thread

𝑡

0 1 2 3

However, some materials are faster to compute, like the sky (blue), while 
others take a lot longer. In a thread group, the short code paths must wait for 
long ones to finish. 
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Problem: Material Shading

Thread

𝑡

0 1 2 3

The threads of our thread group are executed on a SIMD core. That means 
the same instruction must be executed on all SIMD lanes at the same time.

Since the three different materials have different instructions, they cannot be 
executed in parallel. Instead, only those threads that share the same 
instructions can physically run in parallel. All other threads must defer their 
computation to a later point in time. This goes by the name “thread 
divergence” and can become a huge performance bottleneck on GPUs.
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Problem: Material Shading

Thread

𝑡

0 1 2 3

Solution: Work Graphs

Where SIMD cores can deliver a huge performance boost is when the thread 
code is coherent, for example here in the group of red pixels.

In the following sections, we’ll take a look at how Work Graphs can help us 
eliminate thread divergence by creating specialized nodes for each material.
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tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
  switch (hit.material) {

        ...

  }
}

To start with, consider this compute shader example.
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tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
  switch (hit.material) {

        ...

  }
}

It is called RenderScene and we get a unique global thread id dtid that gives 
a 2D integer pixel coordinate for the pixel that we wish to shade.
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tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
  switch (hit.material) {

        ...

  }
}

Each thread group uses an 8x8 grid of threads, so that, each thread group 
computes 64 pixels.
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tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
  switch (hit.material) {

        ...

  }
}

For each thread, we trace a ray, to find the closest hit…
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tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
  switch (hit.material) {

        ...

  }
}

… and then carry out the shading, depending on the material that our ray hit.

259© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



260 |

tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
  switch (hit.material) {
    case RayHit::Sky:

            color = ShadeSky(ray); break;
        case RayHit::Sphere:
            color = ShadeSphere(ray, hit.distance); break;
        case RayHit::Plane:
            color = ShadePlane(ray, hit.distance); break;
  }

}

Here, we have the switch statement, which is the root of the thread divergence 
problem. Depending on the material, we must take a different code path. If 
those code paths don’t share the same instruction, we effectively serialized the 
code.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Nodes

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
  switch (hit.material) {

        ...

  }
}

[Shader("node")]

We want to solve this by using Work Graphs.

To turn a compute shader into a Work Graph node, we start by adding a 
[Shader("node")] attribute before the function definition. Nodes are 
basically compute-shaders with this node attribute.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Records

struct Record {
...

};

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {

[Shader("node")]

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

As this is no longer a compute shader, but a work graph nodes, we cannot 
dispatch it with e.g. the Dispatch command. Instead, we must send a record to 
our newly created node. Thus, we declare a Record struct above with all the 
data that we want to pass to our node, e.g., a camera view-projection matrix. 
The actual contents of the struct are omitted here for simplicity.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Records

struct Record {
...

};

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

To make our RenderScene node a consumer receiving such a record, we must 
declare a NodeInputRecord with our record as template argument.

263© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



264 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Records

struct Record {
...

};

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

As we’ve seen before, the specific type of NodeInputRecord depends on the 
launch mode for the node, which we have not yet selected in our example.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

The compute shader implementation that we started out with was dispatched 
with multiple thread groups in both x and y direction to cover all the pixels in 
our render target.

This behavior is mimicked by the "broadcasting" node launch, which 
dispatches a grid of thread groups for each incoming record.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

For "broadcasting" nodes, the input record must be declared as 
DispatchNodeInputRecord. All thread groups of the dispatch have a read-
only view on the same inputRecord.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(480, 270, 1)]

Dispatch(480, 270, 1)

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

Next, we must specify the dispatch grid for our node, or in other words, how 
many thread groups we want to launch for each incoming record.

Here, we set it to launch a grid of 480x270x1 thread groups for every record.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(480, 270, 1)]

Dispatch(480, 270, 1)

𝟖 × 𝟖

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

As each thread group has 8x8 threads…
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(480, 270, 1)]

Dispatch(480, 270, 1)
𝟖 × 𝟖 𝟖 × 𝟖

𝟖 × 𝟖 𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖 𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖 𝟖 × 𝟖

𝟑𝟖𝟒𝟎 × 𝟐𝟏𝟔𝟎

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

… that makes grid of 3840 x 2160 threads in total. That is enough to cover a 
4K Ultra HD (UHD) image with one thread per pixel. That is, however, now a 
fixed grid size. That means, we would always launch 3840 x 2160 threads. But 
what if we want to keep that size more flexible, for example, if we want to 
make our window smaller?

Hint: In case you wonder, 8 threads in x direction and 480 blocks in x direction 
makes 8 × 480 = 3840. Likewise, for the y direction we get 8 × 270 = 2160.
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Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

To get that flexibility, we add a Max there. This specifies an upper bound for the 
number of thread groups.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record {

...
};

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]

...

uint3 dispatchGrid : SV_DispatchGrid;

}

The producer of the Record struct is then tasked with setting the actual 
number of thread groups. This information is passed to the work graph runtime 
by annotating a variable with SV_DispatchGrid.
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tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record {

...
};

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]

...

uint3 dispatchGrid : SV_DispatchGrid;

}

Remember, the Record struct and thus by extension the variable with 
SV_DispatchGrid semantic are tied to our node through the 
DispatchNodeInputRecord declaration.
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Material Shading

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

  const RayHit hit = TraceRay(...);
    ...
    switch (hit.material) {
        ...

  }
}

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]

Thus far, we have turned our initial compute shader into a broadcasting node 
with a dynamic dispatch grid.

Our goal, however, was to solve the issue of thread divergence caused by the 
switch-case statement for executing the material shaders.
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tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
                 uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
    switch (hit.material) {
    case RayHit::Sky:

            color = ShadeSky(ray); break;
        case RayHit::Sphere:
            color = ShadeSphere(ray, hit.distance); break;
        case RayHit::Plane:
            color = ShadePlane(ray, hit.distance); break;
  }

}

To reiterate, these shading functions use different instructions and thus cannot 
run in parallel on the SIMD-architecture of our GPU.

274© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



275 |

tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
                 uint2 dtid : SV_DispatchThreadId) {
  const RayHit hit = TraceRay(...);

    ...
    switch (hit.material) {
    case RayHit::Sky:

            color = ShadeSky(ray); break;
        case RayHit::Sphere:
            color = ShadeSphere(ray, hit.distance); break;
        case RayHit::Plane:
            color = ShadePlane(ray, hit.distance); break;
  }

}

ShadeSky

The underlying idea is to move these different shading functions into separate 
nodes and use work graphs to send records to these nodes based on the ray 
tracing result.

We start by moving the ShadeSky function…
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Material Shading

struct PixelRecord {
    uint2 pixel;
    Ray   ray;
    float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
    const PixelRecord record = inputRecord.Get();

  const float4 color = ShadeSky(record.ray);
   WritePixel(record.pixel, color);
}

…to a new node named ShadePixel_Sky.
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tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
    uint2 pixel;
    Ray   ray;
    float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
    const PixelRecord record = inputRecord.Get();

  const float4 color = ShadeSky(record.ray);
   WritePixel(record.pixel, color);
}

As this node only processes a single pixel, we can use the "thread" launch 
mode, which assigns a single thread to each incoming record (i.e., each 
incoming pixel).
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tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
    uint2 pixel;
    Ray   ray;
    float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
    const PixelRecord record = inputRecord.Get();

  const float4 color = ShadeSky(record.ray);
   WritePixel(record.pixel, color);
}

As we’re using the "thread" launch mode, we must declare the node input 
with ThreadNodeInputRecord.
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tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
    uint2 pixel;
    Ray   ray;
    float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
    const PixelRecord record = inputRecord.Get();

  const float4 color = ShadeSky(record.ray);
   WritePixel(record.pixel, color);
}

The record data itself is defined in the PixelRecord struct above. Here we 
pass the coordinate of the pixel we wish to shade, the ray that was traced for 
this pixel along with the ray length.
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tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
    uint2 pixel;
    Ray   ray;
    float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
    const PixelRecord record = inputRecord.Get();

  const float4 color = ShadeSky(record.ray);
   WritePixel(record.pixel, color);
}

For convenience, we store the incoming record to a local variable called 
record.
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tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
    uint2 pixel;
    Ray   ray;
    float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
    const PixelRecord record = inputRecord.Get();

  const float4 color = ShadeSky(record.ray);
   WritePixel(record.pixel, color);
}

We can then call the underlying ShadeSky function with the data from the 
record to compute the shaded color and write it to our pixel with the help of the 
WritePixel function.
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Material Shading

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

We repeat the same steps for the Sphere and Plane material as well, thus 
creating a ShadePixel_Sphere and ShadePixel_Plane node. We can use 
the same PixelRecord struct that we declared earlier for these new nodes as 
well.
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Material Shading

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> input,

[MaxRecords(8 * 8)]
                 NodeOutput<PixelRecord> ShadePixel_Sky,

uint2 dtid : SV_DispatchThreadId) {
    ...
}

[Shader("node")]
void ShadePixel_Sky(...)

Max. 256 Records

To send records to our newly declared nodes, we must declare a NodeOutput 
in our RenderScene node for each material. We show this at the example of 
the NodeOuput for the ShadePixel_Sky node.

As all 8x8 pixel in our thread group might have the same material, we must 
declare all these node outputs with this worst case, i.e. 8 * 8 records.

However, this would mean that we would reach the output limit of 256 records 
with just four materials (8 * 8 * 4 = 256). Contrast this with the hundreds of 
materials used by modern AAA games and we can immediately see that this 
approach of declaring separate node outputs does not scale very well.

We can solve this problem by using a work graph feature specially designed 
for such use-cases called node arrays.
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tutorial-3/MaterialShading.hlsl

Node Arrays

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

Consider our different material nodes from before. They all use the same 
launch mode and input record…
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tutorial-3/MaterialShading.hlsl

Node Arrays

[Shader("node")]
[NodeId("ShadePixel", 0]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeId("ShadePixel", 1]
[NodeLaunch("thread")]
void ShadePixel_Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeId("ShadePixel", 2]
[NodeLaunch("thread")]
void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

Node Array Index

…thus we can combine them into a single node array named ShadePixel. To 
do this, we add a [NodeId("ShadePixel", 0] attribute to each node. The 
first part (i.e. the node id name) is the same for all nodes, but we must assign 
a different node array index to each node.

In our example, use the following mapping:

0 – sky material

1 – sphere material

2 – plane material

This mapping aligns with the RayHit enum values that we were using for the 
switch-case statement before.
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Node Arrays

Execution
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[0]: 

[1]: 

[2]: 

In our Work Graph, we can then address these nodes as a node array named 
ShadePixel.
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tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> input,

                 [MaxRecords(8 * 8)]
                 NodeOutputArray<PixelRecord> ShadePixel,

                 uint2 dtid : SV_DispatchThreadId) {
    ...

}

We can then target this node array by declaring a NodeOutputArray. Note 
that we do not target any individual node, but rather the whole array at once. 
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tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> input,

                 [MaxRecords(8 * 8)]
                 [NodeArraySize(3)]
                 NodeOutputArray<PixelRecord> ShadePixel,

                 uint2 dtid : SV_DispatchThreadId) {
    ...

}

However, the D3D12 runtime must still be able to validate that all the nodes we 
expect in this node array are present in the graph. Thus, we must add a 
[NodeArraySize(...)] attribute with the expected number of nodes in the 
array, which in our case is three.
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tutorial-3/MaterialShading.hlsl

Material Shading

...
void RenderScene(DispatchNodeInputRecord<Record> input,
                 [MaxRecords(8 * 8)]
                 [NodeArraySize(3)]
                 NodeOutputArray<PixelRecord> ShadePixel,
                 uint2 dtid : SV_DispatchThreadId) {
    ...
    ThreadNodeOutputRecords<PixelRecord> outputRecord =
        ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

    outputRecord.Get().pixel       = dtid;
    outputRecord.Get().ray         = ray;
    outputRecord.Get().hitDistance = hit.distance;

    outputRecord.OutputComplete();
}

Allocating records to be sent to this node array is very similar to the plain node 
outputs that we’ve seen before…
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tutorial-3/MaterialShading.hlsl

Material Shading

...
void RenderScene(DispatchNodeInputRecord<Record> input,
                 [MaxRecords(8 * 8)]
                 [NodeArraySize(3)]
                 NodeOutputArray<PixelRecord> ShadePixel,
                 uint2 dtid : SV_DispatchThreadId) {
    ...
    ThreadNodeOutputRecords<PixelRecord> outputRecord =
        ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

    outputRecord.Get().pixel       = dtid;
    outputRecord.Get().ray         = ray;
    outputRecord.Get().hitDistance = hit.distance;

    outputRecord.OutputComplete();
}

Node Array Index

…the main difference is the bracket-operator, with which we specify the node 
array index, to which we want to send the record.

In our case, this index is determined by the ray tracing result.
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tutorial-3/MaterialShading.hlsl

Material Shading

...
void RenderScene(DispatchNodeInputRecord<Record> input,
                 [MaxRecords(8 * 8)]
                 [NodeArraySize(3)]
                 NodeOutputArray<PixelRecord> ShadePixel,
                 uint2 dtid : SV_DispatchThreadId) {
    ...
    ThreadNodeOutputRecords<PixelRecord> outputRecord =
        ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

    outputRecord.Get().pixel       = dtid;
    outputRecord.Get().ray         = ray;
    outputRecord.Get().hitDistance = hit.distance;

    outputRecord.OutputComplete();
}

dtid
ray
hit.distance

Writing data to the record is unchanged…
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Material Shading

...
void RenderScene(DispatchNodeInputRecord<Record> input,
                 [MaxRecords(8 * 8)]
                 [NodeArraySize(3)]
                 NodeOutputArray<PixelRecord> ShadePixel,
                 uint2 dtid : SV_DispatchThreadId) {
    ...
    ThreadNodeOutputRecords<PixelRecord> outputRecord =
        ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

    outputRecord.Get().pixel       = dtid;
    outputRecord.Get().ray         = ray;
    outputRecord.Get().hitDistance = hit.distance;

    outputRecord.OutputComplete();
}

… and so is sending the record off to the Work Graph runtime for processing.
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Classify Execute&

This is our work graph. First, the RenderScene node classifies the pixel and 
emits a record to the corresponding index in the ShadePixel node array.

Second, the ShadePixel node array executes the shaders for each pixel in a 
SIMD friendly way.
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SIMD Efficiency

Execution
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Why are node arrays SIMD friendly? Let’s go back to our coarse pixel grid for 
demonstration purposes.
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SIMD Efficiency

Execution

RenderScene ShadePixel
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Sphere

Plane

The classifier node “RenderScene” classifies each pixel and…
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SIMD Efficiency

Execution

RenderScene ShadePixel

Sky

Sphere

Plane

…creates a record for the consumer node in the ShadePixel node array based 
on the material index.
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SIMD Efficiency

Execution

RenderScene ShadePixel

Sphere

Plane

Sky

These records are then sent to the individual nodes of the node array.
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SIMD Efficiency
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Even though we specified these nodes as “thread” launch nodes, they are still 
executed in thread groups…
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SIMD Efficiency
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...with one record (i.e., pixel) assigned to each thread. All threads of a thread 
group now run in SIMD lock step, thereby reducing thread-divergence.
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SIMD Efficiency
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Likewise, for the other materials, too.
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SIMD Efficiency
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We’ve seen how work graphs, in combination with node arrays can help us 
reduce thread-divergence for classify-and-execute applications.
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Conclusion 

Execution
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The code in these slides is available in the Work Graph Playground under 
tutorials/tutorial-3/MaterialShading.hlsl. Please follow the 
instructions there to get a hands-on experience with node arrays.

However, note, that in this materials-example, you will see little to no 
performance gains. This is because we kept our shader code simple, such that 
thread-divergence is not an issue. Our goal here is to teach you the principle 
of how node arrays work.
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Conclusion

Execution

ShadeMaterial

ShadePixel

Material 0

Material 1

Material 2

Material N

…
Download today on GPUOpen

You can also find a standalone sample of this classify-and-execute work graph 
on GPUOpen.

303© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/learn/rgp-work-graphs/


304 |

Summary
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Node Arrays
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⋮

In summary, we’ve seen how work graphs allow for GPU-driven dataflow 
through records. We’ve seen how and when to use the different launch modes 
available in work graphs. And lastly, we’ve seen how node arrays can help 
simplify our code and help us manage hundreds or thousands of nodes in a 
classify-and-execute scenario.
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Advanced Work Graphs

Recursion

Next, we are going to look at how recursion is possible with Work Graphs.
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Recursion
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*

We have seen before that a work graph can be classified as a directed acyclic 
graph. Thus, a cycle as shown here is not allowed.

Implementing recursive algorithms with acyclic graphs is difficult, however, the 
Work Graphs specification allows a small exception to the acyclic constraint.
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Recursion

Execution
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*

* with self-recursion

Self-recursion, or in other words, trivial cycles from one node to itself are 
allowed. These self-recursive cycles can also have a payload amplification, 
meaning for every incoming record, a node that’s part of a self-recursive cycle 
can emit multiple records to itself.
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Recursion

Procedural Generation Subdivision Fractals

There are many different applications or algorithms that can be implemented 
as such self-recursive nodes. These can range from different algorithms for 
procedural generation or subdivision (e.g., Catmull-Clark subdivision surfaces) 
to mathematical concepts, such as recursively evaluated fractals.

We will take a closer look at self-recursive graphs for procedural generation.
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Recursion

For now, we focus on a simpler example: the Koch Snowflake fractal. This 
fractal is part of the fourth tutorial in our Work Graph Playground App and you 
can find the implementation in tutorials/tutorial-4/Recursion.hlsl.

In simple terms, the Koch Snowflake recursively subdivides each line segment 
into four new line segments which form a small triangle in the middle of the 
original line segment, as you can see on the right part of the slide.

We start with an initial equilateral triangle with three line segments, as shown 
on the left.
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Recursion

After one iteration, you can see the newly formed triangles on the edges of the 
initial triangle, thus transforming the initial triangle into a star shape.
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Recursion

After two iteration, we can start to see the snowflake shape forming.

311© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



312 |

Recursion

The third…
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Recursion

…and fourth iteration then further refine the snowflake shape.
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Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Snowflake")]
void SnowflakeNode(
  ThreadNodeInputRecord<Line> inputRecord
) {
    ...
}

So how does this self-recursion look like in the shader code? Let’s consider 
this thread node shown in the slide. This is already part of the tutorial, but 
there will be similar exercise for you as homework.
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Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Snowflake")]
void SnowflakeNode(
  ThreadNodeInputRecord<Line> inputRecord,

  [MaxRecords(4)]
  [NodeId("Snowflake")]
  NodeOutput<Line> recursiveOutput
) {
    ...
}

Recursive nodes declare a NodeOutput to itself.
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Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Snowflake")]
void SnowflakeNode(
  ThreadNodeInputRecord<Line> inputRecord,

  [MaxRecords(4)]
  [NodeId("Snowflake")]
  NodeOutput<Line> recursiveOutput
) {
    ...
}

Note how we use the [NodeId("Snowflake")] attribute to both identify the 
node itself and the NodeOutput with the same node id. Thus, the node is 
recursively outputting records to itself.
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Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeMaxRecursionDepth(4)]
[NodeId("Snowflake")]
void SnowflakeNode(
  ThreadNodeInputRecord<Line> inputRecord,

  [MaxRecords(4)]
  [NodeId("Snowflake")]
  NodeOutput<Line> recursiveOutput
) {
    ...
}

Self-recursion is, however, limited to fixed number of iterations, which must be 
set using the [NodeMaxRecursionDepth(...)] attribute.
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Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeMaxRecursionDepth(4)]
[NodeId("Snowflake")]
void SnowflakeNode(
    ...
) {
    ...
    // Check if we have reached the recursion limit.
  const bool hasOutput = GetRemainingRecursionLevels() != 0;
}

In each recursive iteration, we can then query the number of remaining 
iterations with the GetRemainingRecursionLevels() intrinsic. If this intrinsic 
returns 0, then the node is no longer allowed to emit self-recursive records.
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Recursion

Execution

NodeNodeNode

Node Depth = 3

Node

As a reminder, the longest chain of nodes can not exceed the limit of 32 
nodes. When computing this longest chain of nodes, the maximum number of 
recursive iterations ([NodeMaxRecursionDepth(...)]) add to the chain 
length.

In this example the node on the far-right has a node depth in the graph of 
three.

319© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



320 |

Recursion
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4

If we add a self-recursion loop to the graph, this node depth increases by the 
value of the [NodeMaxRecursionDepth(...)] attribute.
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Recursion

Execution

NodeNodeNode

[NodeMaxRecursionDepth(1)]

Node Depth = 4

Node

45

2

Increasing [NodeMaxRecursionDepth(...)] further increases the node 
depth of the last node.
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Recursion

As a homework assignment, your task is to implement another recursive 
fractal in the Work Graph Playground App: the Menger sponge.

Follow the instructions in tutorials/tutorial-4/Recursion.hlsl and 
implement the fractal. You can verify your solution by comparing it to the 
provided sample solution.
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Advanced Work Graphs

Synchronization

Another aspect for advanced work graphs is synchronization of thread groups 
in broadcasting launches.
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Synchronization

Execution

Record {
    .dispatchGrid = uint3(2, 2, 1)
} Threadgroup Threadgroup

ThreadgroupThreadgroup

Node

Before, we dive into the code, let’s quickly explain what we mean by this. 
Consider a broadcasting node that is part of a longer chain of nodes, e.g., a 
chain of image filters. In such a chain, we might have data-dependencies 
between different nodes in the chain, i.e., we can only launch the next node, if 
all thread groups of the previous node have finished executing.

In our example, our node receives an incoming record. Our node is using the 
broadcasting launch mode. The record sets the dispatch grid of the node to 
2x2 thread groups. We assume that these thread groups all run in parallel on 
our GPU.
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Synchronization

Execution

Record {
    .dispatchGrid = uint3(2, 2, 1)
} Threadgroup Threadgroup

Threadgroup

Node

After a while, the thread groups terminate one after the other…
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Synchronization

Execution

Record {
    .dispatchGrid = uint3(2, 2, 1)
} Threadgroup

Node

…until only one thread group remains.
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Synchronization

Execution

Record {
    .dispatchGrid = uint3(2, 2, 1)
} Threadgroup

Node

Synchronization in broadcasting nodes allows this last thread group to realize 
that it is in fact the last one.
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Synchronization

Execution

Record {
    .dispatchGrid = uint3(2, 2, 1)
} Threadgroup

Node

Thus, it can carry out a final special operation, such as emitting a record for 
the next node, as we now know that all thread groups in our broadcasting 
node have finished execution and any data that they might have produced is 
now ready to be processed by a following node(s).
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Synchronization

In the fifth tutorial of the Work Graphs Playground App, we are going to use 
such synchronization to draw a bounding box around this dancing trail of 
circles.
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Synchronization

tutorial-5/Synchronization.hlsl

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(32, 1, 1)]
[NumThreads(32, 1, 1)]
void ComputeBoundingBox(
    ...
    DispatchNodeInputRecord<Record> inputRecord
) {
    ...
    DrawRect(...);
}

In the tutorial, we’re using a node with "broadcasting" launch mode. The 
node is dispatched with 32 thread groups and 32 threads in each thread group.

Each thread then computes a position and radius of a circle and draws the 
circle on screen.

We now want to compute the bounding box of all circles. Once all of the thread 
groups have finished computing the bounding box in parallel, we want to have 
the last thread group draw the resulting bounding box to the screen.
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Synchronization

tutorial-5/Synchronization.hlsl

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(32, 1, 1)]
[NumThreads(32, 1, 1)]
void ComputeBoundingBox(
    ...
    DispatchNodeInputRecord<Record> inputRecord
) {
    ...
    if(!inputRecord.FinishedCrossGroupSharing()) return;
 
    DrawRect(...);
}

With FinishedCrossGroupSharing(), Work Graphs provide a method on the 
input record, that returns true, if the calling thread group is the last one to call 
this method.
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Synchronization

tutorial-5/Synchronization.hlsl

struct [NodeTrackRWInputSharing] Record {
    ...
};

[Shader("node")]
...
void ComputeBoundingBox(
    ...
    DispatchNodeInputRecord<Record> inputRecord
) {
    ...
    if(!inputRecord.FinishedCrossGroupSharing()) return;
 
    DrawRect(...);
}

Since this is carried out on the input record, the input record needs to be 
prepared to support such an operation. Therefore, you must add the 
[NodeTrackRWInputSharing] attribute to the record struct, as shown above.
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Synchronization

tutorial-5/Synchronization.hlsl

struct [NodeTrackRWInputSharing] Record {
    ...
};

[Shader("node")]
...
void ComputeBoundingBox(
    ...
    RWDispatchNodeInputRecord<Record> inputRecord
) {
    ...
    if(!inputRecord.FinishedCrossGroupSharing()) return;
 
    DrawRect(...);
}

As FinishedCrossGroupSharing “writes” into the record, you need to adjust 
the input record declaration to use RWDispatchnodeInputRecord.

Note that this adds an even more powerful capability: The RW prefix allows you 
to communicate between thread groups in broadcasting mode.

For "thread" and "coalescing" node launches, the input node declaration 
receives the same RW prefix, if you want write to your record.
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Synchronization

tutorial-5/Synchronization.hlsl

[Shader("node")]
...
void ComputeBoundingBox(
    ...
    RWDispatchNodeInputRecord<Record> inputRecord
) {
    ...
    InterlockedMax(inputRecord.Get().aabbmax.y, ...);
    ...
    if(!inputRecord.FinishedCrossGroupSharing()) return;
 
    DrawRect(...);
}

We use this ability to write to a shared record in our tutorial: We compute the 
bounding box with atomic min/max operations, where all threads of our 
dispatch write to same input record.
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Synchronization

tutorial-5/Synchronization.hlsl

[Shader("node")]
...
void ComputeBoundingBox(
    ...
    RWDispatchNodeInputRecord<Record> inputRecord
) {
    ...
    InterlockedMax(inputRecord.Get().aabbmax.y, ...);

    Barrier(NODE_INPUT_MEMORY, DEVICE_SCOPE | GROUP_SYNC);
    ...
    if(!inputRecord.FinishedCrossGroupSharing()) return;
 
    DrawRect(...);
}

Since we write to record memory from all threads concurrently, we must use a 
barrier before reading back the resulting bounding box.
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Synchronization

Now, we have a nice bounding box!
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Advanced Work Graphs

Procedural Generation

In this section, we want to show you how Work Graphs can be used for 
procedural generation. 
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Advanced Work Graphs

Procedural Generation

We will present four examples that are based on two papers [Kuth et al. 2024, 
Kuth et al. 2025], some blog posts, and samples that we have published. 

Blog Posts:

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_no
des-getting_started/ 
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_no
des-intro/ 
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_no
des-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_no
des-tips_tricks_best_practices/ https://github.com/GPUOpen-
LibrariesAndSDKs/WorkGraphsHelloMeshNodes 

Samples:
https://gpuopen.com/learn/rgp-work-graphs/ 
https://gpuopen.com/learn/work_graphs_learning_sample/ 
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Houdini

To get started, let‘s look at existing procedural software. An obvious mention is 
Houdini.
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Houdini

Second one would be Blender with its geometry nodes.

Logo from https://www.blender.org/about/logo/
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Unreal EngineHoudini

But also Unreal Engine now has a built-in system named PCG.
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Houdini Unreal Engine

All these tools have one thing in common: The generation is controlled by 
designing node graphs consisting of reusable nodes.
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Unreal EngineHoudini

When we look at how or where these tools generate, we can see that this 
usually happens on CPU. Then the result gets exported to a polygon format 
onto disk. Finally, the ready-made model is then uploaded to the GPU for 
rendering by a game engine.

With the new Unreal Engine PCG system, the export step is skipped: as the 
generation happens in-engine, there is no need for an export.
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OursHoudini Unreal Engine

What we want to do with Work Graphs today is to totally skip the CPU part: 
The GPU generates everything it needs for rendering.
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We already mentioned the node graphs that control the procedural generation, 
but what are the edges connecting the nodes? We call the data that flows 
between the edges control parameters. A node receives control parameters 
and outputs control parameters. A very simple example for this would be 
generation of this muffin: Three parameters control the shape of it.
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Control parameters do not have to be scalar values: how about a bounding 
box controlling the generation of a chair. By changing the bounds, we can turn 
it into a bench or adjust the height of the back support.
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Or what about a polygon controlling the shape of an entire building?
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Let‘s start with our first example: a procedural market.
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For this, we went on a research trip to the Coburg marketplace and observed 
the following: the overall shape of it can be described by a polygon. From each 
corner, a path leads towards the center of the market. These paths are 
connected by rings of paths. In the regions between the paths, there are the 
booths. So, we call this the booth islands and should place some fitting assets 
there like tents or tables. In the center of there market, there is usually a 
special area with a special asset, like a tree or a well.
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This market layout is very close to something called the straight skeleton of a 
polygon by Aichholzer and coworkers [Aichholzer et al. 1995].

Figure 1(a) and (b) from [Aichholzer et al. 1995].
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For generating it, a polygon is shrunk till one of two possible events occur.
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merge

The merge event, where two points of the polygon merge into one.
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split

And the split event, where the polygon gets split into two.
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Market

Now let‘s start with our market generation. A node of a work graph receives a 
polygon as input.
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Market
static const int maxMarketPoints = 32;
struct MarketRecord {

float2 points[maxMarketPoints];
...

};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]
...
void Market(

DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,
...

){

Let‘s look at how this would look like in code: 
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Market
static const int maxMarketPoints = 32;
struct MarketRecord {

float2 points[maxMarketPoints];
...

};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]
...
void Market(

DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,
...

){

Our market receives a market record as input, consisting of up to 32 points.
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Market
static const int maxMarketPoints = 32;
struct MarketRecord {

float2 points[maxMarketPoints];
...

};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]
...
void Market(

DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,
...

){

And we launch the market node as one thread group of 32 threads.
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Market
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Before shrinking the polygon, we need to check when the next straight 
skeleton event occurs.
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Market

0
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float closestEvent = WaveActiveMin(distance);

We assign each thread to a corner of the polygon and compute when its event 
occurs. By using the wave intrinsic WaveActiveMin, we can find the closest 
event.
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Market

0
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float closestEvent = WaveActiveMin(distance);

So, in this case it is thread or point 2, but the polygon can still shrink quite a bit 
before.
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Market
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After shrinking, the market node writes output records to a node for drawing 
paths.
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Market

Path
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And for the booth islands, we make a little bit of space.
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Market

Path

BoothIsland
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BoothIsland

Next, let‘s look at how a work graph can output geometry for drawing.
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int index;
InterlockedAdd(drawMeshArgumentCounter, 1, index);
drawMeshArguments[index] = args;

Draw List BVH Instance List Mesh Nodes

BoothIsland

Execute Indirect 

One way would be to append a draw command to a draw list and then 
dispatch that list after the work graph has finished using execute indirect. To 
allow for ray-tracing, one can also write to an instance list and then build a 
TLAS from it after the work graph has finished.

Finally, mesh nodes can draw the generated geometry straight from the work 
graph to the scene.
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Market

Path

BoothIsland

Alright, let‘s get back to our market, where we have just finished one ring. To 
do the next ring, the market node simply recurses with the new polygon.
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Market

Market

Path

Path

BoothIsland

BoothIsland

For this ring, we do the same as for the last.
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Market

Market

Path

Path

BoothIsland

BoothIslandsplit

Now we must handle our first event: the polygon splits into two if we continue 
shrinking.
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Market

Market

Market

Market

Path

Path

BoothIsland

BoothIslandsplit

To resolve this, the market node recurses into two markets
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Market

Market

Market

Market

Path

Path

BoothIsland

BoothIsland

For the smaller side, we do not have enough space for another ring and finish 
with a market center.
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Market

Market

Market

Market

Path

Center

Path

BoothIsland

Path

BoothIsland

BoothIsland

For the other side, we can generate one more ring.
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Market

Center

Market

Market

Market

Market

Path

Center

Path

BoothIsland

Path

BoothIsland

BoothIsland

And finish with a market center.
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Market

Center

Market

Market

Market

Market

Path

Center

Path

BoothIsland

Path

BoothIsland

BoothIsland
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And with this, we have finished out market generation. Let‘s see it in action. 
Because it runs every frame in less than a millisecond, we can see the 
changes instantly.
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There is one thing, we have not mentioned, yet: You might have spotted these 
garlands spanning in-between rings. But these are generated independently of 
each other, so how do we find the connecting points?
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This is something we call dependent generation. Here is an example of it from 
Unreal Engine. In the video, you can see the user dragging around the central 
structure. When the structure marked with the red box instersects with 
something, a bridge made of a stam is generated towards the center. The 
structure in the blue box does not intersect with anything and thus no bridge is 
generated.
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A spatial GPU data-

structure…

…and fast access…fast creation and update 

time…

Raytracing 

BVH!commandList->BuildRaytracingAccelerationStructure(&buildDesc, 0, nullptr);

So, for our system, we need a spatial GPU data structure that is fast to create 
and update and fast to access. This is exactly what a ray tracing BVH is for. 
Creating and accessing it is just a matter of issuing API calls, and we have 
already established earlier that we can output for BVH generation.
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During generation, we add these red bounding boxed to our BVH with a 
separate instance flag to prevent hitting them when ray-tracing for shading 
effects. Next a garland starting points shoots rays into its vicinity to find points 
to connect to. 
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And with this, we can have garlands from market elements generated 
independently from each other.
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Let‘s look at another example for dependent generation: Ivy ontop of existing 
geometry.
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IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

An IvyBranch node is given a transformation as the input record. For growing, 
it runs a loop that shoots rays into its vicinity to find a surface, updates the 
transformation based on the result, and draws fitting assets like leaves and a 
stem. Finally, there is a chance that the ivy branches into two which we solve 
with recursion.
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IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}
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IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}
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IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}
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IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}
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IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}
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IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

Here you can see an example video of this for more realistic assets.
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IvyBranchIvyArea

Let‘s extend on this idea and add a parent to IvyBranch, the IvyArea. It 
receives a bounding volume as input, uses rays to find fitting starting locations 
for ivy to grow and then outputs work records to IvyBranch.
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IvyBranchIvyArea

Here you can see an example video of this. We have published a sample of 
this if you want to play around with the generation yourself.

389© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



390 |

Let‘s talk about timings. We generate our scene from two perspectives, an 
overview where we generate everything, and a view from the market only, 
where we can cull some of the generation.
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Here you can see the number of instances generated.
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As you can see, right now, the render timings go through the roof for the 
overview perspective.
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The reason for this can be seen on the right. We have one draw call per 
instance. We need instancing to optimize this.
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[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(32, 1, 1)]
void DrawAssetCoalescer(

[MaxRecords(256)]
GroupNodeInputRecords<DrawAssetRecord> input,
[MaxRecords(256)]
NodeOutput<MeshNodeRecord> DrawAsset

){

DrawAssetCoalescer

For this, we utilize a node in coalescing launch mode. It receives up to 256 
records for drawing an asset and output up to 256 records. But ideally, we are 
able to combine some of these using instancing.
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DrawAssetCoalescer

DrawAsset DrawAssetDrawAsset DrawAsset DrawAsset

By sorting by asset, we can significantly reduce the number of draw calls.

395© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



396 |

DrawAssetCoalesce

r

DrawAsset DrawAssetDrawAsset DrawAsset DrawAsset

Here you can see the improvement, the number of draw calls was significantly 
reduced, same with the render timings.
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Instead of placing existing assets, for our last two examples, we want our work 
graph to generate all the geometry from scratch.
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Generate 

vegetation that…

…is in the frustum… …point towards the camera... …in the quality required.

More specifically, for a given camera matrix, we want to only generate 
everything that is in the camera frustum, faces the camera, and only in the 
detail required.

The first one is easy: just omit dispatch records for work outside the frustum.
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offset

ClutterGrid

ClutterTile

GrassPatch ShroomPatch BeePatch

struct ClutterTileRecord {
uint2 size : SV_DispatchGrid;
int2 offset;

}

For our ground clutter, we find the 2D grid that encloses our camera frustum. 
Finer culling is then done inside the individual thread groups. We have a node 
array of mesh nodes for generating different kinds of clutter like grass, low 
LOD grass, mushrooms or insects.
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For our trees, we omit outputting records of a, e.g., branch of a tree, when its 
bounding capsule lies outside the frustum.
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𝜽 = cos 𝑚𝑎𝑥
𝑑𝑟

𝑑𝑧
⋅

𝑥

1 − 𝑥2
, −1

𝑧 ⋅ 𝑣𝑇

To only generate front facing triangles, we analyzed how far around a stem we 
have to tessellate given the tree growth direction, the change in stem radius, 
and the camera orientation.
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In this video, you can see this in action.
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𝑓 =
2 ⋅ 𝜃from ⋅ 𝑟from

Δ

𝑣 =
𝑙

Δ

𝑡 =
2 ⋅ 𝜃to ⋅ 𝑟to

Δ

sample distance

For continuous LOD, we employ fractional tessellation.
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And in this video, you can see it in action.
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We do something similar with our leaf LOD.
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Another thing you can do with real-time generation is animation: simply adjust 
the generation based on the current timestamp.

406© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



407 |
407

Or how about adding seasonal detail based on a real number indicating the 
time of year.
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And here you can see real-time edits of our final tree model. Edits effecting an 
entire forest happen within the next frame.
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With a continuous LOD, one can also adjust the image quality smoothly based 
on the current frame time.
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Here is a performance measurement we did on a camera path. Frame-to-
frame times vary based on image complexity between 13 – 40ms.
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With an automatic LOD, the performance peaks can be mitigated.
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This concludes the procedural generation part of this course.
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Advanced Work Graphs

Work Graphs under the Hood

As part of the Advanced Work Graphs Section, we would like to present ideas 
of how Work Graphs might potentially be implemented on a GPU. 

413© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



414 |

How does it work?

So, so far, we’ve seen what Work Graphs is, how it allows us to schedule work 
directly on the GPU, and how that can help us solving different use-cases.

But how does this “launching work from the GPU” work?
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How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

To understand this, we first need to look at how any launch of work on the 
GPU works. In Direct3D12, we record commands, as for example this 
Dispatch, into a commandList.
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How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

G
P

U
C

P
U

To execute this commandList, we chose a commandQueue and submit our 
command list to it.

416© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



417 |

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

GPU driver

C
P

U

To then actually execute the commandList, the GPU driver will copy the 
command list ( ) into GPU-visible memory…
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commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

GPU driver

C
P

U

… and passes an execute-command through a ring buffer to the GPU.

418© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



419 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?
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On the GPU, this ring buffer is connected to the command processor (red box)
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Or more specifically the Micro Engine Scheduler, which is a part of the 
command processor.

The Micro Engine scheduler is responsible for handling commands, such as 
the one to execute the command list coming from the CPU. 
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SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?
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GFX 0 GFX 1 Compute 0 Compute 1 …
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To process any of the incoming commands, the Micro Engine Scheduler has 
access to different queues.

There are two types of queues: graphics queues (GFX 0, GFX 1 in the slide) 
and compute queues (Compute 0, Compute 1, …, in the slide).
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SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory
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Firmware

The Micro Engine Scheduler selects one of those queues – in this case 
Compute 0 – and maps the incoming command to its input ring buffer.

Each of these queues is a small processor which is programmed through the 
firmware to execute the commands.
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Dispatch(480, 270, 1)

In this case, we want to execute our command list, so the command processor 
fetches one command after the other from memory, parses, and executes it.

In our example here, we have the dispatch command from before.
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Dispatch(480, 270, 1)

Compute queue 0 then sets up and invokes the SIMDs in order to carry out the 
dispatch command. This is a very simplified view of the GPU, as we are only 
interested in how commands such as dispatches are handled and not the 
specifics of how the actual thread groups of the dispatch are mapped and set 
up to GPU hardware components.

424© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



425 |

SIMD SIMD SIMDSIMD
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Micro Engine Scheduler
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commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

We‘ve seen that we can place a command buffer in GPU memory and have 
the command processor execute it.
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This would mean that if we want to schedule work from the GPU itself, we can 
just write to such a command buffer in GPU-visible memory and have the 
command processor execute it.
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In the case of Work Graphs, we‘re not writing a command list, but we‘re writing 
records. To allow for a continuous cycle of writing and launching these records, 
we can store these records in a ring buffer. 
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Ring
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Node BNode A

As we have different records for different nodes, we need multiple ring buffers, 
one for each node.

Here we have a very simple Work Graph with nodes A, B, C and D. A can send 
records to B and C, i.e., thread groups that run code for node A can write 
records to the ring buffers of node B and C.

Nodes B and C can both send records to node D.
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Firmware

The compute processor can then scan these ring buffers in memory for 
available records and decide what records to launch and how to launch them.
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Record {
    .dispatchGrid = uint3(2, 1, 1)
}

As an example, we have placed a record in the ring buffer of node A. Node A is 
using a dynamic dispatch grid and the record specifies that two thread groups 
should be launched.
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Record {
    .dispatchGrid = uint3(2, 1, 1)
}

Compute queue 0 can then find this record in the ring buffer and launch two 
thread groups for it. In our simplified GPU, we’ve mapped each of these thread 
groups to on SIMD.
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Record {
    .dispatchGrid = uint3(2, 1, 1)
}

Each of these thread groups then want to send two records to node B and two 
records to node C. These records are visualized by small yellow boxes at the 
top of each of the SIMDs.
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Each of these thread groups can then write their outputs to the respective ring 
buffers of the nodes. Here the first thread group writes its four records…
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…and so does the second thread group.
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Once writing is complete these records are ready to be picked up by command 
queue 0 and launched.
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Command queue 0 therefore launches thread groups for each of the records in 
the ring buffer of node B and node C. In our example, each of these records 
will launch a single thread group, this yielding four thread groups for running 
code for node B and four thread groups running code for node C.
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Each of these thread groups then want to send between one and two records 
to node D. These are again visualized with small yellow boxes in each of the 
thread groups.
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Each of these thread groups then writes their output to the ring buffer of node 
D. The first thread group of node B writes a single record, …
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...the third one writes two records, …
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… and the third one writes a single record again.

440© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



441 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

And finally the last thread group of node B writes two records. 
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The same process continues for al the thread groups for node C. The first 
thread group starts by writing two records to the ring buffer of node D.
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The second thread group wants to write two records to the ring buffer of node 
D.

However, the ring buffer for node D is now full, thus no more records can be 
written to it. Simultaneously, all SIMDs of the GPU are busy, thus the 
command queue cannot launch any records to free up space in the ring buffer 
for node D.

This is obviously a problem, since we are now in a deadlock. So maybe this 
launching work from the GPU is not as simple as initially assumed. Let’s go 
back a few steps to see what we missed.
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We return to the state just before we started launching the records in the ring 
buffers of node B and node C. Currently, we have four record in each of these 
ring buffers.

In order to avoid the deadlock from before, the work graphs runtime must 
ensure a forward progress guarantee.

What does the forward progress guarantee mean?

Essentially, once the graph is kicked of, it needs to be able to process all its 
records without any deadlocks.
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[MaxRecords(2)]
NodeOutput<...> NodeD

This is ensured with the output limits for each node. We’ve seen in the 
beginning of this course, that we need to annotate all outputs of a node with 
the maximum number of records that we intend to send.
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[MaxRecords(2)]
NodeOutput<...> NodeD

With this limit, the work graph runtime, i.e. the firmware running on the 
compute queue, can then make a reservation into the ring buffer of node D.

As each thread group of node B can send up to two records to node D, the 
compute queue reserves the first two slots in the ring buffer of node D.
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This continues for the second record in the ring buffer of node B, thus the 
command queue reserved two more slots in the ring buffer of node D.
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The same process happens for the third…
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…and fourth record in the ring buffer of node B.

Now, the ring buffer of node D is full with output reservation of all the thread 
groups of node B. This guarantees that every one of these thread groups can 
write up to two records into the ring buffer of node D without overflowing the 
ring buffer.

On the other hand, this also means that we cannot launch any further thread 
groups that can produce records for node D. In our example, we cannot launch 
the four records available in the ring buffer of node C.

As you can see, this forward progress guarantee can impact the overall GPU 
occupancy. This can be solved by choosing appropriate sizes for the ring 
buffers.

So, now we’ve seen how launching new work directly from the GPU can work. 
We’ve seen the challenges that come along with this and we’ve seen how the 
work graph runtime can avoid deadlocks, whilst operating with limited 
resources.
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But so far, we’ve only looked at the compute-only node and how the compute 
queues of the command processor execute the work graph.

But what about mesh nodes?
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Mesh Nodes

ThreadgroupThreadgroupThread Groups

"mesh"

mesh-node-tutorial-0/HelloMeshNodes.hlsl

[Shader("node")]
[NodeLaunch("mesh")]
[NodeId("LineMeshNode", 0)]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(32, 1, 1)]
[OutputTopology("triangle")]
void LineMeshShader(
  DispatchNodeInputRecord<Line> inputRecord,

  out indices uint3 outputIndices[4],
  out vertices Vertex outputVertices[6])

{
    ...
}

P
review

As a reminder, with mesh nodes you can directly output primitives to the 
rasterizer.

Mesh Nodes consist of a mesh shader, an optional pixel shader, and all other 
state associated with a pipeline state. The mesh shader is almost identical to 
the mesh shading pipeline. 

Mesh Nodes come with a new launch mode "mesh" that works the same as 
broadcasting launch mode. That means a grid of thread groups is launched. 
Each thread group outputs a meshlet, i.e., a small mesh consisting of a vertex 
buffer and an index buffer. This one gets then passed to the rasterizer. The 
Mesh Node must, however, not output any records. Therefore, a Mesh Node is 
bound to be a leaf node of the Work Graph. 
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One limitation of the compute queues, which we used before for compute 
nodes, is that they cannot set up the graphics state, which is required for 
launching a mesh node.
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Firmware

Therefore, we need to use a graphics queue for mesh nodes. Graphics 
queues are also programmed by firmware and thus can scan the ring buffers 
assigned to mesh nodes in GPU memory.
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To allow the graphics and compute queue share the work load of a work 
graph, we can change the Micro Engine Scheduler command to a so called 
gang submit. This joins up a graphics (GFX 0) and compute queue. They can 
now work together on processing the records.
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Graphics Queue 0 (GFX 0) can then scan the ring buffer for the mesh node(s) 
(here shown as the ring buffer on the bottom) and launch mesh shader thread 
groups.

To launch a mesh node, the graphics queue will also set up the graphics state 
(e.g. back-face culling or blend state) for each different mesh node. Thus, with 
a single DispatchGraph you can now switch between Pipeline State Objects. 
This is something that you couldn’t do before with a regular draw command.

455© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.



456 |

SIMD
Mesh Node

SIMD
Mesh Node

SIMDSIMD

SIMD
Mesh Node

SIMD
Mesh Node

SIMDSIMD

Memory

Mesh Nodes

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Mesh Node

Node

Ring

Buffer

P
review

In this example, GFX0 scanned the ring buffer for “Mesh Node”, found one 
record, and launched four thread groups for the mesh node.
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With this, we can have mesh nodes (with their mesh and pixel shaders) and 
“regular” compute nodes running in parallel. 
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Thus, the GPU can feed itself enough work to completely fill it, all without any 
barriers or other involvement from the CPU.
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So this concludes our advanced session. With Work Graphs, we have an 
entirely GPU-driven Producer-Consumer Network that you as programmer can 
specify using a shading language. The advantage is the memory management 
is handled by the Work Graphs system, while also guaranteeing you a 
deadlock-free execution. 
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Summary

We have seen Work Graphs, its core concepts, and exciting applications.
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Summary
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Records ≠ Dispatches

With Work Graphs you model data flow through a directed acyclic graph with 
trivial self-recursive cycles. The data flow is represented by records that you 
send from one node to another. Records are not dispatches, but eventually 
trigger dispatches. The specifics of these dispatches are specified by one of 
three different launch modes. 
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Summary
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Combining all these concepts gives you a producer-consumer network running 
entirely on the GPU.

The memory for these records is managed by the Work Graphs system. 
Further, the Work Graphs system guarantees a deadlock-free execution under 
limited resources.
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Recursion Synchronization Recursive Grids Mesh Nodes

Hello Work Graphs Records Node Launches Material Shading

Work Graph Playground

In this course, we have walked you through the first six tutorials of our Work 
Graph Playground App. 
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Work Graph Playground

For the Recursive Grids tutorial, you’ll need to combine everything that you’ve 
learned so far: nodes, records, different launch modes, recursion, and 
synchronization.
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Work Graph Playground

With the latest update, we’ve also added support for mesh nodes and a 
dedicated mesh nodes tutorial. You can find mesh-nodes enabled versions of 
the playground in our releases: https://github.com/GPUOpen-
LibrariesAndSDKs/WorkGraphPlayground/releases 
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Work Graph Playground

We’ve also released a more complex sample for our procedural tree 
generation. This sample runs in the Work Graph Playground App.

You can find the sample source code here: https://github.com/Bloodwyn/gptree 
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Samples

We also have more standalone samples available on GPUOpen.

For example, you can find this compute rasterizer example here: 
https://gpuopen.com/learn/work_graphs_learning_sample/ 
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Samples

If you’re interested in procedural generation with mesh nodes, we have 
additional samples available here:

https://github.com/search?q=topic%3Ameshnodes+org%3AGPUOpen-
LibrariesAndSDKs&type=repositories 
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Connect with us

gpu-work-graphs

Join the gpu-work-graphs channel on the AMD Developer Community Discord 
server at https://discord.gg/amd-dev 
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Big thanks also go out to:

• Carsten Faber and Seyedmasih Tabaei from the 

Coburg University

• the whole team at AMD, especially Dominik 

Baumeister, Niels Fröhling, Pirmin Pfeifer 

and many more

• Matthäus Chajdas

Thank you!

This concludes our course today. Big thanks go out to our undergraduate and 
graduate students at Coburg University, the Work Graphs team at AMD, and 
Matthäus. 
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