
1 |

SIGGRAPH 2025 Course

GPU Work Graphs

Bastian Kuth Max Oberberger Quirin Meyer

Welcome to our GPU Work Graphs Course here at SIGGRAPH 2025 in
Vancouver.

1© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

2 |

GPU Work Graphs – Instructors

MTS Software Engineer

AMD

PhD Student

Coburg University

Computer Graphics Professor

Coburg University

Max Oberberger Quirin MeyerBastian Kuth

Before we start, allow us to introduce ourselves. We are Bastian Kuth from
Coburg University, Max Oberberger from AMD, and I am Quirin Meyer, also
from Coburg University.

2© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

3 |

GPU Work Graphs – Timeline

Aug 25

SIGGRAPH

Course

Jan 23

AMD & Coburg

Project

We are teaching a course here today at SIGGRAPH on Work Graphs.

Coburg University and AMD have been jointly focusing on the practical
exploration of Work Graphs since January 2023 with funding from the state of
Bavaria.

In the last two and a half years, Work Graphs has been dominating our work
life, and we would like to tell you briefly what we and others have done so far
with this new technology.

3© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

4 |

GPU Work Graphs – Timeline

▪ Work Graphs Preview

https://gpuopen.com/learn/gpu-work-graphs/gpu-work-graphs-intro/

▪ Sample Code
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloWorkGraphs

▪ Vulkan Support
https://gpuopen.com/gpu-work-graphs-in-vulkan/

▪ Work Graph Samples
https://gpuopen.com/learn/rgp-work-graphs/

https://gpuopen.com/learn/work_graphs_learning_sample/

Aug 25

SIGGRAPH

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan

Support

Aug/Oct 23

Samples

While we were conducting our research, Work Graphs occurred as preview
with sample code, Vulkan support was added, and AMD published multiple
Work Graphs samples.

4© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/learn/gpu-work-graphs/gpu-work-graphs-intro/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloWorkGraphs
https://gpuopen.com/gpu-work-graphs-in-vulkan/
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work_graphs_learning_sample/

5 |

GPU Work Graphs – Timeline

Aug 25

SIGGRAPH

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

https://www.youtube.com/watch?v=QQP6-JF64DQ

https://gpuopen.com/events/amd-at-gdc-2024/

https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/

Jul 24

HPG 24

Paper

https://gpuopen.com/download/publications/Real-

Time_Procedural_Generation_with_GPU_Work_Graphs-GPUOpen_preprint.pdf

At the Game Developer Conference (GDC) 2024, we presented our first demo
using Work Graphs. We published our research results at High Performance
Graphics (HPG) 2024.

5© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://www.youtube.com/watch?v=QQP6-JF64DQ
https://gpuopen.com/events/amd-at-gdc-2024/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
https://gpuopen.com/download/publications/Real-Time_Procedural_Generation_with_GPU_Work_Graphs-GPUOpen_preprint.pdf
https://gpuopen.com/download/publications/Real-Time_Procedural_Generation_with_GPU_Work_Graphs-GPUOpen_preprint.pdf

6 |

GPU Work Graphs – Timeline

Aug 25

SIGGRAPH

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

https://www.youtube.com/watch?v=QQP6-JF64DQ

https://gpuopen.com/events/amd-at-gdc-2024/

https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/

Jul 24

HPG 24

Paper

Jul 24

DX12

Mesh Nodes

Oct 24

Vulkan

Mesh Nodes

▪ DX 12 Mesh Nodes & Blog Posts
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-

getting_started/

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-

procedural_generation

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-

tips_tricks_best_practices/ https://github.com/GPUOpen-

LibrariesAndSDKs/WorkGraphsHelloMeshNodes

▪ Vulkan Mesh Nodes
https://gpuopen.com/learn/gpu-workgraphs-mesh-nodes-vulkan/

Our research makes use of Mesh Nodes, which were made available in the
third quarter of 2024. We also wrote several blog posts teaching about work
graphs and mesh nodes.

You can find a video of our demo, which highlights some of the benefits of
Work Graphs here: https://gpuopen.com/learn/gdc-2024-workgraphs-
drawcalls/

6© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://www.youtube.com/watch?v=QQP6-JF64DQ
https://gpuopen.com/events/amd-at-gdc-2024/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://gpuopen.com/learn/gpu-workgraphs-mesh-nodes-vulkan/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/
https://gpuopen.com/learn/gdc-2024-workgraphs-drawcalls/

7 |

GPU Work Graphs – Timeline

Aug 25

SIGGRAPH

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

Jul 24

HPG 24

Paper

Jul 24

DX12

Mesh Nodes

Oct 24

Vulkan

Mesh Nodes

Nov 24

GPC

Master Class

https://gpuopen.com/gpc-2024/ Work Graph Playground App
https://gpuopen.com/learn/work-graph-playground/

Our GDC demo and our HPG paper raised some excitement, so we got invited
to teach a Master Class at the Graphics Programming Conference in Breda,
Netherlands in 2024. This is where we released our Work Graph Playground
App for the first time. We are going to use this app in this course, too. In case
you brought your laptop, you can join us experimenting with our Work Graph
Playground App.

7© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/gpc-2024/

8 |

1. Go to: https://wgpa.short.gy/

github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground

2. Download the Latest Release

3. Unzip WorkGraphsPlayground.zip

4. Open Folder WorkGraphsPlayground

5. Run WorkGraphPlayground.exe

6. Optional: DownloadWarpAdapter.bat

If you need Software Emulation

Work Graph Playground App

Testing adapter "Microsoft Basic Render Driver": Failed
to create D3D12 device.
WARP adapter does not support D3D feature level 12.2
and work graphs.
 See readme.md#running-on-gpus-without-work-graphs-
support for instructions on installing latest WARP
adapter or run DownloadWarpAdapter.bat if you are using
pre-built binaries.
No device with work graphs support was found.

To install the app as a binary, follow these steps. We encourage you to do this
right away. In ca. half an hour, you are invited to actively use it.

If your GPU does not support Work Graphs, use the WARP (i.e., software
emulation) adapter. Use the DownloadWarpAdapter.bat batch script to
download the corresponding DLL.

You can build it from source, too, by following the instruction in the GitHub
repository.

8© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://wgpa.short.gy/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground

9 |

GPU Work Graphs – Timeline

Aug 25

SIGGRAPH

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

Jul 24

HPG 24

Paper

Jul 24

DX12

Mesh Nodes

Oct 24

Vulkan

Mesh Nodes

Nov 24

GPC

Master Class

Mar 25

GDC

Demo

https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-

driven-games/909736

Besides the app, we created a demo for GDC 2025, where we generated
vegetation directly on the GPU with Work Graphs.

9© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736
https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736

10 |

https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-

driven-games/909736

GPU Work Graphs – Timeline

Aug 25

SIGGRAPH

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

Jul 24

HPG 24

Paper

Jul 24

DX12

Mesh Nodes

Oct 24

Vulkan

Mesh Nodes

Nov 24

GPC

Master Class

Mar 25

GDC

Demo

Jun 25

HPG

Paper

Our demo is full of research findings that we were able to share at HPG 2025
just a couple of weeks ago.

You can watch a recording of Bastian’s talk at HPG here:

https://www.youtube.com/watch?v=SPWDLMc-9h4&t=26050s

The full paper is available here:

https://diglib.eg.org/bitstream/handle/10.2312/hpg20251168/hpg20251168.pdf

10© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736
https://schedule.gdconf.com/session/advanced-graphics-summit-gpu-work-graphs-towards-gpu-driven-games/909736
https://www.youtube.com/watch?v=SPWDLMc-9h4&t=26050s
https://diglib.eg.org/bitstream/handle/10.2312/hpg20251168/hpg20251168.pdf

11 |

GPU Work Graphs – Timeline

 Not even 1.5y old since official release

Goal for today:

 Teach how to use Work Graphs

Aug 25

SIGGRAPH

Course

Jan 23

AMD & Coburg

Project

Jun 23

Work Graphs

Preview

Jul 23

Vulkan

Support

Aug/Oct 23

Samples

Mar 24

GDC 24

Work Graph 1.0

Jul 24

HPG 24

Paper

Jul 24

DX12

Mesh Nodes

Oct 24

Vulkan

Mesh Nodes

Nov 24

GPC

Master Class

Mar 25

GDC

Demo

Jun 25

HPG

Paper

1y 4m 23d

In June, we celebrated two years of work graphs when including the preview
phase. The official announcement of Work Graphs dates back only less than
one and a half year. So, it is a rather new technology.

Our goal in this course is that we teach you how to use Work Graphs and that
you can use it for your own applications.

11© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

12 |

GPU Work Graphs – Course Agenda

Introduction & Foundations 14:00 – 14:30

Concepts 14:30 – 15:30

Nodes

Records

Launches

Break 15:30 – 15:45

Advanced Work Graphs 15:45 – 16:45

Material Shading

Recursion & Synchronization

Procedural Generation

Under the hood

Wrap-Up 16:45 – 17:00

Here is a brief overview of the topics that we will cover today.

12© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

13 |

Introduction & Foundations

 GPU Concepts for Work Graphs

 Why Work Graphs?

You have just seen some applications demonstrating the power of Work
Graphs. Before going into details, we want to first answer the main question:

Why even Work Graphs?

That comes with questions concerning alternative approaches and why you
should prefer Work Graphs over them. But before that, we provide a summary
of GPU concepts that are important for Work Graphs.

13© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

14 |

Introduction & Foundations

 GPU Concepts for Work Graphs

 SIMD

 Work Item

 Work Amplification, Work Reduction

 Compute Shaders

 Mesh Shaders

 GPU Concepts for Work Graphs

We believe that those concepts are important for Work Graphs.

14© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

15 |

GPU History

1999

Register

Combiners

Fragment

Processing

2001

Programmable

Vertex

Processing

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2004

Shader Model 3

Dynamic

Control Flow

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2006

“GPGPU”

ATI

Close-to-the-Metal

2007

CUDA

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading &

Hardware

Raytracing

Mar 2024

Work Graphs

GDC

I can best explain these concepts using a brief history of the GPU evolution.

The demand for greater flexibility has driven the evolution of GPU
programmability throughout the past decades. Early register combiners
allowed rudimentary fragment processing [Kilgard 1999], and later vertex
processing became programmable [Lindholm et al. 2001]. In 2002, the DirectX
9.0 Shader Model 2.0 is considered to be the first programmable hardware
vertex- and pixel-shader pipeline. Two years later, Shader Model 3.0 added
dynamic control flow [Akenine-Möller 2018]. Geometry shaders [Blythe 2006]
followed with programmable per-primitive processing. Hardware tessellation
[Andrews and Barker 2006] allowed for fast on-chip geometry amplification
[Niessner et al. 2016]. The introduction of compute-shaders [Peercy et al.,
Nvidia 2007] exposed a hardware-oriented programming model – the
beginning of GPGPU. It allowed the GPU to execute high-performance
graphics and non-graphics applications, as shown for example in the GPU
Gems 3 book [Nguyen 2007]. Also, modern GPU ray tracing [Haines and
Akenine-Möller 2019] on hardware originates back to compute-shader-based
ray-tracing implementations [Parker et al. 2010]. With indirect execution or
execute indirect, the sizes of draw-calls and dispatches are taken from GPU
memory, allowing for GPU-driven work creation. Amplification and mesh
shaders [Kubisch 2018] provide a single-level, non-recursive amplification
pipeline for rasterization workloads, following the programming model of
compute shaders.

Work Graphs [Microsoft 2024] increase GPU programmability by providing
multi-level, self-recursive amplification of both compute and rasterization
workloads.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 15

16 |

GPU History

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

We find those milestones sufficient to explain the basic concepts of GPU
pipelines…

16© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

17 |

Programmable Vertex & Pixel Shader Pipeline

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

… and we start off with Shader Model 2 which introduced programmable
vertex and pixel shading.

17© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

18 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

2002

Shader Model 2

 Programmable
Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Here is a simplified version of the pipeline. The blue and yellow boxes are the
different pipeline stages.

18© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

19 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

12

0 300

11

3

2

Given a triangle mesh with vertices, shown as circles. The black edges
connect the vertices to form triangles. The vertex coordinates are 4D
coordinates shown as column vectors.

They are input to the pipeline, shown on the right.

As output, you get pixel graphics, as shown in the pixel grid on the lower left of
the slide.

19© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

20 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

1 20 3

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

Vertex Buffer

12

0 300

11

3

2

The vertex coordinates are stored in an array called vertex buffer.

20© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

21 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

12

0 3

1 20 3

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

Vertex Buffer

2

1

0

0 1

1

0

3

Index Buffer

And the vertex indices are stored in what is called an index buffer.

21© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

22 |

Input Assembler

2

1

0

0 1

1

0

3

Index Buffer

1

3

0

1

2

0

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Vertex Shader

Rasterizer

1 20 3

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

Vertex Buffer

Let’s recap what happens when we input a vertex- and an index buffer into the
pipeline.

First, each element of the index buffer is fed into the input assembler.

22© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

23 |

1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

−1
−1
0
1

1
−1
0
1

−1
0
0
1

Input Assembler

2

1

0

0

Index Buffer

Pixel Shader

Output Merger

Vertex Shader

Rasterizer

1

1

0

3

1

0

3

10 30 2 1
1
1
0
1

−1
−1
0
1

Programmable Vertex & Pixel Shader Pipeline

1 2 3

−1
−1
0
1

1
1
0
1

Vertex Buffer

−1
−1
0
1

−1
0
0
1

−1
0
0
1

1
−1
0
1

1
−1
0
1

0

The input assembler then gathers the elements from the vertex buffer and
makes them available at its outputs.

23© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

24 |

Programmable Vertex & Pixel Shader Pipeline

1 2 3

−1
−1
0
1

−1
0
0
1

1
−1
0
1

1
1
0
1

Vertex Buffer

2

1

0

0

Index Buffer

1

−1
−1
0
1

1
−1
0
1

1
1
0
1

−1
−1
0
1

1
−1
0
1

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

1

1

0

3

1

0

3 −1
0
0
1

2

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

10 30 2 1

0

The input assembler can operate on each element independently. This
enables GPUs to have a high degree of parallelism.

24© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

25 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

Then the vertices are fed into the next stage: the vertex shader.

25© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

26 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

In the vertex shader, you as a programmer can write shader code, as shown
on the left.

26© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

27 |

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

−1
0
0
1

You define a struct, describing the output of the input assembler. At the same
time, it serves as input to the vertex shader. For each vertex that the input
assembler outputs, the GPU launches one vertex shader thread.

Let’s do an example with the first vertex.

27© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

28 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

−1
0
0
1

The vertex inside the yellow box serves as input to one vertex shader thread.

28© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

29 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

With that input, the vertex shader thread carries out the operations a
programmer specified…

29© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

30 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

−1
0
0
1

−0.5
0
0
1

… and writes the output, that a programmer defined with the struct shown in
the blue box.

30© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

31 |

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

−1
0
0
1

−0.5
0
0
1

The result is then made available at the vertex shader output.

31© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

32 |

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

buffer Const : register(b0) {
float4x4 m;

}

struct VertexIn {
float4 p : POSITION;

};

struct VertexOut {
float4 q : SV_POSITION;

};

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

−1
0
0
1

−1
−1
0
1

−1
0
0
1

−0.5
0
0
1

−1
−1
0
1

−0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
0.5
0
1

−0.5
0
0
1

All other vertices undergo the same fate: They pass through the same vertex
shader code, however, using different inputs.

32© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

33 |

−1
−1
0
1

−0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
0.5
0
1

−0.5
0
0
1

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

−1
0
0
1

−1
−1
0
1

−1
0
0
1

−0.5
0
0
1

Single Instruction

Multiple Data

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

VertexOut VS_main(VertexIn i) {
VertexOut o;
o.q = mul(Const.m, i.p);
return o;

}

This is a very important concept. The same piece of code is executed on
different data items.

In other words, a single instruction operates on multiple data. Hence the name
Single Instruction, Multiple Data…

33© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

34 |

Single Instruction Multiple Data

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

−1
0
0
1

−1
−1
0
1

Rasterizer

SIMD

−1
0
0
1

−0.5
0
0
1

Vertex Shader

0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
0.5
0
1

−0.5
0
0
1

−1
−1
0
1

−0.5
−0.5
0
1

 GPU Concepts for Work Graphs

 SIMD

 Work Item

 Work Amplification, Work Reduction

 Compute Shaders

 Mesh Shaders

… or short SIMD.

SIMD is the underlying parallel computing model of GPUs and it is very
important for their performance. Since Work Graphs run on a GPU, they make
use of the SIMD model.

Side note: In the context of GPUs, the massively parallel underlying computing
model is sometimes also referred to as SIMT (Single Instruction, Multiple
Threads).

34© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

35 |

Single Instruction Multiple Data

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

−1
0
0
1

−1
−1
0
1

Rasterizer

SIMD

−1
0
0
1

−0.5
0
0
1

Vertex Shader

0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
0.5
0
1

−0.5
0
0
1

−1
−1
0
1

−0.5
−0.5
0
1

Work Items

From an abstract perspective, the vertices attributes, as the D (data) in SIMD,
are Work Items…

35© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

36 |

Single Instruction Multiple Data

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Rasterizer

Vertex Shader

SIMD

Work Items

Producer

ConsumerConsumer & Producer

 GPU Concepts for Work Graphs

 SIMD

 Work Item

 Work Amplification, Work Reduction

 Compute Shaders

 Mesh Shaders

… that flow through a pipeline.

In a pipeline, one stage acts as a producer, and the subsequent stage as a
consumer. A stage can consume and produce items at the same time.

The items that flow through the pipeline are called work items.

From that point of view, the graphics pipeline is already providing a data-flow-
oriented model which is also used in Work Graphs, however, in a much more
sophisticated way.

36© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

37 |

Single Instruction

Programmable Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

−1
0
0
1

−1
−1
0
1

1
−1
0
1

1
−1
0
1

1
1
0
1

−1
0
0
1

−1
0
0
1

−1
−1
0
1

Rasterizer

−1
0
0
1

−0.5
0
0
1

Vertex Shader

−1
−1
0
1

−0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
0.5
0
1

−0.5
0
0
1

But going back to what you are already familiar with: Our vertex-pixel-shader
pipeline.

The vertex shader has just transformed the vertices.

37© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

38 |

Programmable Vertex & Pixel Shader Pipeline

Output Merger

Input Assembler

Pixel Shader

−1
0
0
1

−0.5
0
0
1

Vertex Shader

Rasterizer

−1
−1
0
1

−0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
0.5
0
1

−0.5
0
0
1

12

0

1

0 3

−0.5
−0.5
0
1

−0.5
0
0
1

0.5
0.5
0
1

12

0 3

0.5
−0.5
0
1

 GPU Concepts for Work Graphs

 SIMD

 Work Item

 Work Amplification, Work Reduction

 Compute Shaders

 Mesh Shaders

The rasterizer then gathers three-tuples of vertices and discretizes the
triangles into fragments.

This can be considered work amplification. Consider a triangle an input data
item. We amplify that input data item to a much larger number of output items,
i.e., our fragments.

38© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

39 |

Programmable Vertex & Pixel Shader Pipeline

Output Merger

Input Assembler

Pixel Shader

−1
0
0
1

−0.5
0
0
1

Vertex Shader

Rasterizer

−1
−1
0
1

−0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
−0.5
0
1

0.5
0.5
0
1

−0.5
0
0
1

−0.5
−0.5
0
1

−0.5
0
0
1

0.5
0.5
0
1

12

0

3

0.5
−0.5
0
1

12

0

1

0

3

 GPU Concepts for Work Graphs

 SIMD

 Work Item

 Work Amplification, Work Reduction

 Compute Shaders

 Mesh Shaders

But the rasterizer can also reduce work entirely, for example by removing
triangles that do not produce fragments.

39© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

40 |

Programmable Vertex & Pixel Shader Pipeline

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Pixel Shader
float4 PS_main(VertexOut v) : SV_TARGET {
float c = v.q.y + 0.5;
return float4(c, c, c, 1.0);

}

The pixel shader is again a program using the SIMD model. Each fragment is
its input work item …

40© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

41 |

float4 PS_main(VertexOut v) : SV_TARGET {
float c = v.q.y + 0.5;
return float4(c, c, c, 1.0);

}

Programmable Vertex & Pixel Shader Pipeline

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Pixel Shader

… and gets executed by one thread on the GPU …

41© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

42 |

float4 PS_main(VertexOut v) : SV_TARGET {
float c = v.q.y + 0.5;
return float4(c, c, c, 1.0);

}

Programmable Vertex & Pixel Shader Pipeline

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Pixel Shader

… which computes its output color …

42© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

43 |

Programmable Vertex & Pixel Shader Pipeline

Input Assembler

Vertex Shader

Rasterizer

Output Merger

Pixel Shader

Each fragment shader thread then passes its output data item to the output
merger.

43© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

44 |

Output Merger

Programmable Vertex & Pixel Shader Pipeline

Input Assembler

Vertex Shader

Rasterizer

Pixel Shader

The output merger then merges the fragments with the existing ones to form
the final image.

44© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

45 |

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Graphics Pipeline – 2002 Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

This concludes our talk about the vertex- and pixel-shader pipeline from 2002.

We have seen that some concepts that we will use for Work Graphs already
existed back then.

45© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

46 |

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Graphics Pipeline – 2002 Vertex & Pixel Shader Pipeline

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Fixed Function Programmable

Distinct

Hardware

Units

Distinct

Hardware

Units

The pipeline has two programmable stages and several configurable fixed-
function stages.

46© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

47 |

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Graphics Pipeline – 2006 Geometry Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Fixed Function Programmable

SIMD

on Vertices

SIMD

on Pixels

SIMD

on Primitives

The vertex shader is SIMD on vertices; the fragment shader is SIMD on
fragments. In 2006, D3D10 introduced geometry shaders, another
programmable stage. That stage uses SIMD on triangles and other primitives.

The hardware designers observed that all programmable stages use the same
underlying SIMD principle.

47© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

48 |

Graphics Pipeline – 2006 Unified Shader Model

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Shader Core

Shared Memory

Work Group Processor

GPU Hardware

To provide a common abstraction, they created the unified shader model.

Each thread maps onto a shader core. Multiple shader cores are grouped into
a work group processor. For example, on the AMD RDNA 3 architecture, we
have 128 shader cores per work group processor.

The shader cores of a work group processor can communicate over a shared
memory, which has 128 KiB on AMD RDNA 3 GPUs.

48© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

49 |

Graphics Memory

Graphics Pipeline – 2006 Unified Shader Model

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Shader Core

Shared Memory

Work Group Processor

GPU Hardware

Several such work group processors are on a GPU. On The AMD Radeon
RX 7800 XT, we have 30 work group processors.

The work group processors share a common Graphics Memory. Today, that is
several GiBs large.

49© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

50 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Shader Core

Shared Memory

Work Group Processor

GPU Hardware

Now with such an abstract model of the GPU, it was just obvious to define new
shader types. This gave rise to compute shaders.

50© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

51 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

GPU Abstraction

Thread

Group Shared Memory

Thread Group

GPU Abstraction

Shader Core

Shared Memory

Work Group Processor

GPU Hardware

Compute shaders require a GPU abstraction.

That contain threads, which access a common group shared memory. Threads
are mapped onto shader cores and group shared memory maps to shared
memory.

Threads are clustered into thread groups. On GPU hardware, a thread group
is executed on a work group processor.

51© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

52 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

GPU Abstraction

Thread

Group Shared Memory

Thread Group

// 1D, 2D, 3D Grid of Max. 1024 threads
uint3 gtid : SV_GroupThreadID;

In a compute shader program, the SV_GroupThreadID semantic provides a
3D index in a grid of up 1024 threads of a thread group.

52© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

53 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

GPU Abstraction

Thread

Group Shared Memory

Thread Group

// 1D, 2D, 3D Grid of Max. 1024 threads
uint3 gtid : SV_GroupThreadID;

// 1D, 2D, 3D Grid of Max. 65536 thread groups
// in each dimension
uint3 gid : SV_GroupID;

Device Memory

To locate a thread group, the SV_GroupID semantic provides the programmer
with a 3D index into the grid of thread groups.

53© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

54 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Thread

Group Shared Memory

Thread Group

Device Memory

struct Data {
float3 u;
float2 v;

};
StructuredBuffer<Data> A : register(t0);
StructuredBuffer<Data> B : register(t1);
RWStructuredBuffer<Data> C : register(u0);
[numthreads(128, 1, 1)]
void main(uint3 gtid : SV_GroupThreadID,

uint3 gid : SV_GroupID) {
const uint t = gtid.x + gid.x * 128;
C[t].u = A[t].u + B[t].u;
C[t].v = A[t].v * B[t].v;

}

Compute shaders are programmed using shader programs that adhere to the
SIMD model.

54© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

55 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

struct Data {
float3 u;
float2 v;

};
StructuredBuffer<Data> A : register(t0);
StructuredBuffer<Data> B : register(t1);
RWStructuredBuffer<Data> C : register(u0);
[numthreads(128, 1, 1)]
void main(uint3 gtid : SV_GroupThreadID,

uint3 gid : SV_GroupID) {
const uint t = gtid.x + gid.x * 128;
C[t].u = A[t].u + B[t].u;
C[t].v = A[t].v * B[t].v;

}

Thread

Group Shared Memory

Thread Group

Device Memory

When knowing the thread-group size (in this example 128 threads),
SV_GroupThreadID and SV_GroupID can be used to uniquely identify a
thread. We use such a unique ID to index into memory (in this example a
StructuredBuffer) to perform our computations.

55© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

56 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

 GPU Concepts for Work Graphs

 SIMD

 Work Item

 Work Amplification, Work Reduction

 Compute Shaders

 Mesh Shaders

Thread

Group Shared Memory

Thread Group

Device Memory

So, we got our fourth concept “Compute Shaders.”

56© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

57 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics

Memory

CPU GPU

But how do compute shaders interact with the graphics pipeline?

57© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

58 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU GPU

Dispatch I/O

In this example, a compute shader gets dispatched from the CPU. On the
GPU, the threads of the compute shader process a list of instances coming
from graphics memory.

As an example, we assume that the compute shader’s task is to cull instances
outside the view frustum. The compute shader writes only the visible instances
back to graphics memory.

58© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

59 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

CPU GPU

Dispatch I/O

Next, the graphics pipeline renders only the visible instances. It reads them
from graphics memory and generates a 2D image. That one is written back to
graphics memory.

59© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

60 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU GPU

Dispatch I/O

Then, we dispatch another compute shader. This could, for example, do some
post-processing on the image. Therefore, we read all the pixels, transform
them, and write them back to graphics memory.

60© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

61 |

Graphics Pipeline – 2009 Compute Shaders

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU GPU

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics

Memory

 Compute Shader Problems

 Barriers

 Communication over Graphics Memory

Dispatch I/O

But there are two problems. The first problem is: The barriers. They are
required to avoid read/write hazards between pipelines. A pipeline must finish
its entire computation before any other pipeline can even start. This is assured
by barriers.

This can leave many work group processors idle, especially when a pipeline
computation is about to finish.

61© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

62 |

Graphics Pipeline – 2009 Compute Shaders

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

// Post Process with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU GPU

 Compute Shader Problems

 Barriers

 Device Memory I/O

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics

Memory

Dispatch I/O

The second problem is: The communication between pipelines happens over
graphics memory, which can become a limiting factor.

62© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

63 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Graphics

Memory

CPU GPU

CPU

Memory

ca. 64
GiB

s
ca. 1

TiB

s

PCIe 5.0x16

ca. 59
GiB

s

Interconnect

Bandwidth

GPU Memory

Bandwidth

Here are some numbers: In comparison to other memory buses we have in
our system, 1 TiB/s between the work groups processor of a GPU and
graphics memory seems huge.

63© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

64 |

Itanium 2

GTX580

TPUv3

H100

KNL

Pentium II Xeon

TPUv4

R10000

K40

A100

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

GPU

Adapted from: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall.

RiseLab Medium Blog Post, University of Califonia Berkeley, 2021, March 29. (MIT License)

GPU Memory Bandwidth

GPU Compute Performance

N
o
rm

a
liz

e
d
 S

c
a
lin

g

1996 1999 2002 2005 2008 2014 2017 2020 20232011

Year

HBM
HBM2

HBM2E

GDDR3

GDDR4
GDDR5

100

10000

1000000

1

However, as we can see in this plot, over the last years, the growth in GPU
Compute Performance has outpaced the growth in GPU Memory Bandwidth.

Source: Image adapted from https://github.com/amirgholami/ai_and_memory_wall/blob/main/imgs/pngs/hw_scaling.png

From the paper: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall. RiseLab Medium Blog Post, University of Califonia Berkeley,
2021, March 29.

Available on https://github.com/amirgholami/ai_and_memory_wall/blob/main/README.md

MIT License

Copyright (c) 2021 Amir Gholami

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

64© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

65 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

GPU

ca. 1
TiB

s

Graphics Memory

So even with a bandwidth of 1 TiB/s to graphics memory…

65© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

66 |

Graphics Pipeline – 2009 Compute Shaders

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

GPU

ca. 1
TiB

s

Graphics Memory

 Low

Latency

Shared Mem.

… inside the cores, we have the shared memory which is much faster. In fact,
it has a very low latency compared to graphics memory.

However, it is much smaller in memory capacity.

66© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

67 |

Graphics Pipeline – 2009 Hardware Tessellation

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

So back in 2009, I/O was, of course, already a problem. To save I/O, hardware
tessellation was introduced in 2009.

67© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

68 |

Graphics Pipeline – 2009 Hardware Tessellation

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Compute Shader

Hull Shader

Domain Shader

Tessellator

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

It contains two more programmable stages, hull shader and domain shader,
and a fixed-function hardware tessellator.

68© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

69 |

Graphics Pipeline – 2009 Hardware Tessellation

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Hardware tessellation allows to amplify geometry from a couple of control
points to a larger number of triangles. But the rather rigid tessellation patterns
do not offer the desired degree of freedom on topology.

69© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

70 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs Compute Shader

This is why in 2018, mesh shading was added to the pipeline. Mesh shading is
important for Work Graphs, too.

70© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

71 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

Graphics

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

CPU

Dispatch I/O

So, what problem does mesh shading solve? Consider a compute shader that
creates or transforms geometry. However, the compute shader must write its
output to graphics memory.

71© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

72 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

Graphics

Memory

// Process Geometry with Computer Shader
commandList->SetPipelineState(...);
commandList->Dispatch(...);
commandList->Barrier(...);

// Process Geometry with Graphics Pipeline
commandList->SetPipelineState(...);
commandList->DrawIndexedInstanced(...);
commandList->Barrier(...);

CPU

Dispatch I/O

Then, the graphics pipeline can read from graphics memory. Therefore, we
have one memory write and one memory read, which we could save.
Remember, graphics memory access is rather expensive.

72© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

73 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

Graphics

Memory

// Process with Mesh Shader
commandList->SetPipelineState(...);
commandList->DispatchMesh(...);

CPU

Dispatch I/O

The idea of mesh shading is to directly feed the rasterizer from the compute
shader. This saves the extra graphics memory access.

73© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

74 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

CPU

Pixel Shader

Output Merger

Rasterizer

Mesh Shader// Process with Mesh Shader
commandList->SetPipelineState(...);
commandList->DispatchMesh(...);

This gives us a third pipeline: the Mesh Shading Pipeline.

74© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

75 |

[outputtopology("triangle")]
[numthreads(128, 1, 1)]
void main(
 uint3 gtid : SV_GroupThreadID,
 uint3 gid : SV_GroupID,
 out vertices float3 smallVertexBuffer[256],
 out indices uint3 smallIndexBuffer[256])
{

}

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

Small Vertex Buffer

Small Index Buffer

GPU

Meshlet

Like a compute shader, you launch a grid of mesh shader thread groups. So,
in the code, we have our SV_GroupThreadID and SV_GroupID semantics.
Each mesh shader thread group can have up to 128 threads. We can output
triangles (or other primitives) to a small vertex and index buffer with up to 256
vertices and triangles each. A mesh shader output is like a small mesh.
Therefore, it is commonly called a meshlet.

75© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

76 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader[outputtopology("triangle")]
[numthreads(128, 1, 1)]
void main(
 uint3 gtid : SV_GroupThreadID,
 uint3 gid : SV_GroupID,
 out vertices float3 smallVertexBuffer[256],
 out indices uint3 smallIndexBuffer[256])
{

}

GPU

Meshlets

With multiple mesh shader thread groups, we can output multiple meshlets.

76© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

77 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

V = 128

T = 256

If you want to render a larger model, you first decompose it into multiple
meshlets in a preprocess.

77© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

78 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

And then run a mesh shader thread group for each meshlet.

78© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

79 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

The mesh shader thread groups then transform these meshlets and pass them
over to the rasterizer.

79© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

80 |

 GPU Concepts for Work Graphs

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

More info:

Mesh shaders on AMD RDNA graphics cards
https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/

 GPU Concepts for Work Graphs

 SIMD

 Work Item

 Work Amplification, Work Reduction

 Compute Shaders

 Mesh Shaders

Mesh shading is a super light-weight version of work graphs.

For more information see this blog post series:
https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/

80© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/

81 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

 GPU Concepts for Work Graphs

 Why Work Graphs?

 GPU Concepts for Work Graphs

But now that we have mesh shading, we have all concepts together that we
need for work graphs.

81© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

82 |

Graphics Pipeline – 2018 Mesh Shading

Pixel Shader

Output Merger

Rasterizer

Mesh Shader

 Why Work Graphs?

The question now is: why do we even need Work Graphs?

82© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

83 |

Graphics Pipeline – Execute Indirect

2002

Shader Model 2

 Programmable

Vertex/Pixel

Shader Pipeline

2006

Geometry Shaders (D3D10)

Hardware Tessellation (Consoles)

2009

Hardware Tessellation (D3D11)

Compute Shaders

2015

Execute Indirect (D3D12)

2018

Mesh Shading

Mar 2024

Work Graphs

Pixel Shader

Output Merger

Input Assembler

Vertex Shader

Rasterizer

Geometry Shader

Hull Shader

Domain Shader

Tessellator

Compute Shader

To answer that question, let’s first look what another addition to the pipelines
attempt to solves: I am speaking of “execute indirect.”

83© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

84 |

Compute

Pipeline

Graphics

Pipeline

Graphics Pipeline – Execute Indirect

Suppose you have a compute pipeline and a graphics pipeline.

84© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

85 |

Graphics Pipeline – Without Execute Indirect

Compute Pipeline Graphics Pipeline

Barrier

CPU

GPU
Graphics Memory

Time

Dispatch GPU I/O

And you kick of your compute pipeline from the CPU.

The GPU then does some computation using the compute pipeline. To that
end, it reads data from graphics memory and writes its results back to graphics
memory.

To make sure that everything is written into graphics memory, we must include
a barrier.

Only after we have reached the barrier, we can kick off the graphics pipeline.

So, we must wait. The graphics pipeline can then read the data from memory
and produce the pixels output. After that we need another barrier.

These barriers can become a severe performance problem, because your
system must wait actively.

85© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

86 |

Graphics Memory

Graphics Pipeline – Without Execute Indirect

Producer Consumer

N Data

CPU

GPU

Time

BarrierDispatch GPU I/O

The situation gets even more severe when the producer (i.e., the compute
kernel) produces a varying number of data entries.

As an example, imagine a scene with tens of thousands of objects. The task of
the producer is to cull invisible objects. After the producer kernel has run, it
outputs 5000 visible objects to data. There, it writes N = 5000.

86© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

87 |

Graphics Memory

Graphics Pipeline – Without Execute Indirect

Producer Consumer

N Data

CPU

GPU

N &Data
Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

N &Data

The consumer then renders the 5000 objects. But to do so, the CPU must
configure the draw call and it must know that number N.

So, the CPU must read N from the GPU. Therefore, we must include a fence
that synchronizes CPU and GPU. Only after that fence can the CPU read the
number N and properly configure the draw call.

87© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

88 |

Graphics Memory

Graphics Pipeline – Without Execute Indirect

Producer Consumer

N Data

CPU

GPU

N &Data

N

&Data

Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

With that handle to the data and the number of objects, the CPU can dispatch
5000 draw calls to the visible objects.

Note that producer and consumer need to agree up-front on the handle to data
(&Data).

88© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

89 |

&N &Data&N &Data&N &Data

Graphics Memory

Graphics Pipeline – With Execute Indirect

Producer Consumer

N Data

CPU

GPU

Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

With “execute indirect”, we also get a handle to where the number N is stored.
Let’s see why that can improve things.

89© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

90 |

Graphics Memory

Graphics Pipeline – With Execute Indirect

Producer Consumer

N Data

CPU

GPU

&N

&Data

&N &Data
Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

The producer gets both handles: &N and &Data. As before, it writes out the
visible objects (Data) and the number of visible objects (N).

90© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

91 |

Graphics Memory

Graphics Pipeline – With Execute Indirect

Producer Consumer

N Data

CPU

GPU

&N

&Data

&N &Data&N &Data
Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

Now the CPU knows the location of the handles on the GPU but not the actual
values behind it. So, there is no need to transfer the actual values.

And therefore, no need for fence.

91© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

92 |

&N &Data

Graphics Memory

Graphics Pipeline – With Execute Indirect

Producer Consumer

N Data

CPU

GPU

&N

&Data

&N

&Data

Time

BarrierDispatch GPU I/O GPU-CPU I/OFence

All the CPU needs to do is call the consumer with handles as parameters
instead of the actual values.

92© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

93 |

Graphics Memory

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

N Data

CPU

GPU

&N &Data&N &Data

&N

&Data

&N

&Data

Time
 Execute Indirect Problems

 Barriers

BarrierDispatch GPU I/O GPU-CPU I/OFence

However, we still need the barriers, since the producer and consumer still
communicate over graphics memory.

93© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

94 |

Graphics Memory

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

Data

CPU

GPU

&N &Data&N &Data

&N

&Data

&N

&Data

N = 0

Time
 Execute Indirect Problems

 Barriers

 Empty Launches

BarrierDispatch GPU I/O GPU-CPU I/OFence

Additionally, if N = 0, there would not be any reason for the CPU to dispatch
the Consumer. But the CPU has no idea about N being 0, so it must dispatch
the draw call no matter what.

That is not dangerous, but we have the overhead of a launch including the
barrier.

94© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

95 |

Graphics Memory

Data

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

N Output

CPU

GPU

&N &Data&N &Data

&N

&Data

&N

&Data

Unused

Time
 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

BarrierDispatch GPU I/O GPU-CPU I/OFence

Another problem with execute indirect is, that we have to reserve memory for
what could end up in data. Going back to the culling example, we could end up
rendering all objects or zero objects. Since we do not know that up front, we
must always be prepared for the worst case and thus potentially waste
memory.

95© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

96 |

Graphics Memory

Data

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

N Output

CPU

GPU

&N &Data&N &Data

&N

&Data

&N

&Data

Overflow

Time
 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

BarrierDispatch GPU I/O GPU-CPU I/OFence

We must always account for the worst-case scenario. If not, we could run into
dangerous memory overflow situations.

96© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

97 |

Graphics Pipeline – Execute Indirect – Problems

Producer Consumer

 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

BarrierDispatch GPU I/O GPU-CPU I/OFence

So those are all existing execute-indirect problems.

97© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

98 |

Graphics Pipeline – Mesh Shading – Problems

Pixel Shader

Output Merger

Rasterizer

Producer

ConsumerMesh Shader

Amplification

Could we solve those with mesh shaders? I have not yet mentioned the
amplification shader stage of the mesh-shading pipeline.

An amplification shader can control the number of mesh shader thread groups
to launch directly on the GPU. In essence, this is a little consumer-producer
pipeline. So, for very simple scenarios, mesh shading, can solve some of the
issues.

98© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

99 |

Consumer

Graphics Pipeline – Mesh Shading – Problems

Producer Mesh Shading Problems

 Graphics Only

 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

But mesh shading is graphics only. It has no compute support.

99© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

100 |

Consumer & Producer

Graphics Pipeline – Mesh Shading – Problems

Producer Consumer Mesh Shading Problems

 Graphics Only

 Self-Recursion

 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

It breaks, if you want something like self-recursions, as for example with
recursive subdivision.

100© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

101 |

Producer Consumer & Producer Consumer & ProducerProducer Consumer & Producer Consumer & Producer

Graphics Pipeline – Mesh Shading – Problems

Producer Consumer & Producer Consumer & Producer Mesh Shading Problems

 Graphics Only

 Self-Recursion

 Long Chains

 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

The mesh-shading pipeline has only one or two programmable stages. Long
chains are therefore not possible…

101© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

102 |

Graphics Pipeline – Mesh Shading – Problems

Producer Consumer & Producer Consumer & Producer

Producer Consumer & Producer Consumer & Producer

Producer Consumer & Producer Consumer & Producer

Consumer & Producer Mesh Shading Problems

 Graphics Only

 Self-Recursion

 Long Chains

 Parallel Chains

 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

… or even multiple different shader chains.

102© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

103 |

Graphics Pipeline – Mesh Shading – Problems

Producer Consumer & Producer Consumer & Producer

Consumer & Producer Consumer & Producer

Consumer & Producer Consumer & Producer

 Mesh Shading Problems

 Graphics Only

 Self-Recursion

 Long Chains

 Parallel Chains

 Classify-and-Execute

 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

Diverging branches in a shader chain such as with the classify-and-execute
pattern (see later in the Material Shading section of this course) is also not
possible.

103© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

104 |

Why Work Graphs?

 Compute Shader Problems

 Barriers

 Device Memory I/O

 GPU Concepts for Work Graphs

 Why Work Graphs?

 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

 Mesh Shading Problems

 Graphics Only

 Self-Recursion

 Long Chains

 Parallel Chains

 Classify-and-Execute

Those problems give us good reasons to define Work Graphs to solve all
these problems.

104© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

105 |

Why Work Graphs?

Work Graphs can solve all these problems.

 Compute Shader Problems

 Barriers

 Save I/O

 GPU Concepts for Work Graphs

 Why Work Graphs?

 Execute Indirect Problems

 Barriers

 Empty Launches

 Wasted Memory

 Worst-Case Allocation

 Mesh Shading Problems

 Graphics Only

 Self-Recursion

 Long Chains

 Parallel Paths

 Classify-and-Execute

We will show you that Work Graphs can help you solve these problems.

Note: To some extent having, multiple compute queues can deal with these
problems, too. Likewise enhanced barriers (https://microsoft.github.io/DirectX-
Specs/d3d/D3D12EnhancedBarriers.html) help with better managing barriers.

105© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://microsoft.github.io/DirectX-Specs/d3d/D3D12EnhancedBarriers.html
https://microsoft.github.io/DirectX-Specs/d3d/D3D12EnhancedBarriers.html

106 |

1. Go to: https://wgpa.short.gy/

github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground

2. Download the Latest Release

3. Unzip WorkGraphsPlayground.zip

4. Open Folder WorkGraphsPlayground

5. Run WorkGraphPlayground.exe

6. Optional: DownloadWarpAdapter.bat

If you need Software Emulation

7. Open Editor in Folder WorkGraphsPlayground

Work Graph Playground App

Testing adapter "Microsoft Basic Render Driver": Failed
to create D3D12 device.
WARP adapter does not support D3D feature level 12.2
and work graphs.
 See readme.md#running-on-gpus-without-work-graphs-
support for instructions on installing latest WARP
adapter or run DownloadWarpAdapter.bat if you are using
pre-built binaries.
No device with work graphs support was found.

This is now a reminder to download the latest Work Graph Playground App,
because in the next section we are going to use it.

So prepare yourself by opening the folder WorkGraphsPlayground in your
code editor.

106© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://wgpa.short.gy/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground

107 |

Work Graph Playground App

Useful Command Line Options

1. Software Emulation of the GPU

--forceWarpAdapter

2. Print out Debug Information (Requires Graphics Tools)

--enableDebugLayer

All you need to do, is edit the HLSL shader files in your editor.

107© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

108 |

Work Graph Playground App

So please open tutorials/tutorial-0/HelloWorkGraphs.hlsl

108© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

109 |

Work Graph Playground App

We provide detailed explanation of the tutorial template and the tutorial tasks.
As we will explain a selection of these tasks in this course, you may wish to
fold these block comments for easier viewing.

In Visual Studio Code, this can be done with the “Fold All Block Comments”
command.

109© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

110 |

Work Graph Playground App

This should hide the large blocks of comments that might disturb you during
the course.

110© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

111 |

Work Graph Playground App

We also provide a sample solution for each tutorial. You can even open both
your and our solution in a code-diff editor to compare them.

111© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

112 |

Work Graphs HLSL Cheat Sheet

Additionally, for quick reference, we also provide a cheat sheet for you to look
up common Work Graphs syntax.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 112

113 |

Connect with us

gpu-work-graphs

You can also join the gpu-work-graphs channel on the AMD Developer
Community Discord server at https://discord.gg/amd-dev, to connect with the
course instructors or other course participants.

113© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://discord.gg/amd-dev

114 |

GPU Work Graphs – Course Agenda

Introduction & Foundations 14:00 – 14:30

Concepts 14:30 – 15:30

Nodes

Records

Launches

Break

Advanced Work Graphs 15:45 – 16:45

Material Shading

Recursion & Synchronization

Procedural Generation

Under the hood

Wrap-Up 16:45 – 17:00

Here is a brief overview of the topics that we will cover today.

114© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

115 |

Work Graph Concepts

Nodes

We begin our dive into Work Graphs with the three basic concepts that are key
for Work Graphs: nodes, records, and launches. We now start with nodes.

115© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

116 |

Work Graphs

DispatchDispatch Dispatch

Execution

Command list

Before work graphs, any work that we wish to carry out on the GPU had to be
submitted as individual commands as part of a command list. For this course,
we focus on compute work loads, thus, the commands shown here are all
dispatches. The emphasis with these command lists is really on the list part,
as the GPU would process these command one after the other, thus limiting
our options for any type of dynamic decision making on the GPU. In the
“Introduction & Foundations” part of this course, we have seen the hassle with
fences, barriers, empty launches, and CPU-GPU communication.

116© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

117 |

Work Graphs

Dispatch DispatchDispatchGraph

Execution

Command list

With Work Graphs, we can replace these different dispatch commands with a
single new command: DispatchGraph.

117© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

118 |

Command list

Execution

Node Node NodeNodeNode

Work Graphs

Inside this DispatchGraph command, we no longer have a single compute
kernel, but rather a series of connected compute kernel called “nodes”. These
nodes are programmed in a similar way to regular compute kernel/compute
shaders using the HLSL programming language and we will dive into the
specific syntax in a bit.

118© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

119 |

Work Graphs

Node

Node

Node

Node

Node

Execution

Directed

Acyclic

Graph

The graph topology of a work graph is, however, not limited to a single long
chain of nodes but instead can be classified as a directed acyclic graph (DAG).

As the name “Work Graphs” might suggest, the execution model of this graph
is centered around work flowing along the edges of the graph from one node
to the next. Thus, edges of our graph are directed. Each node can have
multiple in- and out-going edges, as shown here.

Note that while the graph depicted here has a single root node on the far left,
work graphs can have multiple such root nodes.

Additionally, cycles* are not allowed in the graph. Therefore, there exists a
fixed execution order, shown here going from left to right.

*Note: Work Graphs do allow trivial cycles going from one node to itself. More
on this in the “Advanced Work Graphs” section.

119© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

120 |

Work Graphs

Node

Node

Node

Node

Node

Execution

Max Depth:

32 Nodes

The longest chain of nodes from the first producer node (in graph theory often
referred to as source node) to the last consumer node (also referred to as leaf
node), is limited to 32 nodes. The Work Graphs specification refers to this as
the maximum graph depth.

120© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

121 |

Record

Work Graphs

Node

Node

Node

Node

Execution

Node

As mentioned before, the execution model is based on work flowing along the
edges of the graph. These work items are referred to as records.

121© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

122 |

Producer

Consumer

Work Graphs

Node

Node

Node

Node

Consumer

Execution

Node

Each node can produce one or more records for one or more other nodes,
which then consume these records, thus creating a producer-consumer
relationship between nodes.

122© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

123 |

Producer

Work Graphs

Node

Node

Node

Node

Producer

Execution

Node

An inner node, i.e., with both in- and out-going edges, is both a consumer and
a producer at the same time.

123© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

124 |

Producer

Work Graphs

Node

Node

Node

Node

Producer

Execution

Node

These producer-consumer chains repeat until the leaf nodes are reached.

124© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

125 |

Work Graphs

Node

Node

Node

Records ≠ Dispatches

Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

In contrast to other GPU graph programming models, such as CUDA graphs,
the records of a work graph are not dispatches to a particular node/compute
kernel. Meaning, if a producer node sends a record to a consumer node, the
consumer node is not immediately dispatched by the work graph runtime.

125© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

126 |

Work Graphs

Node

Node

Node

Records ≠ Dispatches

Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

Instead, you can imagine that there is a virtual queue attached to each node.
Incoming records are queued up and execution of the node is deferred. It is,
however, guaranteed that each incoming record will eventually be processed
by the consumer node.

126© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

127 |

Work Graphs

Node

Node

Node

Records ≠ Dispatches

Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

127© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

128 |

Work Graphs

Node

Node

Node

Records ≠ Dispatches

Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

Once the work graph runtime deems enough work is available in the queue,
the node is executed. This deferred approach allows the work graph runtime to
more efficiently use the available GPU resources.

128© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

129 |

Work Graphs

Node

Node

Node Node

Execution

tutorial-0/HelloWorkGraphs.hlsl

void Entry() {

} Node

Dispatching the graph is done by sending records (e.g., from the CPU) to an
entry node. These initial records are often referred to as entry work.

A graph dispatch can contain entry work for multiple nodes. Entry work can
also target inner nodes, i.e., nodes that are also targeted by other nodes as
well.

129© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

130 |

Work Graph Concepts – Nodes

HelloWorkGraphs.hlsl

[Shader("node")]
[NodeIsProgramEntry]
[NodeLaunch("thread")]
[NodeId("Entry", 0)]
void EntryFunction() {

}

tutorial-0/

Work Graph

Now, let’s have a look at the HLSL syntax for declaring a work graph node.

At its core, a work graph node is an HLSL void-function with additional
attributes. In our case, we named our function EntryFunction, as it will be
the entry node to our graph. First, to be able to compile this function as a work
graph node, we need to annotate it with a [Shader("node")] attribute.

Next, we mark this function as an entry function with the
[NodeIsProgramEntry] attribute.

Work Graphs support multiple launch modes, which determine how incoming
records are processed. We set the launch mode with the [NodeLaunch(...)]
attribute. We cover the available node launches in greater detail later. For now,
we opt for the "thread" launch mode. In this launch mode, you write the code
of your node function from the perspective of a single thread. The Work
Graphs runtime will, of course, attempt to batch multiple threads of the same
function together in a thread group to increase SIMD efficiency.

Lastly, we can optionally assign a unique node id to our node with the
[NodeId(...)] attribute. A node id is a pair consisting of an identifier string
and an optional index. We uncover what the index is used for, when we
discuss Material Shading in the Advanced Work Graphs section.

If we omit the [NodeId(...)] attribute, the D3D12 runtime will automatically
assign a node id based on the node function name. In our example, this auto-
generated node id would be [NodeId("EntryFunction", 0)], as we named
our function EntryFunction.

130© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

131 |

Work Graph Compilation Model

HelloWorkGraphs.hlsl dxc.exe

dxc.exe -T vs_6_0 -E VSMain ...

DXIL Shader

Work Graph

With our shader code complete, we can focus on compiling it for use in a work
graph.

When we compile regular shaders, i.e., none Work Graph shaders like
compute-, vertex- or pixel-shaders, we compile HLSL files to a single DXIL
shader by specifying the shader type (e.g., vs_... for vertex shaders or
ps_... for pixel shaders) and a shader entry point (i.e., the name of e.g., our
vertex shader function).

131© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

132 |

Work Graph Compilation Model

HelloWorkGraphs.hlsl dxc.exe

dxc.exe -T lib_6_8 ...

DXIL Library

To compile our source file for use with Work Graphs, we need to compile it as
a DXIL library, by setting the target to lib_....

DXIL libraries can contain multiple nodes, thus we do not need to specify an
entry point. Instead, all functions that we annotated with the
[Shader("node")] attribute are included in the compiled library.

132© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

133 |

Work Graph Compilation Model

DXIL Library

DXIL Library

DXIL Library

DXIL Library

We can then assemble one or more of these DXIL libraries into a work graph.

133© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

134 |

Work Graph Compilation Model

Execution

Node

Node

Node

Node

Node

Node

The D3D12 runtime takes the nodes in the DXIL libraries and validates
connections between them.

The graph compilation fails if missing nodes (i.e., producers without a
matching consumer node) or topological errors (e.g., cycles) are detected.

134© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

135 |

Work Graph Compilation Model

Execution

NodeEntry

However, in our example from before, we only have a single node, named
“Entry”.

135© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

136 |

Work Graph Concepts – Nodes

This node is part of the first tutorial in our Work Graph Playground App.

The “Entry” node prints a “Hello Work Graphs!” message along with
instructions for accessing the tutorial.

In the Work Graphs Playground App, you do not have to worry about
compilation, as this is fully taken care of by the app. All you need to do to
follow along with the tutorial is to run the WorkGraphsPlayground.exe and
open tutorials/tutorial-0/HelloWorkGraphs.hlsl in an editor of your
choice.

136© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

137 |

Work Graph Concepts – Nodes

Execution

WorkerEntry

With just a single node, however, we cannot show the true capabilities of work
graphs, thus we want to create a second node. Here, we opt to call this node
“Worker”.

137© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

138 |

Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Worker", 0)]
void WorkerFunction() {
 ...
}

To specify the “Worker” node, we write another HLSL function called
WorkerFunction. We again add the same [Shader("node")] and
[NodeLaunch("thread")] attributes.

To name our node “Worker”, we add a matching [NodeId("Worker", 0)]
attribute.

You will find this code already in the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl on line 114.

138© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

139 |

Work Graph Concepts – Nodes

Nothing exciting is happening so far. If you look at the code in the
WorkerFunction, you would expect a

Hello <your name> from the "Worker" node!

to show up somewhere on screen, but it isn’t.

So why is our WorkerFunction not yet working?

139© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

140 |

Work Graph Concepts – Nodes

Execution

WorkerEntry

So far, we have only declared both the “Entry” and “Worker” function, but
crucially, we have not set up the connection between them.

140© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

141 |

Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(

) {
}

EmptyNodeOutput WorkernodeOutput
[NodeId("Worker")]
[MaxRecords(1)]

...

To fix this, we need to go back to our EntryFunction and declare a node
output. Node outputs are part of the function signature and form the edges
between the nodes in our graph.

Here, we declare a parameter nodeOutput of type EmtpyNodeOutput. The
type of node output will determine the type of record that we want to send
between the nodes, but more on those later. For now, we opt for an empty
record, hence the EmptyNodeOutput type.

To target our previously created “Worker” node, we can use the
[NodeId(...)] attribute to specify which node we want to send record(s) to.
This attribute is again optional, and if none is present, the node id will be
inferred by the name of the node output parameter. Thus, if we want to omit
the [NodeId(...)] attribute here, we have to write EmptyNodeOutput
Worker, to target our “Worker” node.

Lastly, we need to declare the maximum number of records that we want to
send with the [MaxRecords(...)] attribute. In our example, we only send a
single record.

You will again find this code in the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl on line 64.

141© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

142 |

Work Graph Concepts – Nodes

If we check back with the Work Graph Playground App, we still do not see the
message from the “Worker” node.

142© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

143 |

Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(
 [MaxRecords(1)]
 [NodeId("Worker")]
 EmptyNodeOutput nodeOutput
) {
 ...

 //
}

nodeOutput.ThreadIncrementOutputCount(1);

The reason for this is simple: while we have declared an output from “Entry” to
“Worker” and thus formed a connection between these two nodes, we have
not actually sent any records yet.

In the tutorial file tutorials/tutorial-0/HelloWorkGraphs.hlsl on line
106, you’ll find the commented-out code above.

143© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

144 |

Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(
 [MaxRecords(1)]
 [NodeId("Worker")]
 EmptyNodeOutput nodeOutput
) {
 ...

}
nodeOutput.ThreadIncrementOutputCount(1);

Uncomment this line!

You can see that we’re now using the nodeOutput parameter that we declared
before and incrementing the output count by one, thus sending a single record
to the “Worker” node.

144© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

145 |

Work Graph Concepts – Nodes

Save your file in the editor and look at the console output of the Work Graphs
Playground App. It automatically detects when you change a file and tries to
recompile it.

There you will also see error messages. If you run into compile errors, the last
successfully compiled work graph continues to execute.

145© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

146 |

Work Graph Concepts – Nodes

Then you should see, that the code of the “Worker” node is executed and the
message is printed on screen.

146© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

147 |

Work Graph Concepts – Nodes

Your next task is to customize the welcome message with your name.

Warning: Do not copy your answer from your neighbor. We’ll find out!

147© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

148 |

Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void WorkerFunction()
{
 ...
 PrintCentered(cursor, "Hello <your name>
}

SIGGRAPH 2025...!");

Head back to the tutorial file tutorials/tutorial-
0/HelloWorkGraphs.hlsl and change the message on line 129.

We instructors send out our greetings to everyone at SIGGRAPH 2025.

Save your file in your code editor…

148© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

149 |

Work Graph Concepts – Nodes

… look at the console and … wait for it … until the work graph has compiled…

149© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

150 |

Work Graph Concepts – Nodes

… and congratulations, you just finished your first work graph tutorial .

150© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

151 |

Work Graph Concepts – Nodes

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(
 [MaxRecords(1)]
 [NodeId("Worker")]
 EmptyNodeOutput nodeOutput
) {
 ...

 nodeOutput.ThreadIncrementOutputCount(1);
}

2

2

Next, let’s see what happens when we send two records to the “Worker” node.

First, we increment the [MaxRecords(...)] attribute from 1 to 2. This
means, we may now output up to two records. Second, we change the code of
the EntryFunction itself to increment the output count by two instead of one.

151© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

152 |

Work Graph Concepts – Nodes

If we save the file again and go back to the Work Graph Playground App, we
see no effect. However, in fact, the “Hello SIGGRAPH 2025 from the “Worker”
node!” is written twice.

152© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

153 |

Work Graph Concepts – Nodes

Execution

WorkerEntry

?

The reason why we do not see the message twice is simple: we are sending
empty records. Thus, while the “Worker” node is executed twice, it is printing
the same message at the same location every time.

So next, we are going to see how we can add data to our records, to change
the behavior of a consumer node based on data in the record.

153© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

154 |

Work Graph Concepts

Records

After having learnt about nodes, we learn about records as a way to send data
between nodes, next.

154© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

155 |

Work Graph Concepts – Records

As you have already successfully completed the first tutorial, it is now time to
move on to the next one.

Select “Tutorial 1: Records” from the menu on the top-left of the Work Graph
Playground App and open tutorials/tutorial-1/Records.hlsl in your
code editor.

155© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

156 |

Work Graph Concepts – Records

Your Work Graph Playground App should now look like this.

156© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

157 |

Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

In this tutorial, we have six tasks in which we are going to learn how to use
records. We complete the first five tasks one at a time and explain the
concepts of records along the way.

157© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

158 |

Work Graph Concepts – Records

Execution

WorkerEntry

Record

Node Output

So far, we have seen how we can declare nodes, how we can add edges
between nodes by declaring node outputs, and we have seen how we can
send empty records from one node to another.

Up until now, we have only used empty records, meaning we only
communicated to the Work Graphs runtime, that we want to launch a particular
node, but we have not sent any data.

158© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

159 |

Work Graph Concepts – Records

tutorial-0/HelloWorkGraphs.hlsl

...
void EntryFunction(

) {
}

EmptyNodeOutput nodeOutput
[NodeId("Worker")]
[MaxRecords(1)]

...

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Worker", 0)]
void WorkerFunction() {
 ...
}

Let us summarize the concept of Work Graphs nodes detailed in the previous
tutorial-0.

There, we had a producer node, implemented by the EntryFunction that can
produce at most a single EmptyNodeOutput for the Node Worker.

At the consuming node, Worker, the WorkerFunction executes code once a
nodeOutput is sent off. Both nodes are connected over the
[NodeId("Worker")] attribute of nodeOutput.

159© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

160 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
[NumThreads(4, 1, 1)]
void Entry(

 [MaxRecords(1)]
 EmptyNodeOutput PrintHelloWorld
) {
}

[NodeId("PrintHelloWorld")]

Now, in this tutorial-1, we also start out by sending an EmptyNodeOutput
PrintHelloWorld to another consuming node "PrintHelloWorld".

160© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

161 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
[NumThreads(4, 1, 1)]
void Entry(
 [MaxRecords(1)]
 EmptyNodeOutput PrintHelloWorld
) {
 // [Task 1]: Emit a single empty record
 // to the "PrintHelloWorld" node.

}

One difference with this tutorial is that the Entry node no longer uses the
"thread" launch mode, but it uses the "broadcasting" launch mode,
instead. We will cover the specifics of launch modes shortly. For now, the main
difference of the broadcasting launch mode over the thread launch mode is
that we are programming a thread group instead of a single thread. In our
example, our thread group consists of four threads indicated by the
[NumThreads(4, 1, 1)] attribute. This is very much like you would program
a compute shader.

When we are using thread-group launch modes (i.e., not "thread") for our
nodes, the [MaxRecords(...)] attribute declares the maximum number of
records the entire thread group can send to a particular consumer node. In this
case, this means that all four threads together can send one single empty
record to the "PrintHelloWorld" node.

161© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

162 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
[NumThreads(4, 1, 1)]
void Entry(
 [MaxRecords(1)]
 EmptyNodeOutput PrintHelloWorld
) {
 // [Task 1]: Emit a single empty record
 // to the "PrintHelloWorld" node.
 PrintHelloWorld.ThreadIncrementOutputCount(1);
}

Thread

Our first task in this tutorial is to send a single record to the
"PrintHelloWorld“ node. However, if we were to use

PrintHelloWorld.ThreadIncrementOutputCount(1);

as we did in the previous tutorial, every one of our four threads would
increment the output count by one, thus sending one empty record per thread.

162© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

163 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
[NumThreads(4, 1, 1)]
void Entry(
 [MaxRecords(1)]
 EmptyNodeOutput PrintHelloWorld
) {
 // [Task 1]: Emit a single empty record
 // to the "PrintHelloWorld" node.
 PrintHelloWorld.GroupIncrementOutputCount(1);
}

To solve this problem, we would either have to change the code to only have a
single thread increment the output count, or we can use

PrintHelloWorld.GroupIncrementOutputCount(1);

instead. As the name implies, this will increment the output count, i.e., send an
empty record once per thread group instead of once per thread.

163© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

164 |

Work Graph Concepts – Records

Thread Group

ThreadIncrementOutputCount

To summarize the difference, consider a thread group: Each wiggly line
represents a thread of the thread group. If we call
ThreadIncrementOutputCount, every single thread emits a single record,
indicated by the package at the bottom of each wiggly line.

164© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

165 |

GroupIncrementOutputCount

Work Graph Concepts – Records

Thread Group

If you call GroupIncrementOutputCount, instead, the entire group outputs a
single record.

165© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

166 |

Work Graph Concepts – Records

Once you complete Task 1, i.e., by adding the statement

 PrintHelloWorld.GroupIncrementOutputCount(1);

at the appropriate location, you should see a Hello World message (without
the red box) on your screen.

Hint: This will become important again for Task 6 of this tutorial.

166© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

167 |

Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

This concludes our first task.

167© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

168 |

Work Graph Concepts – Records

Execution

WorkerEntry

?

Before we go on to the next task, we must finally tell you, how to add data to
the record. So far, all the records that we have sent were empty.

168© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

169 |

Work Graph Concepts – Records

Execution

WorkerEntry

struct PrintBoxRecord {
 ...
};

Next, we will add some data to it to parameterize a node launch.

169© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

170 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

struct PrintBoxRecord {
 // Top-left pixel coordinate for a box.
 int2 topLeft;
 // Index to print inside the box.
 int2 index;
};

In Work Graphs, we use structs to specify the data layout of the record’s
payload. Here you seen an example of such a struct.

170© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

171 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
void Entry(
 [MaxRecords(4)]
 [NodeId("PrintBox")]
 NodeOutput<PrintBoxRecord> boxOutput
) {
}

Max. 256 Records

To enable Entry node to emit such a record, we must specify three things:

1. We must specify, that the Entry node emits records, whose data structure
is defined by struct PrintBoxRecord. We do this by adding
NodeOutput<PrintBoxRecord> boxOutput to the node’s function
parameter list. This is similar to the EmptyNodeOutput we were using
before, but with NodeOutput<...>, we can specify the type of data or
payload that we want to send with each record.

2. We must specify which node consumes those records. We do this by
adding the attribute [NodeId("PrintBox")] to the parameter
boxOutput. Here, the node PrintBox receives those records.

3. Finally, we must provide an upper bound for the number of records the
producer may output. This is done by yet another attribute attached to
boxOutput, i.e. [MaxRecords(4)].

You can send up to 256 records per thread group across all of its NodeOutput
parameters.

171© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

172 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
void Entry(
 NodeOutput<PrintBoxRecord> boxOutput,
 NodeOutput<...> ...,
 NodeOutput<...> ...,
 NodeOutput<...> ...
) {
}

Max. 32 kiB Output Size

Max. 1024 Outputs

If you have multiple NodeOutputs, make sure that the total number of all
NodeOutputs of a given node does not exceed 1024 NodeOutputs per thread
group.

Further, the total amount of memory that all of these NodeOutputs combined
may produce must not exceed 32 kiB.

172© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

173 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
void Entry(
 [MaxRecords(4)]
 [NodeId("PrintBox")]
 NodeOutput<PrintBoxRecord> boxOutput
) {
}

What we see here is that this node is capable of sending four output records.
However, we have not yet seen, how this node does send records.

173© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

174 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
...
void Entry(
 ...
 NodeOutput<PrintBoxRecord> boxOutput
) {
 ...
 ThreadNodeOutputRecords<PrintBoxRecord> boxOutputRecord =
 boxOutput.GetThreadNodeOutputRecords(hasBoxOutput ? 1 : 0);

 if (hasBoxOutput) {
 boxOutputRecord.Get(0).topLeft = threadBoxPosition;
 boxOutputRecord[0].index = dispatchThreadId;
 }

 boxOutputRecord.OutputComplete();
}

threadBoxPosition
dispatchThreadId

Here is how we actually send out records from our node.

First, we obtain ThreadNodeOutputRecords from the NodeOutput by calling
GetThreadNodeOutputRecords. The parameter of that function specifies the
number of output records per thread we want to write and send. Here, we want
to output either 0 or 1 record per thread. The decision whether a given thread
wants to output a record is stored in a per-thread boolean hasBoxOutput.

Calling ThreadNodeOutputRecords must be thread-group uniform. That
means, ThreadNodeOutputRecords must be called by all threads in lock-step
at the same time by all threads of the thread-group. Otherwise, you can run
into undefined behavior, which may result in crashes. With the tertiary operator
(i.e., hasBoxOutput ? 1 : 0) inside the parameter list of
GetThreadNodeOutputRecords, we can assure that all threads call this
function, even if some threads (i.e., those with hasBoxOutput = false) do
not with to output a record.

If a given thread needs to send an output, we must fill the record. To get
access to the individual PrintBoxRecord, you can either use the Get function
or the []-operator on the ThreadNodeOutputRecords. The provided
parameter is the index to the record. Here, we only have one output per thread
and its index is 0.

With the access to the record, you can read/write the member variables of the
particular record struct.

Once all records are filled, you can send it off, by calling OutputComplete()
on the ThreadNodeOutputRecords variable, again in a thread-uniform
fashion.

174© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

175 |

Work Graph Concepts – Records

Execution

PrintBoxRecord {
 .topLeft = int2(...);
 .index = int2(...);

};

Entry

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox() { ... }

PrintBox

Let’s summarize what has happened so far. We obtained, filled, and send the
record to the PrintBox node…

… but the PrintBox node has no idea that it is supposed to received a record
…

… and therefore, our Work Graph Playground App crashes.

175© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

176 |

Work Graph Concepts – Records

> WorkGraphPlayground.exe
Compiling work graph for tutorial "Tutorial 1: Records"...

Failed to re-create work graph:
Operation Failed: system (-2147024809) (80070057): The parameter is incorrect.

Terminal

Here is what you will probably see as an output. We only see the

The parameter is incorrect.

error message. This is hinting to us that something about our work graph is not
correct.

176© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

177 |

Work Graph Concepts – Records

> WorkGraphPlayground.exe
Compiling work graph for tutorial "Tutorial 1: Records"...
[D3D12] ID3D12Device::CreateStateObject: Autopopulated node "Entry" targets output
node PrintBox with an output record size of 16 bytes, but the target node expects an
input record of size 0 bytes. These must match.
Failed to re-create work graph:
Operation Failed: system (-2147024809) (80070057): The parameter is incorrect.

Terminal

--enableDebugLayer

output record size of 16 bytes
input record of size 0 bytes

To better understand the crash, we encourage you to execute
WorkGraphPlaygroundApp.exe with the command line parameter shown
here*.

Then, you will get meaningful error messages. Here, for example, you see the
problem: The producer and consumer node did not agree on the record size.
The work graph validation will fail and reports an error.

*Please note that the D3D12 debug layer requires Graphics diagnostic tools to
be installed. You can find more information here:
https://learn.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-
runtime-and-visual-studio-graphics-diagnostic-features

177© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://learn.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-runtime-and-visual-studio-graphics-diagnostic-features
https://learn.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-runtime-and-visual-studio-graphics-diagnostic-features

178 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

struct PrintBoxRecord { ... };

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
 ...
}

To fix this problem, we must specify that the consumer node PrintBox
accepts an input record. This is by adding

ThreadNodeInputRecord<PrintBoxRecord> inputRecord

to the parameter list of the corresponding node function PrintBox.

178© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

179 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

struct PrintBoxRecord { ... };

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
 ...
}

The template argument is the struct that defines the record’s data layout,
PrintBoxRecord.

179© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

180 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
 const PrintBoxRecord record = inputRecord.Get();

 Cursor cursor = Cursor(record.topLeft + ...);
}

To get read access to the payload, we call the .Get() method on the
inputRecord…

180© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

181 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
 const PrintBoxRecord record = inputRecord.Get();

 Cursor cursor = Cursor(record.topLeft + ...);
}

… and obtain a const, i.e., read-only, instance to the struct, which we store
to a local variable record for easier access.

181© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

182 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

[Shader("node")]
[NodeLaunch("thread")]
void PrintBox(
 ThreadNodeInputRecord<PrintBoxRecord> inputRecord
) {
 const PrintBoxRecord record = inputRecord.Get();

 Cursor cursor = Cursor(record.topLeft + ...);
}

We can now access the struct’s members and use it for further processing.

182© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

183 |

Work Graph Concepts – Records

Execution

struct PrintBoxRecord {
 int2 topLeft;

 int2 index;
};

struct PrintBoxRecord {
 int2 topLeft;

 int2 index;
};

Entry PrintBox

With the producer and consumer now using the same record definition, we
have successfully connected the two nodes. The validation errors are now
gone.

183© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

184 |

Work Graph Concepts – Records

Execution

struct PrintBoxRecord {
 int2 topLeft;

 int2 index;
};

struct PrintBoxRecord {
 int2 index;
 float2 topLeft;

};

Entry PrintBox

But beware: the Work Graphs validation only ensures that the size of the
output- and input-record match. This example would still be accepted by the
validation, even producer and consumer have different definitions of the
record’s layout. This can cause you hard-to-find errors.

184© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

185 |

Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

Now, you are ready to do Task-2, declare a draw rectangle record.

185© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

186 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

Common.h

// Draws the outline of a rectangle spanning from "topLeft" to "bottomRight" in window coordinates with a "thickness" in
// pixels. Thickness extends symmetrically to inside and outside of outline. Use "color" to specify the RGB values of
// the rendered rectangle outline pixels.

void DrawRect(in const float2 topLeft,
 in const float2 bottomRight,
 in const float thickness = 1,
 in const float3 color = float3(0, 0, 0));

// [Task 2]: Define a struct for the "DrawRectangle" node

Task 2: Create the record struct to draw a rectangle around all boxes. Take a
look at the prepared stub for the "DrawRectangle" node to see what data
needs to be passed to the record.

Hint: you see that DrawRect should be called. The function is defined in
tutorials/Common.h (line 570) and has the following signature

void DrawRect(in const float2 topLeft,

 in const float2 bottomRight,

 in const float thickness = 1,

 in const float3 color = float3(0, 0, 0))

From this you can infer what your record struct should look like.

186© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

187 |

tutorial-1/Records.hlsl

Work Graph Concepts – Records

// [Task 2]: Define a struct for the "DrawRectangle" node

struct DrawRectangleRecord {
 // Pixel coordinate of top-left corner of rectangle.
 int2 topLeft;
 // Pixel coordinate of bottom-right corner of rectangle.
 int2 bottomRight;
 // Color of the rectangle.
 float3 color;
};

Here is our suggested solution.

187© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

188 |

Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

We got Task-2 done.

188© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

189 |

Work Graph Concepts – Records

tutorial-1/Records.hlsl

Common.h

// Draws the outline of a rectangle spanning from "topLeft" to "bottomRight" in window coordinates with a "thickness" in
// pixels. Thickness extends symmetrically to inside and outside of outline. Use "color" to specify the RGB values of
// the rendered rectangle outline pixels.

void DrawRect(in const float2 topLeft,
 in const float2 bottomRight,
 in const float thickness = 1,
 in const float3 color = float3(0, 0, 0));

[Shader("node")]
...
void DrawRectangle(
 // [Task 3]: Declare a node input with your new.
) {
 // [Task 3]: Use the DrawRect function to draw a rectangle.
}

Next, we draw the rectangle.

Task 3: Add your record struct as an input to the DrawRectangle node and
complete the code in the node to draw a rectangle on screen.

189© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

190 |

tutorial-1/Records.hlsl

Work Graph Concepts – Records

[Shader("node")]
...
void DrawRectangle(
 // [Task 3 Solution]:
 ThreadNodeInputRecord<DrawRectangleRecord> inputRecord
) {
 // [Task 3 Solution]:
 const DrawRectangleRecord record = inputRecord.Get();
 DrawRect(
 record.topLeft, record.bottomRight, 1, record.color);
}

Here is our suggested solution.

190© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

191 |

Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

Next, we have to declare an output record.

191© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

192 |

tutorial-1/Records.hlsl

Work Graph Concepts – Records

[Shader("node")]
...
void Entry(
 // [Task 4]: Declare a new "NodeOutput"
 // to the "DrawRectangle" node.

) {
...
}

Task 4: Add a node output to the Entry node for DrawRectangle node with
your newly created record struct. For now, we only care about the boxes
around the already existing text, thus each thread will emit a single record. Set
the [MaxRecords(...)] attribute for your accordingly.

192© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

193 |

tutorial-1/Records.hlsl

Work Graph Concepts – Records

[Shader("node")]
...
void Entry(
 // [Task 4 Solution]:
 [MaxRecords(4)]
 [NodeId("DrawRectangle")]
 NodeOutput<DrawRectangleRecord> rectangleOutput

) {
...
}

Here is our suggest solution.

193© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

194 |

Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

We declared our output, next we have to fill and emit it.

194© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

195 |

tutorial-1/Records.hlsl

Work Graph Concepts – Records

[Shader("node")]
...
void Entry(...) {
 // [Task 5]: Emit a record to draw a rectangle.
}

Task 5: Emit the record to the DrawRectangle node from the Entry node.

195© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

196 |

tutorial-1/Records.hlsl

Work Graph Concepts – Records

[Shader("node")]
...
void Entry(...) {
 // [Task 5 Solution]:
 ThreadNodeOutputRecords<DrawRectangleRecord> threadRectangleRecord =
 rectangleOutput.GetThreadNodeOutputRecords(hasBoxOutput ? 1 : 0);

 if (hasBoxOutput) {
 threadRectangleRecord.Get().topLeft = threadBoxPosition;
 threadRectangleRecord.Get().bottomRight = threadBoxPosition + BoxSize;
 threadRectangleRecord.Get().color = float3(0, 0, 0);
 }

 threadRectangleRecord.OutputComplete();
}

And here is our suggest solution.

196© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

197 |

Work Graph Concepts – Records

1. Print “Hello World”

2. Declare DrawRectangleRecord

3. Complete DrawRectangle node

4. Declare output to DrawRectangle node

5. Emit records DrawRectangle node

6. Homework: Draw enclosing rectangle

As a homework, look at the last task.

197© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

198 |

GetGroupNodeOutputRecords

Work Graph Concepts – Records

Thread Group

GetThreadNodeOutputRecords

To better give an idea of what awaits you in Task-6, let’s look at another way to
send out records. Up until now, we have used ThreadNodeOutputRecords,
i.e., each thread of our thread-group outputs a record.

<Next Animation Slide>

In your homework Task-6, we want that the entire thread-group to output a
record. This can be done using GroupNodeOutputRecords.

This behavior is similar to ThreadIncrementOutputCount and
GroupIncrementOutputCount, but for a non-empty record.

198© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

199 |

Work Graph Concepts – Records

Task 6: Additionally, we now want to draw another rectangle around all of these
boxes. Update the [MaxRecords(...)] attribute of your node output and
follow the instructions below to emit a per-thread-group record.

After completing the task, you should see a box around all boxes you have
drawn so far. So good luck and have fun!

199© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

200 |

Work Graph Concepts

Launches

In the last section of the Work Graph Concepts block, we will cover
“Launches”. We slightly touched on launches in the Nodes and Records
section, but here we give you the full details.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 200

201 |

Work Graph Concepts –

1. Change FillRectangle to dynamic dispatch grid

2. Implement pass-through coalescing node

3. Merge adjacent rectangles

4. Non-deterministic coalescers

Launches

In this tutorial, we have four tasks in which we are going to learn how these
different node launch modes work. In the following, we’ll highlight each of
these tasks and explain the concept of launches and launch modes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 201

202 |

Work Graph Concepts –

"thread" "coalescing"

ThreadgroupThreadgroupThread Groups Unspecified! Thread Group

Launches

"broadcasting"

We’ve seen before that we can specify the “work” in our work graph with
records. The launch mode then specifies how each node function is
processing the incoming records. In Work Graphs, we have access to three
different launch modes: "broadcasting", "thread", and "coalescing".

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 202

203 |

Work Graph Concepts – Launches

tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
 ...
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

"broadcasting"

Let’s start with the "broadcasting" launch mode, since it is the easiest to
grasp if you have every worked with compute shaders before. If we use the
"broadcasting" launch mode, one record is processed by a grid of thread
groups.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 203

204 |

Work Graph Concepts – "broadcasting" Launches

tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
 ...
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

Launching a node in "broadcasting" launch mode is very similar to
dispatching a compute shader kernel. Thus, the input record is declared with
type DispatchNodeInputRecord. This way, thread groups launches for the
same records all receive a read-only view to the input record.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 204

205 |

Work Graph Concepts – "broadcasting" Launches

tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
 ...
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

As with any regular compute shader, we define the three-dimensional grid of
threads in each thread group with the [NumThreads(...)] attribute. In our
example, we’re using 8 × 8 × 1 = 64 threads.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 205

206 |

Work Graph Concepts – "broadcasting" Launches

tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
 ...
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

commandList->Dispatch(6, 6, 1)

Similarly, the three-dimensional grid of thread groups to launch is defined with
the [NodeDispatchGrid(...)] attribute.

Here, we a launch a grid of 6 × 6 × 1 = 36 groups. This is similar to launching
compute shader from the CPU with the Dispatch command.

However, statically setting the dispatch grid through
[NodeDispatchGrid(...)] means that every incoming record launches the
same number of thread groups. In many scenarios (e.g. image filters) we
require a dynamic number of thread groups that fits the current problem size.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 206

207 |

Work Graph Concepts – "broadcasting" Launches

We can see an example of this in the Node Launches tutorial.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 207

208 |

Work Graph Concepts – "broadcasting" Launches

On screen, we see five colored blocks. These blocks are drawn by the
FillRectangle node. The FillRectangle node uses the "broadcasting"
launch mode and a fixed dispatch grid of [NodeDispatchGrid(6, 6, 1)].

However, in the node function of the Entry node, we can see that each of
these rectangles should have a different size, as computed by the
GetRectanglePositionAndSize helper function.

To then draw each rectangle with the correct size, we must dynamically set the
dispatch grid for each rectangle (i.e., each record). Follow the instructions for
[Task 1] in tutorials/tutorial-2/NodeLaunches.hlsl.

1. Start by adding variables for the dispatch grid and rectangle size in the
"RectangleRecord" struct.

2. Next, change the [NodeDispatchGrid(...)] attribute of the
"FillRectangle“ node to a [NodeMaxDispatchGrid(...)] and update
the dispatch size limit in the x dimension.

3. Lastly, set the dispatch grid and rectangle size for the rectangle records in
the "Entry" node.

In the following, we’ll discuss the sample solution.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 208

209 |

Work Graph Concepts – "broadcasting" Launches

tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
 uint2 dispatchGrid : SV_DispatchGrid;
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

To dynamically set the dispatch grid for each record, we add a variable to the
record struct and annotate it with the SV_DispatchGrid semantic. This
semantic tells the work graph system, that this variable should be used as the
dispatch grid for the broadcasting node. The type of this variable can be uint,
uint2, uint3 or a 16-bit variant of the aforementioned types.

With this, we have completed the first step of Task 1.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 209

210 |

Work Graph Concepts – "broadcasting" Launches

tutorial-2/NodeLaunches.hlsl

struct RectangleRecord {
 uint2 dispatchGrid : SV_DispatchGrid;
};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(6, 6, 1)]
[NumThreads(8, 8, 1)]
[NodeId("FillRectangle")]
void FillRectangleNode(
 DispatchNodeInputRecord<RectangleRecord> ir,

 uint2 dispatchThreadId : SV_DispatchThreadID
) { ... }

ThreadgroupThreadgroupThread Groups

[NodeMaxDispatchGrid(16, 6, 1)]

Next, we need to change the [NodeDispatchGrid(...)] attribute of the
FillRectangle node to [NodeMaxDispatchGrid(...)]. Instead of setting a
fixed dispatch grid for all incoming records, we now define an upper limit for
the dispatch grid set by each individual record.

Beside replacing NodeDispatchGrid with NodeMaxDispatchGrid, we have to
determine an upper limit for the grid size. As each thread in the
FillRectangle node draws a single pixel, we compute the upper limit as
follows:

- 6 thread groups for base-size rectangle (48x48)

- 10 thread groups (10x8 = 80 pixels) to cover the size of the 20th thread
group (48 + 19 * 4)

Gives us a total of 16 thread groups max.

Finally, we need to set the newly added dispatchGrid variable in each of the
records that we send to FillRectangle. We omitted this step here for

simplicity, but you can refer to the sample solution or the previous tutorial on
records for more information on writing data to records.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 210

211 |

Work Graph Concepts – "broadcasting" Launches

Once you're done with Task 1, the rectangles should now cover a continuous
horizontal rectangle.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 211

212 |

Work Graph Concepts –

1. Change FillRectangle to dynamic dispatch grid

2. Implement pass-through coalescing node

3. Merge adjacent rectangles

4. Non-deterministic coalescers

"broadcasting" Launches

This completes our look at Task 1 and the "broadcasting" launch mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 212

213 |

Work Graph Concepts –

"broadcasting" "thread" "coalescing"

ThreadgroupThreadgroupThread Groups Unspecified! Thread Group

Launches

Next, we look at the "thread" launch mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 213

214 |

Work Graph Concepts – "thread" Launches

tutorial-2/NodeLaunches.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("PrintLabel")]
void PrintLabelNode(
 ThreadNodeInputRecord<PrintLabelRecord> ir
) { ... } Unspecified!

We use the PrintLabelNode to explain the "thread" launch mode. We’ve
also seen similar used of the "thread" launch mode in the previous tutorials.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 214

215 |

Work Graph Concepts – "thread" Launches

tutorial-2/NodeLaunches.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("PrintLabel")]
void PrintLabelNode(
 ThreadNodeInputRecord<PrintLabelRecord> ir
) { ... } Unspecified!

Again, we use the [NodeLaunch(...)] attribute to provide the launch mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 215

216 |

Work Graph Concepts – "thread" Launches

tutorial-2/NodeLaunches.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("PrintLabel")]
void PrintLabelNode(
 ThreadNodeInputRecord<PrintLabelRecord> ir
) { ... } Unspecified!

As we are now dealing with a single thread that accesses the incoming record,
we use the type TheadNodeInputRecord to declare the input.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 216

217 |

Work Graph Concepts – "thread" Launches

Thread Group

Thread Group Shared Memory

Unspecified!

Even though an execution of "thread"-launch nodes is not defined by the
specification, the underlying work-graphs system still uses thread groups to
execute these nodes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 217

218 |

Work Graph Concepts – "thread" Launches

Thread Group

Thread Group Shared Memory

Unspecified!

However, access to the group shared memory is not allowed, and…

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 218

219 |

Work Graph Concepts – "thread" Launches

Thread Group

Thread Group Shared Memory

Unspecified!

…as we only programmed a single thread, operations, such as wave intrinsics
are also not allowed.

However, executing "thread"-launch nodes with one thread group per record
is very wasteful of GPU resources.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 219

220 |

Work Graph Concepts – "thread" Launches

Thread Group

Thread Group Shared Memory

Unspecified!

Thus, the Work Graphs scheduler tries to combine multiple
ThreadNodeInputRecords of the same node into thread groups, thereby
increasing the efficiency of "thread"-launch nodes.

This is fully transparent to the programmer: we program as if there is just one
single thread. With the exception that some work graph limits – like the
maximum number of output records – are split up among the invisible group.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 220

221 |

Work Graph Concepts –

"broadcasting" "thread"

ThreadgroupThreadgroupThread Groups Unspecified!

Launches

A single thread

Lots of threads in

thread groups

We looked at the two extremes:

- "broadcasting" node launch mode. They resemble compute shaders.
There, we program an entire thread group.

- "thread" launch mode that is how we program vertex or pixel shaders. You
as a programmer write your code from the perspective of a single thread.

In summary, the "thread" launch mode tries to cluster together records to the
same node, but communication between the threads is forbidden. They cannot
use shared memory.

What if we take this idea further and allow for communication?

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 221

222 |

Work Graph Concepts –

"broadcasting" "thread"

ThreadgroupThreadgroupThread Groups Unspecified!

Launches

"coalescing"

Thread Group

This is where our last launch mode comes in: The "coalescing" launch
mode.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 222

223 |

Work Graph Concepts – Launches

CoalescingExample.hlsl

[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
 [MaxRecords(4)]
 GroupNodeInputRecords<Job> input
){
 ...
}

"coalescing"

Thread Group

The easiest way to think of the "coalescing" launch mode is as a "thread"
launch mode with more flexibility and control: We can specify how many
records to the same node should be grouped together at maximum, and how
many threads the group that is processing this collection should have.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 223

224 |

Work Graph Concepts – Launches

CoalescingExample.hlsl

[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
 [MaxRecords(4)]
 GroupNodeInputRecords<Job> input
){
 ...
}

"coalescing"

Thread Group

So here you see how you define a node in "coalescing" launch mode. We
start – as before – by setting the [NodeLaunch(...)] attribute to
"coalescing".

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 224

225 |

Work Graph Concepts – Launches

CoalescingExample.hlsl

[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
 [MaxRecords(4)]
 GroupNodeInputRecords<Job> input
){
 ...
}

"coalescing"

Thread Group

As we now have multiple records that are shared across a single thread group,
we use GroupNodeInputRecords to declare the node input (Note the plural
“s” at the end).

Additionally, we set an upper limit for how many records we want to consume
with each thread group of our node. Please note, that this is only an upper
limit.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 225

226 |

Work Graph Concepts – Launches

CoalescingExample.hlsl

[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
 [MaxRecords(4)]
 GroupNodeInputRecords<Job> input
){
 uint recordCount = input.Count();
 ...
}

"coalescing"

Thread Group

The actual number of available input records can be queried with the Count()
function in the node input object.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 226

227 |

Work Graph Concepts –

CoalescingExample.hlsl

[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
 [MaxRecords(4)]
 GroupNodeInputRecords<Job> input
){
 uint recordCount = input.Count();
 ...
}

Launches "coalescing"

Thread Group

Thread Group

As we are programming a thread group, we have full control over how many
threads we want per thread group and how these thread should be organized
as a three-dimensional grid.

Here we have 4 × 4 = 16 threads. We then also have full control over how
incoming records are mapped to these threads.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 227

228 |

Work Graph Concepts –

CoalescingExample.hlsl

[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
 [MaxRecords(4)]
 GroupNodeInputRecords<Job> input
){
 uint recordCount = input.Count();
 ...
}

Thread Group

Launches "coalescing"

Thread Group

As we have at most four incoming records, we can assign a row of four
threads to each of these records. Each of these threads can then process
parts of the incoming record. For example, if incoming data are colors with four
components (red, green, blue and alpha), each thread can process one color
component.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 228

229 |

Work Graph Concepts –

CoalescingExample.hlsl

[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(4, 4, 1)]
void Node(
 [MaxRecords(4)]
 GroupNodeInputRecords<Job> input
){
 uint recordCount = input.Count();
 ...
}

Thread Group

Launches "coalescing"

Thread Group

So far, we’ve seen how we process multiple records separately in parallel with
"coalescing"-nodes. Additionally, as all threads of our thread group have
access to all incoming records, we can also perform operations such as
reductions across all incoming records.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 229

230 |

Work Graph Concepts –

Thread Group

tutorial-2/NodeLaunches.hlsl

[NodeLaunch("coalescing")]
[NumThreads(1, 1, 1)]
[NodeId("MergeRectangle")]
void MergeRectangleNode(
 [MaxRecords(2)]
 GroupNodeInputRecords<RectangleRecord>
 inputRecords,

 [MaxRecords(2)]
 [NodeId("FillRectangle")]
 NodeOutput<RectangleRecord> output) {
 ...
}

Launches "coalescing"

Implementing such a reduction is part of Task 2 and Task 3 in the Node
Launches tutorial.

Start by opening tutorials/tutorial-2/NodeLaunches.hlsl and follow
the instructions for [Task 2].

As a first step, implement a MergeRectangle node as shown above. This
node will take in up to two rectangles and pass them through to the
FillRectangle node. Later, we will implement the reduction by merging
rectangles into a single one if they share an edge.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 230

231 |

Work Graph Concepts – Launches "coalescing"

Once you are done with Task 2, the Work Graph Playground App should still
look the same.

Continue with instructions for [Task 3] to implement the reduction.

Complete the sub-call to the ComputeCombinedRect helper method. If this
helper returns "true", then you must emit a single record to the
"FillRectangle" node.

Position and size of this rectangle are given by the "ComputeCombinedRect"
helper. For the color of this rectangle, you can re-use the color from any of the
input records (e.g., record[0]).

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 231

232 |

Work Graph Concepts – Launches "coalescing"

Once you're done, you should now see the same area being filled, but this
time with just three instead of five rectangles. As five is not divisible by two,
there's also one rectangle which could not be merged and is passed through
as-is from the MergeRectangle node to the FillRectangle node.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 232

233 |

Work Graph Concepts –

1. Change FillRectangle to dynamic dispatch grid

2. Implement pass-through coalescing node

3. Merge adjacent rectangles

4. Non-deterministic coalescers

"broadcasting" Launches

With Task 2 and Task 3 completed, we can continue to Task 4 and the non-
deterministic nature of "coalescing"-nodes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 233

234 |

Work Graph Concepts – Launches "coalescing"

Increase the dispatch grid of the Entry node in x dimension to emit more
rectangles.

You should now see the merged rectangles flickering…

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 234

235 |

Work Graph Concepts – Launches "coalescing"

…between different ways of merging the rectangles. As the input to the
coalescer node is non-deterministic and depends on the timing of the different
thread groups of the "Entry" node. Thus, every frame different rectangles are
merged.

This step is omitted from the sample solution.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 235

236 |

Work Graph Concepts – Launches "coalescing"

Thread GroupThread Group

Additionally, the order in which the incoming records are passed to the node
function is also not deterministic, …

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 236

237 |

Work Graph Concepts – Launches "coalescing"

Thread GroupThread Group

…can change with every execution of the work graph.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 237

238 |

Work Graph Concepts –

Thread Group

Launches "coalescing"

Thread Group

There is also no guarantee that a group always receives the specified number
of records. However, all records sent to a "coalescing"-node will eventually
be processed by it – even if this means invoking the node with just a single
record.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 238

239 |

Work Graph Concepts –

"broadcasting"

ThreadgroupThreadgroupThread Groups

"thread"

Unspecified!

Launches

"coalescing"

Thread GroupThread Group

In summary, we’ve now seen the three different launch modes available in
Work Graphs: "broadcasting", "coalescing" and "thread". Together with
nodes and records, these form the three core concepts of Work Graphs, and
we are now ready to move on to more advanced uses of Work Graphs.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 239

240 |

Advanced Work Graphs

Use-case: Material Shading

In this section, we put all concepts, i.e., nodes, records, and launches,
together to create an advanced use-case for Work-Graphs. Plus, we are going
to learn about a powerful Work Graphs feature called “Node Arrays”. We
demonstrate this at the practical example of Material Shading.

240© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

241 |

Problem: Material Shading

So, what is the problem of Material Shading? Consider this simple scene with
a background, a plane, and a sphere.

241© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

242 |

Problem: Material Shading

return float4(0.4, 0.7, 1, 1);

return ?;

The objects and therefore the rendered pixels have a different material,
highlighted with different colors here. For example, the sky could have a very
simple material, such as a constant color. But computing the material for the
sphere or the plane could be quite involved. They could, in fact, be different
materials, requiring different algorithms with different costs.

242© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

243 |

Problem: Material Shading

What is the problem then? To explain that, let’s change to a coarser version of
that image. You see the individual pixels of the image here using three distinct
colors. Each color represents a different material type.

243© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

244 |

Problem: Material Shading

Thread

Graphics Memory

GPU Hardware

Shared Memory Thread Group

And let’s not forget that we are running our computation on a GPU.

244© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

245 |

Problem: Material Shading

Thread

So, let’s see how a GPU thread group would compute that image.

245© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

246 |

Problem: Material Shading

Thread

To make it a little more readable, our example thread group only has four
threads.

246© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

247 |

Problem: Material Shading

Thread

Our thread group can then compute a 2x2 grid of pixels in a SIMD fashion.

247© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

248 |

Problem: Material Shading

Thread

Each thread group computes a subset of those 2x2 blocks.

248© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

249 |

Problem: Material Shading

Thread

Things become interesting at the highlighted block here, where different
materials need to be evaluated.

249© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

250 |

Problem: Material Shading

Thread

𝑡

0 1

2 3

0 1 2 3

Thread

Each of the four pixels is evaluated with one thread in our thread group. Let’s
consider how the computation is carried out over time.

250© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

251 |

Problem: Material Shading

Thread

𝑡

0 1 2 3

0 1

2 3

Thread

The computation of each pixel is scheduled to one thread. Ideally, the four
pixels can be executed in parallel and take equally long.

251© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

252 |

Problem: Material Shading

Thread

𝑡

0 1 2 3

However, some materials are faster to compute, like the sky (blue), while
others take a lot longer. In a thread group, the short code paths must wait for
long ones to finish.

252© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

253 |

Problem: Material Shading

Thread

𝑡

0 1 2 3

The threads of our thread group are executed on a SIMD core. That means
the same instruction must be executed on all SIMD lanes at the same time.

Since the three different materials have different instructions, they cannot be
executed in parallel. Instead, only those threads that share the same
instructions can physically run in parallel. All other threads must defer their
computation to a later point in time. This goes by the name “thread
divergence” and can become a huge performance bottleneck on GPUs.

253© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

254 |

Problem: Material Shading

Thread

𝑡

0 1 2 3

Solution: Work Graphs

Where SIMD cores can deliver a huge performance boost is when the thread
code is coherent, for example here in the group of red pixels.

In the following sections, we’ll take a look at how Work Graphs can help us
eliminate thread divergence by creating specialized nodes for each material.

254© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

255 |

tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {

 ...

 }
}

To start with, consider this compute shader example.

255© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

256 |

tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {

 ...

 }
}

It is called RenderScene and we get a unique global thread id dtid that gives
a 2D integer pixel coordinate for the pixel that we wish to shade.

256© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

257 |

tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {

 ...

 }
}

Each thread group uses an 8x8 grid of threads, so that, each thread group
computes 64 pixels.

257© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

258 |

tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {

 ...

 }
}

For each thread, we trace a ray, to find the closest hit…

258© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

259 |

tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {

 ...

 }
}

… and then carry out the shading, depending on the material that our ray hit.

259© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

260 |

tutorial-3/MaterialShading.hlsl

Problem: Material Shading

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {
 case RayHit::Sky:

 color = ShadeSky(ray); break;
 case RayHit::Sphere:
 color = ShadeSphere(ray, hit.distance); break;
 case RayHit::Plane:
 color = ShadePlane(ray, hit.distance); break;
 }

}

Here, we have the switch statement, which is the root of the thread divergence
problem. Depending on the material, we must take a different code path. If
those code paths don’t share the same instruction, we effectively serialized the
code.

260© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

261 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Nodes

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {

 ...

 }
}

[Shader("node")]

We want to solve this by using Work Graphs.

To turn a compute shader into a Work Graph node, we start by adding a
[Shader("node")] attribute before the function definition. Nodes are
basically compute-shaders with this node attribute.

261© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

262 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Records

struct Record {
...

};

[NumThreads(8, 8, 1)]
void RenderScene(uint2 dtid : SV_DispatchThreadId) {

[Shader("node")]

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

As this is no longer a compute shader, but a work graph nodes, we cannot
dispatch it with e.g. the Dispatch command. Instead, we must send a record to
our newly created node. Thus, we declare a Record struct above with all the
data that we want to pass to our node, e.g., a camera view-projection matrix.
The actual contents of the struct are omitted here for simplicity.

262© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

263 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Records

struct Record {
...

};

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

To make our RenderScene node a consumer receiving such a record, we must
declare a NodeInputRecord with our record as template argument.

263© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

264 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Records

struct Record {
...

};

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

As we’ve seen before, the specific type of NodeInputRecord depends on the
launch mode for the node, which we have not yet selected in our example.

264© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

265 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

The compute shader implementation that we started out with was dispatched
with multiple thread groups in both x and y direction to cover all the pixels in
our render target.

This behavior is mimicked by the "broadcasting" node launch, which
dispatches a grid of thread groups for each incoming record.

265© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

266 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

For "broadcasting" nodes, the input record must be declared as
DispatchNodeInputRecord. All thread groups of the dispatch have a read-
only view on the same inputRecord.

266© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

267 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(480, 270, 1)]

Dispatch(480, 270, 1)

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

Next, we must specify the dispatch grid for our node, or in other words, how
many thread groups we want to launch for each incoming record.

Here, we set it to launch a grid of 480x270x1 thread groups for every record.

267© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

268 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(480, 270, 1)]

Dispatch(480, 270, 1)

𝟖 × 𝟖

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

As each thread group has 8x8 threads…

268© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

269 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(480, 270, 1)]

Dispatch(480, 270, 1)
𝟖 × 𝟖 𝟖 × 𝟖

𝟖 × 𝟖 𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖 𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖

𝟖 × 𝟖 𝟖 × 𝟖

𝟑𝟖𝟒𝟎 × 𝟐𝟏𝟔𝟎

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

… that makes grid of 3840 x 2160 threads in total. That is enough to cover a
4K Ultra HD (UHD) image with one thread per pixel. That is, however, now a
fixed grid size. That means, we would always launch 3840 x 2160 threads. But
what if we want to keep that size more flexible, for example, if we want to
make our window smaller?

Hint: In case you wonder, 8 threads in x direction and 480 blocks in x direction
makes 8 × 480 = 3840. Likewise, for the y direction we get 8 × 270 = 2160.

269© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

270 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

To get that flexibility, we add a Max there. This specifies an upper bound for the
number of thread groups.

270© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

271 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record {

...
};

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]

...

uint3 dispatchGrid : SV_DispatchGrid;

}

The producer of the Record struct is then tasked with setting the actual
number of thread groups. This information is passed to the work graph runtime
by annotating a variable with SV_DispatchGrid.

271© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

272 |

tutorial-3/MaterialShading.hlsl

Recap – Work Graph – Launches

struct Record {

...
};

[NumThreads(8, 8, 1)]
void RenderScene(

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]

...

uint3 dispatchGrid : SV_DispatchGrid;

}

Remember, the Record struct and thus by extension the variable with
SV_DispatchGrid semantic are tied to our node through the
DispatchNodeInputRecord declaration.

272© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

273 |

tutorial-3/MaterialShading.hlsl

Material Shading

struct Record { ... };

[NumThreads(8, 8, 1)]
void RenderScene(

 const RayHit hit = TraceRay(...);
 ...
 switch (hit.material) {
 ...

 }
}

uint2 dtid : SV_DispatchThreadId) {
DispatchNodeInputRecord<Record> inputRecord,

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]

Thus far, we have turned our initial compute shader into a broadcasting node
with a dynamic dispatch grid.

Our goal, however, was to solve the issue of thread divergence caused by the
switch-case statement for executing the material shaders.

273© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

274 |

tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
 uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {
 case RayHit::Sky:

 color = ShadeSky(ray); break;
 case RayHit::Sphere:
 color = ShadeSphere(ray, hit.distance); break;
 case RayHit::Plane:
 color = ShadePlane(ray, hit.distance); break;
 }

}

To reiterate, these shading functions use different instructions and thus cannot
run in parallel on the SIMD-architecture of our GPU.

274© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

275 |

tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]

void RenderScene(DispatchNodeInputRecord<Record> inputRecord,
 uint2 dtid : SV_DispatchThreadId) {
 const RayHit hit = TraceRay(...);

 ...
 switch (hit.material) {
 case RayHit::Sky:

 color = ShadeSky(ray); break;
 case RayHit::Sphere:
 color = ShadeSphere(ray, hit.distance); break;
 case RayHit::Plane:
 color = ShadePlane(ray, hit.distance); break;
 }

}

ShadeSky

The underlying idea is to move these different shading functions into separate
nodes and use work graphs to send records to these nodes based on the ray
tracing result.

We start by moving the ShadeSky function…

275© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

276 |

tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
 uint2 pixel;
 Ray ray;
 float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
 const PixelRecord record = inputRecord.Get();

 const float4 color = ShadeSky(record.ray);
 WritePixel(record.pixel, color);
}

…to a new node named ShadePixel_Sky.

276© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

277 |

tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
 uint2 pixel;
 Ray ray;
 float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
 const PixelRecord record = inputRecord.Get();

 const float4 color = ShadeSky(record.ray);
 WritePixel(record.pixel, color);
}

As this node only processes a single pixel, we can use the "thread" launch
mode, which assigns a single thread to each incoming record (i.e., each
incoming pixel).

277© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

278 |

tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
 uint2 pixel;
 Ray ray;
 float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
 const PixelRecord record = inputRecord.Get();

 const float4 color = ShadeSky(record.ray);
 WritePixel(record.pixel, color);
}

As we’re using the "thread" launch mode, we must declare the node input
with ThreadNodeInputRecord.

278© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

279 |

tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
 uint2 pixel;
 Ray ray;
 float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
 const PixelRecord record = inputRecord.Get();

 const float4 color = ShadeSky(record.ray);
 WritePixel(record.pixel, color);
}

The record data itself is defined in the PixelRecord struct above. Here we
pass the coordinate of the pixel we wish to shade, the ray that was traced for
this pixel along with the ray length.

279© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

280 |

tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
 uint2 pixel;
 Ray ray;
 float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
 const PixelRecord record = inputRecord.Get();

 const float4 color = ShadeSky(record.ray);
 WritePixel(record.pixel, color);
}

For convenience, we store the incoming record to a local variable called
record.

280© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

281 |

tutorial-3/MaterialShading.hlsl

Material Shading

struct PixelRecord {
 uint2 pixel;
 Ray ray;
 float hitDistance;
};

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {
 const PixelRecord record = inputRecord.Get();

 const float4 color = ShadeSky(record.ray);
 WritePixel(record.pixel, color);
}

We can then call the underlying ShadeSky function with the data from the
record to compute the shaded color and write it to our pixel with the help of the
WritePixel function.

281© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

282 |

tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

We repeat the same steps for the Sphere and Plane material as well, thus
creating a ShadePixel_Sphere and ShadePixel_Plane node. We can use
the same PixelRecord struct that we declared earlier for these new nodes as
well.

282© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

283 |

tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> input,

[MaxRecords(8 * 8)]
 NodeOutput<PixelRecord> ShadePixel_Sky,

uint2 dtid : SV_DispatchThreadId) {
 ...
}

[Shader("node")]
void ShadePixel_Sky(...)

Max. 256 Records

To send records to our newly declared nodes, we must declare a NodeOutput
in our RenderScene node for each material. We show this at the example of
the NodeOuput for the ShadePixel_Sky node.

As all 8x8 pixel in our thread group might have the same material, we must
declare all these node outputs with this worst case, i.e. 8 * 8 records.

However, this would mean that we would reach the output limit of 256 records
with just four materials (8 * 8 * 4 = 256). Contrast this with the hundreds of
materials used by modern AAA games and we can immediately see that this
approach of declaring separate node outputs does not scale very well.

We can solve this problem by using a work graph feature specially designed
for such use-cases called node arrays.

283© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

284 |

tutorial-3/MaterialShading.hlsl

Node Arrays

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeLaunch("thread")]
void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

Consider our different material nodes from before. They all use the same
launch mode and input record…

284© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

285 |

tutorial-3/MaterialShading.hlsl

Node Arrays

[Shader("node")]
[NodeId("ShadePixel", 0]
[NodeLaunch("thread")]
void ShadePixel_Sky(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeId("ShadePixel", 1]
[NodeLaunch("thread")]
void ShadePixel_Sphere(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

[Shader("node")]
[NodeId("ShadePixel", 2]
[NodeLaunch("thread")]
void ShadePixel_Plane(ThreadNodeInputRecord<PixelRecord> inputRecord) {}

Node Array Index

…thus we can combine them into a single node array named ShadePixel. To
do this, we add a [NodeId("ShadePixel", 0] attribute to each node. The
first part (i.e. the node id name) is the same for all nodes, but we must assign
a different node array index to each node.

In our example, use the following mapping:

0 – sky material

1 – sphere material

2 – plane material

This mapping aligns with the RayHit enum values that we were using for the
switch-case statement before.

285© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

286 |

Node Arrays

Execution

ShadePixel

Sky

Sphere

Plane

[0]:

[1]:

[2]:

In our Work Graph, we can then address these nodes as a node array named
ShadePixel.

286© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

287 |

tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> input,

 [MaxRecords(8 * 8)]
 NodeOutputArray<PixelRecord> ShadePixel,

 uint2 dtid : SV_DispatchThreadId) {
 ...

}

We can then target this node array by declaring a NodeOutputArray. Note
that we do not target any individual node, but rather the whole array at once.

287© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

288 |

tutorial-3/MaterialShading.hlsl

Material Shading

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeMaxDispatchGrid(480, 270, 1)]
[NumThreads(8, 8, 1)]
void RenderScene(DispatchNodeInputRecord<Record> input,

 [MaxRecords(8 * 8)]
 [NodeArraySize(3)]
 NodeOutputArray<PixelRecord> ShadePixel,

 uint2 dtid : SV_DispatchThreadId) {
 ...

}

However, the D3D12 runtime must still be able to validate that all the nodes we
expect in this node array are present in the graph. Thus, we must add a
[NodeArraySize(...)] attribute with the expected number of nodes in the
array, which in our case is three.

288© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

289 |

tutorial-3/MaterialShading.hlsl

Material Shading

...
void RenderScene(DispatchNodeInputRecord<Record> input,
 [MaxRecords(8 * 8)]
 [NodeArraySize(3)]
 NodeOutputArray<PixelRecord> ShadePixel,
 uint2 dtid : SV_DispatchThreadId) {
 ...
 ThreadNodeOutputRecords<PixelRecord> outputRecord =
 ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

 outputRecord.Get().pixel = dtid;
 outputRecord.Get().ray = ray;
 outputRecord.Get().hitDistance = hit.distance;

 outputRecord.OutputComplete();
}

Allocating records to be sent to this node array is very similar to the plain node
outputs that we’ve seen before…

289© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

290 |

tutorial-3/MaterialShading.hlsl

Material Shading

...
void RenderScene(DispatchNodeInputRecord<Record> input,
 [MaxRecords(8 * 8)]
 [NodeArraySize(3)]
 NodeOutputArray<PixelRecord> ShadePixel,
 uint2 dtid : SV_DispatchThreadId) {
 ...
 ThreadNodeOutputRecords<PixelRecord> outputRecord =
 ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

 outputRecord.Get().pixel = dtid;
 outputRecord.Get().ray = ray;
 outputRecord.Get().hitDistance = hit.distance;

 outputRecord.OutputComplete();
}

Node Array Index

…the main difference is the bracket-operator, with which we specify the node
array index, to which we want to send the record.

In our case, this index is determined by the ray tracing result.

290© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

291 |

tutorial-3/MaterialShading.hlsl

Material Shading

...
void RenderScene(DispatchNodeInputRecord<Record> input,
 [MaxRecords(8 * 8)]
 [NodeArraySize(3)]
 NodeOutputArray<PixelRecord> ShadePixel,
 uint2 dtid : SV_DispatchThreadId) {
 ...
 ThreadNodeOutputRecords<PixelRecord> outputRecord =
 ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

 outputRecord.Get().pixel = dtid;
 outputRecord.Get().ray = ray;
 outputRecord.Get().hitDistance = hit.distance;

 outputRecord.OutputComplete();
}

dtid
ray
hit.distance

Writing data to the record is unchanged…

291© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

292 |

tutorial-3/MaterialShading.hlsl

Material Shading

...
void RenderScene(DispatchNodeInputRecord<Record> input,
 [MaxRecords(8 * 8)]
 [NodeArraySize(3)]
 NodeOutputArray<PixelRecord> ShadePixel,
 uint2 dtid : SV_DispatchThreadId) {
 ...
 ThreadNodeOutputRecords<PixelRecord> outputRecord =
 ShadePixel[hit.material].GetThreadNodeOutputRecords(1);

 outputRecord.Get().pixel = dtid;
 outputRecord.Get().ray = ray;
 outputRecord.Get().hitDistance = hit.distance;

 outputRecord.OutputComplete();
}

… and so is sending the record off to the Work Graph runtime for processing.

292© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

293 |

Classify & Execute

Execution

RenderScene

ShadePixel

Sky

Sphere

Plane

Classify Execute&

This is our work graph. First, the RenderScene node classifies the pixel and
emits a record to the corresponding index in the ShadePixel node array.

Second, the ShadePixel node array executes the shaders for each pixel in a
SIMD friendly way.

293© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

294 |

SIMD Efficiency

Execution

RenderScene ShadePixel

Sky

Sphere

Plane

Why are node arrays SIMD friendly? Let’s go back to our coarse pixel grid for
demonstration purposes.

294© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

295 |

SIMD Efficiency

Execution

RenderScene ShadePixel

Sky

Sphere

Plane

The classifier node “RenderScene” classifies each pixel and…

295© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

296 |

SIMD Efficiency

Execution

RenderScene ShadePixel

Sky

Sphere

Plane

…creates a record for the consumer node in the ShadePixel node array based
on the material index.

296© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

297 |

SIMD Efficiency

Execution

RenderScene ShadePixel

Sphere

Plane

Sky

These records are then sent to the individual nodes of the node array.

297© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

298 |

SIMD Efficiency

Execution

ShadePixel

Sphere

Plane

Sky

0 1

2 3

Thread

𝑡

0 1 2 3

Thread

Even though we specified these nodes as “thread” launch nodes, they are still
executed in thread groups…

298© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

299 |

SIMD Efficiency

Execution

ShadePixel

Sphere

Plane

Sky

0 1

2 3

Thread

𝑡

0 1 2 3

Thread

...with one record (i.e., pixel) assigned to each thread. All threads of a thread
group now run in SIMD lock step, thereby reducing thread-divergence.

299© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

300 |

SIMD Efficiency

Execution

ShadePixel

Sphere

Plane

Sky

0 1

2 3

Thread
𝑡

0 1 2 3

Thread

Likewise, for the other materials, too.

300© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

301 |

SIMD Efficiency

Execution

ShadePixel

Sphere

Plane

Sky

0 1

2 3

Thread

𝑡

0 1 2 3

Thread

We’ve seen how work graphs, in combination with node arrays can help us
reduce thread-divergence for classify-and-execute applications.

301© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

302 |

Conclusion

Execution

RenderScene

ShadePixel

Sky

Sphere

Plane

The code in these slides is available in the Work Graph Playground under
tutorials/tutorial-3/MaterialShading.hlsl. Please follow the
instructions there to get a hands-on experience with node arrays.

However, note, that in this materials-example, you will see little to no
performance gains. This is because we kept our shader code simple, such that
thread-divergence is not an issue. Our goal here is to teach you the principle
of how node arrays work.

302© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

303 |

Conclusion

Execution

ShadeMaterial

ShadePixel

Material 0

Material 1

Material 2

Material N

…
Download today on GPUOpen

You can also find a standalone sample of this classify-and-execute work graph
on GPUOpen.

303© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/learn/rgp-work-graphs/

304 |

Summary

Dataflow through

Records
Node Launch Types

Threadgro

up

Threadgro

up

Threadgroups Unspecified! Threadgroup

"coalescing""thread""broadcasting"

Records ≠ Dispatches

Node Arrays

Node Array

⋮

In summary, we’ve seen how work graphs allow for GPU-driven dataflow
through records. We’ve seen how and when to use the different launch modes
available in work graphs. And lastly, we’ve seen how node arrays can help
simplify our code and help us manage hundreds or thousands of nodes in a
classify-and-execute scenario.

304© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

305 |

Advanced Work Graphs

Recursion

Next, we are going to look at how recursion is possible with Work Graphs.

305© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

306 |

Recursion

Execution

NodeNodeNode Node

Directed

Acyclic

Graph

*

We have seen before that a work graph can be classified as a directed acyclic
graph. Thus, a cycle as shown here is not allowed.

Implementing recursive algorithms with acyclic graphs is difficult, however, the
Work Graphs specification allows a small exception to the acyclic constraint.

306© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

307 |

Recursion

Execution

NodeNodeNode Node

Directed

Acyclic

Graph

*

* with self-recursion

Self-recursion, or in other words, trivial cycles from one node to itself are
allowed. These self-recursive cycles can also have a payload amplification,
meaning for every incoming record, a node that’s part of a self-recursive cycle
can emit multiple records to itself.

307© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

308 |

Recursion

Procedural Generation Subdivision Fractals

There are many different applications or algorithms that can be implemented
as such self-recursive nodes. These can range from different algorithms for
procedural generation or subdivision (e.g., Catmull-Clark subdivision surfaces)
to mathematical concepts, such as recursively evaluated fractals.

We will take a closer look at self-recursive graphs for procedural generation.

308© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

309 |

Recursion

For now, we focus on a simpler example: the Koch Snowflake fractal. This
fractal is part of the fourth tutorial in our Work Graph Playground App and you
can find the implementation in tutorials/tutorial-4/Recursion.hlsl.

In simple terms, the Koch Snowflake recursively subdivides each line segment
into four new line segments which form a small triangle in the middle of the
original line segment, as you can see on the right part of the slide.

We start with an initial equilateral triangle with three line segments, as shown
on the left.

309© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

310 |

Recursion

After one iteration, you can see the newly formed triangles on the edges of the
initial triangle, thus transforming the initial triangle into a star shape.

310© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

311 |

Recursion

After two iteration, we can start to see the snowflake shape forming.

311© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

312 |

Recursion

The third…

312© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

313 |

Recursion

…and fourth iteration then further refine the snowflake shape.

313© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

314 |

Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Snowflake")]
void SnowflakeNode(
 ThreadNodeInputRecord<Line> inputRecord
) {
 ...
}

So how does this self-recursion look like in the shader code? Let’s consider
this thread node shown in the slide. This is already part of the tutorial, but
there will be similar exercise for you as homework.

314© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

315 |

Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Snowflake")]
void SnowflakeNode(
 ThreadNodeInputRecord<Line> inputRecord,

 [MaxRecords(4)]
 [NodeId("Snowflake")]
 NodeOutput<Line> recursiveOutput
) {
 ...
}

Recursive nodes declare a NodeOutput to itself.

315© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

316 |

Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeId("Snowflake")]
void SnowflakeNode(
 ThreadNodeInputRecord<Line> inputRecord,

 [MaxRecords(4)]
 [NodeId("Snowflake")]
 NodeOutput<Line> recursiveOutput
) {
 ...
}

Note how we use the [NodeId("Snowflake")] attribute to both identify the
node itself and the NodeOutput with the same node id. Thus, the node is
recursively outputting records to itself.

316© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

317 |

Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeMaxRecursionDepth(4)]
[NodeId("Snowflake")]
void SnowflakeNode(
 ThreadNodeInputRecord<Line> inputRecord,

 [MaxRecords(4)]
 [NodeId("Snowflake")]
 NodeOutput<Line> recursiveOutput
) {
 ...
}

Self-recursion is, however, limited to fixed number of iterations, which must be
set using the [NodeMaxRecursionDepth(...)] attribute.

317© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

318 |

Recursion

tutorial-4/Recursion.hlsl

[Shader("node")]
[NodeLaunch("thread")]
[NodeMaxRecursionDepth(4)]
[NodeId("Snowflake")]
void SnowflakeNode(
 ...
) {
 ...
 // Check if we have reached the recursion limit.
 const bool hasOutput = GetRemainingRecursionLevels() != 0;
}

In each recursive iteration, we can then query the number of remaining
iterations with the GetRemainingRecursionLevels() intrinsic. If this intrinsic
returns 0, then the node is no longer allowed to emit self-recursive records.

318© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

319 |

Recursion

Execution

NodeNodeNode

Node Depth = 3

Node

As a reminder, the longest chain of nodes can not exceed the limit of 32
nodes. When computing this longest chain of nodes, the maximum number of
recursive iterations ([NodeMaxRecursionDepth(...)]) add to the chain
length.

In this example the node on the far-right has a node depth in the graph of
three.

319© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

320 |

Recursion

Execution

NodeNodeNode

[NodeMaxRecursionDepth(1)]

Node Depth = 3

Node

4

If we add a self-recursion loop to the graph, this node depth increases by the
value of the [NodeMaxRecursionDepth(...)] attribute.

320© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

321 |

Recursion

Execution

NodeNodeNode

[NodeMaxRecursionDepth(1)]

Node Depth = 4

Node

45

2

Increasing [NodeMaxRecursionDepth(...)] further increases the node
depth of the last node.

321© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

322 |

Recursion

As a homework assignment, your task is to implement another recursive
fractal in the Work Graph Playground App: the Menger sponge.

Follow the instructions in tutorials/tutorial-4/Recursion.hlsl and
implement the fractal. You can verify your solution by comparing it to the
provided sample solution.

322© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

323 |

Advanced Work Graphs

Synchronization

Another aspect for advanced work graphs is synchronization of thread groups
in broadcasting launches.

323© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

324 |

Synchronization

Execution

Record {
 .dispatchGrid = uint3(2, 2, 1)
} Threadgroup Threadgroup

ThreadgroupThreadgroup

Node

Before, we dive into the code, let’s quickly explain what we mean by this.
Consider a broadcasting node that is part of a longer chain of nodes, e.g., a
chain of image filters. In such a chain, we might have data-dependencies
between different nodes in the chain, i.e., we can only launch the next node, if
all thread groups of the previous node have finished executing.

In our example, our node receives an incoming record. Our node is using the
broadcasting launch mode. The record sets the dispatch grid of the node to
2x2 thread groups. We assume that these thread groups all run in parallel on
our GPU.

324© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

325 |

Synchronization

Execution

Record {
 .dispatchGrid = uint3(2, 2, 1)
} Threadgroup Threadgroup

Threadgroup

Node

After a while, the thread groups terminate one after the other…

325© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

326 |

Synchronization

Execution

Record {
 .dispatchGrid = uint3(2, 2, 1)
} Threadgroup

Node

…until only one thread group remains.

326© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

327 |

Synchronization

Execution

Record {
 .dispatchGrid = uint3(2, 2, 1)
} Threadgroup

Node

Synchronization in broadcasting nodes allows this last thread group to realize
that it is in fact the last one.

327© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

328 |

Synchronization

Execution

Record {
 .dispatchGrid = uint3(2, 2, 1)
} Threadgroup

Node

Thus, it can carry out a final special operation, such as emitting a record for
the next node, as we now know that all thread groups in our broadcasting
node have finished execution and any data that they might have produced is
now ready to be processed by a following node(s).

328© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

329 |

Synchronization

In the fifth tutorial of the Work Graphs Playground App, we are going to use
such synchronization to draw a bounding box around this dancing trail of
circles.

329© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

330 |

Synchronization

tutorial-5/Synchronization.hlsl

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(32, 1, 1)]
[NumThreads(32, 1, 1)]
void ComputeBoundingBox(
 ...
 DispatchNodeInputRecord<Record> inputRecord
) {
 ...
 DrawRect(...);
}

In the tutorial, we’re using a node with "broadcasting" launch mode. The
node is dispatched with 32 thread groups and 32 threads in each thread group.

Each thread then computes a position and radius of a circle and draws the
circle on screen.

We now want to compute the bounding box of all circles. Once all of the thread
groups have finished computing the bounding box in parallel, we want to have
the last thread group draw the resulting bounding box to the screen.

330© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

331 |

Synchronization

tutorial-5/Synchronization.hlsl

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(32, 1, 1)]
[NumThreads(32, 1, 1)]
void ComputeBoundingBox(
 ...
 DispatchNodeInputRecord<Record> inputRecord
) {
 ...
 if(!inputRecord.FinishedCrossGroupSharing()) return;

 DrawRect(...);
}

With FinishedCrossGroupSharing(), Work Graphs provide a method on the
input record, that returns true, if the calling thread group is the last one to call
this method.

331© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

332 |

Synchronization

tutorial-5/Synchronization.hlsl

struct [NodeTrackRWInputSharing] Record {
 ...
};

[Shader("node")]
...
void ComputeBoundingBox(
 ...
 DispatchNodeInputRecord<Record> inputRecord
) {
 ...
 if(!inputRecord.FinishedCrossGroupSharing()) return;

 DrawRect(...);
}

Since this is carried out on the input record, the input record needs to be
prepared to support such an operation. Therefore, you must add the
[NodeTrackRWInputSharing] attribute to the record struct, as shown above.

332© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

333 |

Synchronization

tutorial-5/Synchronization.hlsl

struct [NodeTrackRWInputSharing] Record {
 ...
};

[Shader("node")]
...
void ComputeBoundingBox(
 ...
 RWDispatchNodeInputRecord<Record> inputRecord
) {
 ...
 if(!inputRecord.FinishedCrossGroupSharing()) return;

 DrawRect(...);
}

As FinishedCrossGroupSharing “writes” into the record, you need to adjust
the input record declaration to use RWDispatchnodeInputRecord.

Note that this adds an even more powerful capability: The RW prefix allows you
to communicate between thread groups in broadcasting mode.

For "thread" and "coalescing" node launches, the input node declaration
receives the same RW prefix, if you want write to your record.

333© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

334 |

Synchronization

tutorial-5/Synchronization.hlsl

[Shader("node")]
...
void ComputeBoundingBox(
 ...
 RWDispatchNodeInputRecord<Record> inputRecord
) {
 ...
 InterlockedMax(inputRecord.Get().aabbmax.y, ...);
 ...
 if(!inputRecord.FinishedCrossGroupSharing()) return;

 DrawRect(...);
}

We use this ability to write to a shared record in our tutorial: We compute the
bounding box with atomic min/max operations, where all threads of our
dispatch write to same input record.

334© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

335 |

Synchronization

tutorial-5/Synchronization.hlsl

[Shader("node")]
...
void ComputeBoundingBox(
 ...
 RWDispatchNodeInputRecord<Record> inputRecord
) {
 ...
 InterlockedMax(inputRecord.Get().aabbmax.y, ...);

 Barrier(NODE_INPUT_MEMORY, DEVICE_SCOPE | GROUP_SYNC);
 ...
 if(!inputRecord.FinishedCrossGroupSharing()) return;

 DrawRect(...);
}

Since we write to record memory from all threads concurrently, we must use a
barrier before reading back the resulting bounding box.

335© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

336 |

Synchronization

Now, we have a nice bounding box!

336© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

337 |

Advanced Work Graphs

Procedural Generation

In this section, we want to show you how Work Graphs can be used for
procedural generation.

337© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

338 |

Advanced Work Graphs

Procedural Generation

We will present four examples that are based on two papers [Kuth et al. 2024,
Kuth et al. 2025], some blog posts, and samples that we have published.

Blog Posts:

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_no
des-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_no
des-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_no
des-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_no
des-tips_tricks_best_practices/ https://github.com/GPUOpen-
LibrariesAndSDKs/WorkGraphsHelloMeshNodes

Samples:
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work_graphs_learning_sample/

338© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-getting_started/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-intro/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-procedural_generation
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://gpuopen.com/learn/work_graphs_mesh_nodes/work_graphs_mesh_nodes-tips_tricks_best_practices/
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphsHelloMeshNodes
https://gpuopen.com/learn/rgp-work-graphs/
https://gpuopen.com/learn/work_graphs_learning_sample/

339 |

Houdini

To get started, let‘s look at existing procedural software. An obvious mention is
Houdini.

339© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

340 |

Houdini

Second one would be Blender with its geometry nodes.

Logo from https://www.blender.org/about/logo/

340© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

341 |

Unreal EngineHoudini

But also Unreal Engine now has a built-in system named PCG.

341© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

342 |

Houdini Unreal Engine

All these tools have one thing in common: The generation is controlled by
designing node graphs consisting of reusable nodes.

342© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

343 |

Unreal EngineHoudini

When we look at how or where these tools generate, we can see that this
usually happens on CPU. Then the result gets exported to a polygon format
onto disk. Finally, the ready-made model is then uploaded to the GPU for
rendering by a game engine.

With the new Unreal Engine PCG system, the export step is skipped: as the
generation happens in-engine, there is no need for an export.

343© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

344 |

OursHoudini Unreal Engine

What we want to do with Work Graphs today is to totally skip the CPU part:
The GPU generates everything it needs for rendering.

344© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

345 |

We already mentioned the node graphs that control the procedural generation,
but what are the edges connecting the nodes? We call the data that flows
between the edges control parameters. A node receives control parameters
and outputs control parameters. A very simple example for this would be
generation of this muffin: Three parameters control the shape of it.

345© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

346 |

Control parameters do not have to be scalar values: how about a bounding
box controlling the generation of a chair. By changing the bounds, we can turn
it into a bench or adjust the height of the back support.

346© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

347 |

Or what about a polygon controlling the shape of an entire building?

347© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

348 |

Let‘s start with our first example: a procedural market.

348© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

349 |

For this, we went on a research trip to the Coburg marketplace and observed
the following: the overall shape of it can be described by a polygon. From each
corner, a path leads towards the center of the market. These paths are
connected by rings of paths. In the regions between the paths, there are the
booths. So, we call this the booth islands and should place some fitting assets
there like tents or tables. In the center of there market, there is usually a
special area with a special asset, like a tree or a well.

349© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

350 |

This market layout is very close to something called the straight skeleton of a
polygon by Aichholzer and coworkers [Aichholzer et al. 1995].

Figure 1(a) and (b) from [Aichholzer et al. 1995].

350© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

351 |

For generating it, a polygon is shrunk till one of two possible events occur.

351© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

352 |

merge

The merge event, where two points of the polygon merge into one.

352© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

353 |

split

And the split event, where the polygon gets split into two.

353© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

354 |

Market

Now let‘s start with our market generation. A node of a work graph receives a
polygon as input.

354© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

355 |

Market
static const int maxMarketPoints = 32;
struct MarketRecord {

float2 points[maxMarketPoints];
...

};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]
...
void Market(

DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,
...

){

Let‘s look at how this would look like in code:

355© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

356 |

Market
static const int maxMarketPoints = 32;
struct MarketRecord {

float2 points[maxMarketPoints];
...

};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]
...
void Market(

DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,
...

){

Our market receives a market record as input, consisting of up to 32 points.

356© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

357 |

Market
static const int maxMarketPoints = 32;
struct MarketRecord {

float2 points[maxMarketPoints];
...

};

[Shader("node")]
[NodeLaunch("broadcasting")]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(maxMarketPoints, 1, 1)]
...
void Market(

DispatchNodeInputRecord<MarketRecord> inputRecord,
uint gtid : SV_GroupThreadId,
...

){

And we launch the market node as one thread group of 32 threads.

357© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

358 |

Market

0

1

2

3

4
5

6

Before shrinking the polygon, we need to check when the next straight
skeleton event occurs.

358© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

359 |

Market

0

1

2

3

4
5

6

float closestEvent = WaveActiveMin(distance);

We assign each thread to a corner of the polygon and compute when its event
occurs. By using the wave intrinsic WaveActiveMin, we can find the closest
event.

359© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

360 |

Market

0

1

2

3

4
5

6

float closestEvent = WaveActiveMin(distance);

So, in this case it is thread or point 2, but the polygon can still shrink quite a bit
before.

360© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

361 |

Market

0
1

2

3

4

5

6

After shrinking, the market node writes output records to a node for drawing
paths.

361© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

362 |

Market

Path

0
1

2

3

4

5

6

And for the booth islands, we make a little bit of space.

362© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

363 |

Market

Path

BoothIsland

0
1

2

3

4

5

6

363© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

364 |

BoothIsland

Next, let‘s look at how a work graph can output geometry for drawing.

364© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

365 |

int index;
InterlockedAdd(drawMeshArgumentCounter, 1, index);
drawMeshArguments[index] = args;

Draw List BVH Instance List Mesh Nodes

BoothIsland

Execute Indirect 

One way would be to append a draw command to a draw list and then
dispatch that list after the work graph has finished using execute indirect. To
allow for ray-tracing, one can also write to an instance list and then build a
TLAS from it after the work graph has finished.

Finally, mesh nodes can draw the generated geometry straight from the work
graph to the scene.

365© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

366 |

Market

Path

BoothIsland

Alright, let‘s get back to our market, where we have just finished one ring. To
do the next ring, the market node simply recurses with the new polygon.

366© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

367 |

Market

Market

Path

Path

BoothIsland

BoothIsland

For this ring, we do the same as for the last.

367© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

368 |

Market

Market

Path

Path

BoothIsland

BoothIslandsplit

Now we must handle our first event: the polygon splits into two if we continue
shrinking.

368© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

369 |

Market

Market

Market

Market

Path

Path

BoothIsland

BoothIslandsplit

To resolve this, the market node recurses into two markets

369© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

370 |

Market

Market

Market

Market

Path

Path

BoothIsland

BoothIsland

For the smaller side, we do not have enough space for another ring and finish
with a market center.

370© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

371 |

Market

Market

Market

Market

Path

Center

Path

BoothIsland

Path

BoothIsland

BoothIsland

For the other side, we can generate one more ring.

371© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

372 |

Market

Center

Market

Market

Market

Market

Path

Center

Path

BoothIsland

Path

BoothIsland

BoothIsland

And finish with a market center.

372© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

373 |

Market

Center

Market

Market

Market

Market

Path

Center

Path

BoothIsland

Path

BoothIsland

BoothIsland

373© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

374 |

And with this, we have finished out market generation. Let‘s see it in action.
Because it runs every frame in less than a millisecond, we can see the
changes instantly.

374© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

375 |

There is one thing, we have not mentioned, yet: You might have spotted these
garlands spanning in-between rings. But these are generated independently of
each other, so how do we find the connecting points?

375© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

376 |

This is something we call dependent generation. Here is an example of it from
Unreal Engine. In the video, you can see the user dragging around the central
structure. When the structure marked with the red box instersects with
something, a bridge made of a stam is generated towards the center. The
structure in the blue box does not intersect with anything and thus no bridge is
generated.

376© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

377 |

A spatial GPU data-

structure…

…and fast access…fast creation and update

time…

Raytracing

BVH!commandList->BuildRaytracingAccelerationStructure(&buildDesc, 0, nullptr);

So, for our system, we need a spatial GPU data structure that is fast to create
and update and fast to access. This is exactly what a ray tracing BVH is for.
Creating and accessing it is just a matter of issuing API calls, and we have
already established earlier that we can output for BVH generation.

377© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

378 |

During generation, we add these red bounding boxed to our BVH with a
separate instance flag to prevent hitting them when ray-tracing for shading
effects. Next a garland starting points shoots rays into its vicinity to find points
to connect to.

378© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

379 |

And with this, we can have garlands from market elements generated
independently from each other.

379© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

380 |

Let‘s look at another example for dependent generation: Ivy ontop of existing
geometry.

380© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

381 |

IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

An IvyBranch node is given a transformation as the input record. For growing,
it runs a loop that shoots rays into its vicinity to find a surface, updates the
transformation based on the result, and draws fitting assets like leaves and a
stem. Finally, there is a chance that the ivy branches into two which we solve
with recursion.

381© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

382 |

IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

382© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

383 |

IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

383© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

384 |

IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

384© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

385 |

IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

385© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

386 |

IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

386© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

387 |

IvyBranch

while(growing){
shootRays();
updatePosition();
drawAssets();
if(random) split();

}

Here you can see an example video of this for more realistic assets.

387© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

388 |

IvyBranchIvyArea

Let‘s extend on this idea and add a parent to IvyBranch, the IvyArea. It
receives a bounding volume as input, uses rays to find fitting starting locations
for ivy to grow and then outputs work records to IvyBranch.

388© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

389 |

IvyBranchIvyArea

Here you can see an example video of this. We have published a sample of
this if you want to play around with the generation yourself.

389© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

390 |

Let‘s talk about timings. We generate our scene from two perspectives, an
overview where we generate everything, and a view from the market only,
where we can cull some of the generation.

390© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

391 |

Here you can see the number of instances generated.

391© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

392 |

As you can see, right now, the render timings go through the roof for the
overview perspective.

392© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

393 |

The reason for this can be seen on the right. We have one draw call per
instance. We need instancing to optimize this.

393© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

394 |

[Shader("node")]
[NodeLaunch("coalescing")]
[NumThreads(32, 1, 1)]
void DrawAssetCoalescer(

[MaxRecords(256)]
GroupNodeInputRecords<DrawAssetRecord> input,
[MaxRecords(256)]
NodeOutput<MeshNodeRecord> DrawAsset

){

DrawAssetCoalescer

For this, we utilize a node in coalescing launch mode. It receives up to 256
records for drawing an asset and output up to 256 records. But ideally, we are
able to combine some of these using instancing.

394© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

395 |

DrawAssetCoalescer

DrawAsset DrawAssetDrawAsset DrawAsset DrawAsset

By sorting by asset, we can significantly reduce the number of draw calls.

395© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

396 |

DrawAssetCoalesce

r

DrawAsset DrawAssetDrawAsset DrawAsset DrawAsset

Here you can see the improvement, the number of draw calls was significantly
reduced, same with the render timings.

396© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

397 |

Instead of placing existing assets, for our last two examples, we want our work
graph to generate all the geometry from scratch.

397© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

398 |

Generate

vegetation that…

…is in the frustum… …point towards the camera... …in the quality required.

More specifically, for a given camera matrix, we want to only generate
everything that is in the camera frustum, faces the camera, and only in the
detail required.

The first one is easy: just omit dispatch records for work outside the frustum.

398© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

399 |

offset

ClutterGrid

ClutterTile

GrassPatch ShroomPatch BeePatch

struct ClutterTileRecord {
uint2 size : SV_DispatchGrid;
int2 offset;

}

For our ground clutter, we find the 2D grid that encloses our camera frustum.
Finer culling is then done inside the individual thread groups. We have a node
array of mesh nodes for generating different kinds of clutter like grass, low
LOD grass, mushrooms or insects.

399© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

400 |

For our trees, we omit outputting records of a, e.g., branch of a tree, when its
bounding capsule lies outside the frustum.

400© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

401 |

𝜽 = cos 𝑚𝑎𝑥
𝑑𝑟

𝑑𝑧
⋅

𝑥

1 − 𝑥2
, −1

𝑧 ⋅ 𝑣𝑇

To only generate front facing triangles, we analyzed how far around a stem we
have to tessellate given the tree growth direction, the change in stem radius,
and the camera orientation.

401© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

402 |

In this video, you can see this in action.

402© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

403 |

𝑓 =
2 ⋅ 𝜃from ⋅ 𝑟from

Δ

𝑣 =
𝑙

Δ

𝑡 =
2 ⋅ 𝜃to ⋅ 𝑟to

Δ

sample distance

For continuous LOD, we employ fractional tessellation.

403© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

404 |
404

And in this video, you can see it in action.

404© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

405 |
405

We do something similar with our leaf LOD.

405© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

406 |
406

Another thing you can do with real-time generation is animation: simply adjust
the generation based on the current timestamp.

406© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

407 |
407

Or how about adding seasonal detail based on a real number indicating the
time of year.

407© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

408 |
408

And here you can see real-time edits of our final tree model. Edits effecting an
entire forest happen within the next frame.

408© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

409 |
409

With a continuous LOD, one can also adjust the image quality smoothly based
on the current frame time.

409© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

410 |

Here is a performance measurement we did on a camera path. Frame-to-
frame times vary based on image complexity between 13 – 40ms.

410© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

411 |

With an automatic LOD, the performance peaks can be mitigated.

411© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

412 |

This concludes the procedural generation part of this course.

412© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

413 |

Advanced Work Graphs

Work Graphs under the Hood

As part of the Advanced Work Graphs Section, we would like to present ideas
of how Work Graphs might potentially be implemented on a GPU.

413© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

414 |

How does it work?

So, so far, we’ve seen what Work Graphs is, how it allows us to schedule work
directly on the GPU, and how that can help us solving different use-cases.

But how does this “launching work from the GPU” work?

414© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

415 |

How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

To understand this, we first need to look at how any launch of work on the
GPU works. In Direct3D12, we record commands, as for example this
Dispatch, into a commandList.

415© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

416 |

How does it work?

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

G
P

U
C

P
U

To execute this commandList, we chose a commandQueue and submit our
command list to it.

416© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

417 |

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

GPU driver

C
P

U

To then actually execute the commandList, the GPU driver will copy the
command list () into GPU-visible memory…

417© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

418 |

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

GPU driver

C
P

U

… and passes an execute-command through a ring buffer to the GPU.

418© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

419 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

On the GPU, this ring buffer is connected to the command processor (red box)

419© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

420 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Or more specifically the Micro Engine Scheduler, which is a part of the
command processor.

The Micro Engine scheduler is responsible for handling commands, such as
the one to execute the command list coming from the CPU.

420© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

421 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

To process any of the incoming commands, the Micro Engine Scheduler has
access to different queues.

There are two types of queues: graphics queues (GFX 0, GFX 1 in the slide)
and compute queues (Compute 0, Compute 1, …, in the slide).

421© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

422 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Firmware

The Micro Engine Scheduler selects one of those queues – in this case
Compute 0 – and maps the incoming command to its input ring buffer.

Each of these queues is a small processor which is programmed through the
firmware to execute the commands.

422© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

423 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Dispatch(480, 270, 1)

In this case, we want to execute our command list, so the command processor
fetches one command after the other from memory, parses, and executes it.

In our example here, we have the dispatch command from before.

423© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

424 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Dispatch(480, 270, 1)

Compute queue 0 then sets up and invokes the SIMDs in order to carry out the
dispatch command. This is a very simplified view of the GPU, as we are only
interested in how commands such as dispatches are handled and not the
specifics of how the actual thread groups of the dispatch are mapped and set
up to GPU hardware components.

424© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

425 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U
commandList->Dispatch(480, 270, 1);
commandQueue->ExecuteCommandLists(1, &commandList);

We‘ve seen that we can place a command buffer in GPU memory and have
the command processor execute it.

425© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

426 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

This would mean that if we want to schedule work from the GPU itself, we can
just write to such a command buffer in GPU-visible memory and have the
command processor execute it.

426© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

427 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

In the case of Work Graphs, we‘re not writing a command list, but we‘re writing
records. To allow for a continuous cycle of writing and launching these records,
we can store these records in a ring buffer.

427© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

428 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

As we have different records for different nodes, we need multiple ring buffers,
one for each node.

Here we have a very simple Work Graph with nodes A, B, C and D. A can send
records to B and C, i.e., thread groups that run code for node A can write
records to the ring buffers of node B and C.

Nodes B and C can both send records to node D.

428© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

429 |

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Firmware

The compute processor can then scan these ring buffers in memory for
available records and decide what records to launch and how to launch them.

429© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

430 |

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Record {
 .dispatchGrid = uint3(2, 1, 1)
}

As an example, we have placed a record in the ring buffer of node A. Node A is
using a dynamic dispatch grid and the record specifies that two thread groups
should be launched.

430© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

431 |

SIMD SIMD SIMDSIMD

SIMD
Node A

SIMD
Node A

SIMDSIMD

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

Record {
 .dispatchGrid = uint3(2, 1, 1)
}

Compute queue 0 can then find this record in the ring buffer and launch two
thread groups for it. In our simplified GPU, we’ve mapped each of these thread
groups to on SIMD.

431© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

432 |

SIMD SIMD SIMDSIMD

SIMD
Node A

SIMD
Node A

SIMDSIMD

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

Record {
 .dispatchGrid = uint3(2, 1, 1)
}

Each of these thread groups then want to send two records to node B and two
records to node C. These records are visualized by small yellow boxes at the
top of each of the SIMDs.

432© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

433 |

SIMD SIMD SIMDSIMD

SIMD
Node A

SIMD
Node A

SIMDSIMD

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

Each of these thread groups can then write their outputs to the respective ring
buffers of the nodes. Here the first thread group writes its four records…

433© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

434 |

SIMD SIMD SIMDSIMD

SIMD
Node A

SIMD
Node A

SIMDSIMD

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

…and so does the second thread group.

434© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

435 |

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Once writing is complete these records are ready to be picked up by command
queue 0 and launched.

435© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

436 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

Command queue 0 therefore launches thread groups for each of the records in
the ring buffer of node B and node C. In our example, each of these records
will launch a single thread group, this yielding four thread groups for running
code for node B and four thread groups running code for node C.

436© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

437 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

Each of these thread groups then want to send between one and two records
to node D. These are again visualized with small yellow boxes in each of the
thread groups.

437© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

438 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

Each of these thread groups then writes their output to the ring buffer of node
D. The first thread group of node B writes a single record, …

438© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

439 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

...the third one writes two records, …

439© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

440 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

… and the third one writes a single record again.

440© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

441 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

And finally the last thread group of node B writes two records.

441© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

442 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

The same process continues for al the thread groups for node C. The first
thread group starts by writing two records to the ring buffer of node D.

442© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

443 |

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

SIMD
Node B

SIMD
Node B

SIMD
Node C

SIMD
Node C

How does it work?

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

The second thread group wants to write two records to the ring buffer of node
D.

However, the ring buffer for node D is now full, thus no more records can be
written to it. Simultaneously, all SIMDs of the GPU are busy, thus the
command queue cannot launch any records to free up space in the ring buffer
for node D.

This is obviously a problem, since we are now in a deadlock. So maybe this
launching work from the GPU is not as simple as initially assumed. Let’s go
back a few steps to see what we missed.

443© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

444 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Forward Progress

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

We return to the state just before we started launching the records in the ring
buffers of node B and node C. Currently, we have four record in each of these
ring buffers.

In order to avoid the deadlock from before, the work graphs runtime must
ensure a forward progress guarantee.

What does the forward progress guarantee mean?

Essentially, once the graph is kicked of, it needs to be able to process all its
records without any deadlocks.

444© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

445 |

SIMD SIMD SIMDSIMD

SIMD
Node B

SIMD SIMDSIMD

Forward Progress

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

[MaxRecords(2)]
NodeOutput<...> NodeD

This is ensured with the output limits for each node. We’ve seen in the
beginning of this course, that we need to annotate all outputs of a node with
the maximum number of records that we intend to send.

445© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

446 |

SIMD SIMD SIMDSIMD

SIMD
Node B

SIMD SIMDSIMD

Forward Progress

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

[MaxRecords(2)]
NodeOutput<...> NodeD

With this limit, the work graph runtime, i.e. the firmware running on the
compute queue, can then make a reservation into the ring buffer of node D.

As each thread group of node B can send up to two records to node D, the
compute queue reserves the first two slots in the ring buffer of node D.

446© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

447 |

SIMD SIMD SIMDSIMD

SIMD
Node B

SIMD
Node B

SIMDSIMD

Forward Progress

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

This continues for the second record in the ring buffer of node B, thus the
command queue reserved two more slots in the ring buffer of node D.

447© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

448 |

SIMD
Node B

SIMD SIMDSIMD

SIMD
Node B

SIMD
Node B

SIMDSIMD

Forward Progress

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

The same process happens for the third…

448© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

449 |

SIMD
Node B

SIMD
Node B

SIMDSIMD

SIMD
Node B

SIMD
Node B

SIMDSIMD

Forward Progress

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U

Memory

Ring

Buffer

Ring

Buffer

Ring

Buffer

Ring

Buffer

Node C Node D

Node BNode A

…and fourth record in the ring buffer of node B.

Now, the ring buffer of node D is full with output reservation of all the thread
groups of node B. This guarantees that every one of these thread groups can
write up to two records into the ring buffer of node D without overflowing the
ring buffer.

On the other hand, this also means that we cannot launch any further thread
groups that can produce records for node D. In our example, we cannot launch
the four records available in the ring buffer of node C.

As you can see, this forward progress guarantee can impact the overall GPU
occupancy. This can be solved by choosing appropriate sizes for the ring
buffers.

So, now we’ve seen how launching new work directly from the GPU can work.
We’ve seen the challenges that come along with this and we’ve seen how the
work graph runtime can avoid deadlocks, whilst operating with limited
resources.

449© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

450 |

Mesh Nodes

P
review

But so far, we’ve only looked at the compute-only node and how the compute
queues of the command processor execute the work graph.

But what about mesh nodes?

450© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

451 |

Mesh Nodes

ThreadgroupThreadgroupThread Groups

"mesh"

mesh-node-tutorial-0/HelloMeshNodes.hlsl

[Shader("node")]
[NodeLaunch("mesh")]
[NodeId("LineMeshNode", 0)]
[NodeDispatchGrid(1, 1, 1)]
[NumThreads(32, 1, 1)]
[OutputTopology("triangle")]
void LineMeshShader(
 DispatchNodeInputRecord<Line> inputRecord,

 out indices uint3 outputIndices[4],
 out vertices Vertex outputVertices[6])

{
 ...
}

P
review

As a reminder, with mesh nodes you can directly output primitives to the
rasterizer.

Mesh Nodes consist of a mesh shader, an optional pixel shader, and all other
state associated with a pipeline state. The mesh shader is almost identical to
the mesh shading pipeline.

Mesh Nodes come with a new launch mode "mesh" that works the same as
broadcasting launch mode. That means a grid of thread groups is launched.
Each thread group outputs a meshlet, i.e., a small mesh consisting of a vertex
buffer and an index buffer. This one gets then passed to the rasterizer. The
Mesh Node must, however, not output any records. Therefore, a Mesh Node is
bound to be a leaf node of the Work Graph.

© Advanced Micro Devices, Inc and Coburg University of Applied Sciences and Arts. All rights reserved. 451

452 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

Mesh Nodes

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Mesh Node

Node

Ring

Buffer

P
review

One limitation of the compute queues, which we used before for compute
nodes, is that they cannot set up the graphics state, which is required for
launching a mesh node.

452© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

453 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

Mesh Nodes

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Mesh Node

Node

Ring

Buffer

P
review

Firmware

Therefore, we need to use a graphics queue for mesh nodes. Graphics
queues are also programmed by firmware and thus can scan the ring buffers
assigned to mesh nodes in GPU memory.

453© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

454 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

Mesh Nodes

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Mesh Node

Node

Ring

Buffer

P
review

To allow the graphics and compute queue share the work load of a work
graph, we can change the Micro Engine Scheduler command to a so called
gang submit. This joins up a graphics (GFX 0) and compute queue. They can
now work together on processing the records.

454© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

455 |

SIMD SIMD SIMDSIMD

SIMD SIMD SIMDSIMD

Memory

Mesh Nodes

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Mesh Node

Node

Ring

Buffer

P
review

Graphics Queue 0 (GFX 0) can then scan the ring buffer for the mesh node(s)
(here shown as the ring buffer on the bottom) and launch mesh shader thread
groups.

To launch a mesh node, the graphics queue will also set up the graphics state
(e.g. back-face culling or blend state) for each different mesh node. Thus, with
a single DispatchGraph you can now switch between Pipeline State Objects.
This is something that you couldn’t do before with a regular draw command.

455© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

456 |

SIMD
Mesh Node

SIMD
Mesh Node

SIMDSIMD

SIMD
Mesh Node

SIMD
Mesh Node

SIMDSIMD

Memory

Mesh Nodes

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Mesh Node

Node

Ring

Buffer

P
review

In this example, GFX0 scanned the ring buffer for “Mesh Node”, found one
record, and launched four thread groups for the mesh node.

456© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

457 |

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Mesh Node

SIMDSIMD

Memory

Mesh Nodes

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Mesh Node

Node

Ring

Buffer

Pixel ShaderMesh Shader

P
review

With this, we can have mesh nodes (with their mesh and pixel shaders) and
“regular” compute nodes running in parallel.

457© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

458 |

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Mesh Node

SIMD
Node

SIMD
Node

Memory

Mesh Nodes

Micro Engine Scheduler

GFX 0 GFX 1 Compute 0 Compute 1 …

G
P

U Ring

Buffer

Mesh Node

Node

Ring

Buffer

Pixel ShaderMesh Shader

Compute Shader

P
review

Thus, the GPU can feed itself enough work to completely fill it, all without any
barriers or other involvement from the CPU.

458© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

459 |

Summary

GPU-driven

Producer-Consumer

Networks

GPU-managed

Memory

Guaranteed

Deadlock-free

Execution

So this concludes our advanced session. With Work Graphs, we have an
entirely GPU-driven Producer-Consumer Network that you as programmer can
specify using a shading language. The advantage is the memory management
is handled by the Work Graphs system, while also guaranteeing you a
deadlock-free execution.

459© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

460 |

Summary

We have seen Work Graphs, its core concepts, and exciting applications.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 460

461 |

Summary

Dataflow through

Records
Node Launch Types

GPU-driven

Producer-Consumer

Networks

Threadgro

up

Threadgro

up

Threadgroups Unspecified! Threadgroup

"coalescing""thread""broadcasting"

Records ≠ Dispatches

With Work Graphs you model data flow through a directed acyclic graph with
trivial self-recursive cycles. The data flow is represented by records that you
send from one node to another. Records are not dispatches, but eventually
trigger dispatches. The specifics of these dispatches are specified by one of
three different launch modes.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 461

462 |

Summary

GPU-driven

Producer-Consumer

Networks

GPU-managed

Memory

Guaranteed

Deadlock-free

Execution

Combining all these concepts gives you a producer-consumer network running
entirely on the GPU.

The memory for these records is managed by the Work Graphs system.
Further, the Work Graphs system guarantees a deadlock-free execution under
limited resources.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 462

463 |

Recursion Synchronization Recursive Grids Mesh Nodes

Hello Work Graphs Records Node Launches Material Shading

Work Graph Playground

In this course, we have walked you through the first six tutorials of our Work
Graph Playground App.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 463

464 |

Work Graph Playground

For the Recursive Grids tutorial, you’ll need to combine everything that you’ve
learned so far: nodes, records, different launch modes, recursion, and
synchronization.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 464

465 |

Work Graph Playground

With the latest update, we’ve also added support for mesh nodes and a
dedicated mesh nodes tutorial. You can find mesh-nodes enabled versions of
the playground in our releases: https://github.com/GPUOpen-
LibrariesAndSDKs/WorkGraphPlayground/releases

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 465

https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground/releases
https://github.com/GPUOpen-LibrariesAndSDKs/WorkGraphPlayground/releases

466 |

Work Graph Playground

We’ve also released a more complex sample for our procedural tree
generation. This sample runs in the Work Graph Playground App.

You can find the sample source code here: https://github.com/Bloodwyn/gptree

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 466

https://github.com/Bloodwyn/gptree

467 |

Samples

We also have more standalone samples available on GPUOpen.

For example, you can find this compute rasterizer example here:
https://gpuopen.com/learn/work_graphs_learning_sample/

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 467

https://gpuopen.com/learn/work_graphs_learning_sample/

468 |

Samples

If you’re interested in procedural generation with mesh nodes, we have
additional samples available here:

https://github.com/search?q=topic%3Ameshnodes+org%3AGPUOpen-
LibrariesAndSDKs&type=repositories

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 468

https://github.com/search?q=topic%3Ameshnodes+org%3AGPUOpen-LibrariesAndSDKs&type=repositories
https://github.com/search?q=topic%3Ameshnodes+org%3AGPUOpen-LibrariesAndSDKs&type=repositories

469 |

Connect with us

gpu-work-graphs

Join the gpu-work-graphs channel on the AMD Developer Community Discord
server at https://discord.gg/amd-dev

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 469

https://discord.gg/amd-dev

470 |

Big thanks also go out to:

• Carsten Faber and Seyedmasih Tabaei from the

Coburg University

• the whole team at AMD, especially Dominik

Baumeister, Niels Fröhling, Pirmin Pfeifer

and many more

• Matthäus Chajdas

Thank you!

This concludes our course today. Big thanks go out to our undergraduate and
graduate students at Coburg University, the Work Graphs team at AMD, and
Matthäus.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 470

471 |

References

• Mark J. Kilgard. 1999. NV_register_combiners. Khronos Group

• Lindholm, Mark J. Kilgard, and Henry Moreton. 2001. A user-programmable vertex engine. In Proceedings of the 28th Annual Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 149–158

• Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. 2018. Real-Time Rendering, Fourth Edition (4th ed.). A. K. Peters, Ltd., USA

• David Blythe. 2006. The Direct3D 10 system. ACM Trans. Graph. 25, 3 (jul 2006), 724–734.

• Jeff Andrews and Nick Baker. 2006. Xbox 360 System Architecture. IEEE Micro 26, 2 (2006), 25–37

• M. Nießner, B. Keinert, M. Fisher, M. Stamminger, C. Loop, and H. Schäfer. 2016. Real-Time Rendering Techniques with Hardware Tessellation, Computer Graphics Forum

35, 1 (2016), 113–137

• Mark Peercy, Mark Segal, and Derek Gerstmann. 2006. A performance-oriented data parallel virtual machine for GPUs. In ACM SIGGRAPH2006 Sketches (Boston,

Massachusetts) (SIGGRAPH ’06). ACM, New York, NY, USA, 184–es 2007.

• NVIDIA, NVIDIA CUDA Compute Unified Device Architecture, Release 1.0 – Programming Guide. Nvidia

• Hubert Nguyen. 2007. GPU gems 3 (first ed.). Addison-Wesley Professional

• Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, and

Martin Stich. 2010. OptiX: a general purpose ray tracing engine. ACM Trans. Graph. 29, 4, Article 66 (jul2010)

• Christoph Kubisch, Pat Brown, Jeff Bolz, Daniel Koch, Piers Daniell, and Pierre Boudier. 2018. VK_NV_mesh_shader. Khronos Group.

• Microsoft Cooperation. 2024, D3D12 Work Graphs, https://microsoft.github.io/DirectX-Specs/d3d/WorkGraphs.html

• Bastian Kuth, Max Oberberger, Carsten Faber, Dominik Baumeister, Matthäus Chajdas, and Quirin Meyer. 2024. Real-Time Procedural Generation with GPU Work Graphs.

Proc. ACM Comput. Graph. Interact. Tech. 7, 3 (Aug. 2024).

• Bastian Kuth, Max Oberberger, Carsten Faber, Pirmin Pfeifer, Seyedmasih Tabaei, Dominik Baumeister, and Quirin Meyer. 2025. Real-Time GPU Tree Generation. In

Proceedings of High-Performance Graphics (HPG). ACM, Copenhagen, Denmark

• Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. 1995. A novel type of skeleton for polygons. Springer.

© Advanced Micro Devices, Inc. All rights reserved. Confidential – Not for distribution. 471

472 |

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software

changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.

AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make

changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, RDNA, Ryzen, and combinations thereof are trademarks of Advanced

Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective

owners. DirectX is either a registered trademark or trademark of Microsoft Corporation in the US and/or other countries. Vulkan and the Vulkan logo are

registered trademarks of the Khronos Group Inc. Xbox is a registered trademark of Microsoft Corporation in the US and/or Other countries.

472© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved.

© Advanced Micro Devices, Inc. and Coburg University of Applied Sciences and Arts. All rights reserved. 473

	Introduction & Foundations
	Slide 1
	Slide 2: GPU Work Graphs – Instructors
	Slide 3: GPU Work Graphs – Timeline
	Slide 4: GPU Work Graphs – Timeline
	Slide 5: GPU Work Graphs – Timeline
	Slide 6: GPU Work Graphs – Timeline
	Slide 7: GPU Work Graphs – Timeline
	Slide 8: Work Graph Playground App
	Slide 9: GPU Work Graphs – Timeline
	Slide 10: GPU Work Graphs – Timeline
	Slide 11: GPU Work Graphs – Timeline
	Slide 12: GPU Work Graphs – Course Agenda
	Slide 13: Introduction & Foundations
	Slide 14: Introduction & Foundations
	Slide 15: GPU History
	Slide 16: GPU History
	Slide 17: Programmable Vertex & Pixel Shader Pipeline
	Slide 18: Programmable Vertex & Pixel Shader Pipeline
	Slide 19: Programmable Vertex & Pixel Shader Pipeline
	Slide 20: Programmable Vertex & Pixel Shader Pipeline
	Slide 21: Programmable Vertex & Pixel Shader Pipeline
	Slide 22: Programmable Vertex & Pixel Shader Pipeline
	Slide 23: Programmable Vertex & Pixel Shader Pipeline
	Slide 24: Programmable Vertex & Pixel Shader Pipeline
	Slide 25: Programmable Vertex & Pixel Shader Pipeline
	Slide 26: Programmable Vertex & Pixel Shader Pipeline
	Slide 27: Programmable Vertex & Pixel Shader Pipeline
	Slide 28: Programmable Vertex & Pixel Shader Pipeline
	Slide 29: Programmable Vertex & Pixel Shader Pipeline
	Slide 30: Programmable Vertex & Pixel Shader Pipeline
	Slide 31: Programmable Vertex & Pixel Shader Pipeline
	Slide 32: Programmable Vertex & Pixel Shader Pipeline
	Slide 33: Programmable Vertex & Pixel Shader Pipeline
	Slide 34: Programmable Vertex & Pixel Shader Pipeline
	Slide 35: Programmable Vertex & Pixel Shader Pipeline
	Slide 36: Programmable Vertex & Pixel Shader Pipeline
	Slide 37: Programmable Vertex & Pixel Shader Pipeline
	Slide 38: Programmable Vertex & Pixel Shader Pipeline
	Slide 39: Programmable Vertex & Pixel Shader Pipeline
	Slide 40: Programmable Vertex & Pixel Shader Pipeline
	Slide 41: Programmable Vertex & Pixel Shader Pipeline
	Slide 42: Programmable Vertex & Pixel Shader Pipeline
	Slide 43: Programmable Vertex & Pixel Shader Pipeline
	Slide 44: Programmable Vertex & Pixel Shader Pipeline
	Slide 45: Graphics Pipeline – 2002 Vertex & Pixel Shader Pipeline
	Slide 46: Graphics Pipeline – 2002 Vertex & Pixel Shader Pipeline
	Slide 47: Graphics Pipeline – 2006 Geometry Shaders
	Slide 48: Graphics Pipeline – 2006 Unified Shader Model
	Slide 49: Graphics Pipeline – 2006 Unified Shader Model
	Slide 50: Graphics Pipeline – 2009 Compute Shaders
	Slide 51: Graphics Pipeline – 2009 Compute Shaders
	Slide 52: Graphics Pipeline – 2009 Compute Shaders
	Slide 53: Graphics Pipeline – 2009 Compute Shaders
	Slide 54: Graphics Pipeline – 2009 Compute Shaders
	Slide 55: Graphics Pipeline – 2009 Compute Shaders
	Slide 56: Graphics Pipeline – 2009 Compute Shaders
	Slide 57: Graphics Pipeline – 2009 Compute Shaders
	Slide 58: Graphics Pipeline – 2009 Compute Shaders
	Slide 59: Graphics Pipeline – 2009 Compute Shaders
	Slide 60: Graphics Pipeline – 2009 Compute Shaders
	Slide 61: Graphics Pipeline – 2009 Compute Shaders
	Slide 62: Graphics Pipeline – 2009 Compute Shaders
	Slide 63: Graphics Pipeline – 2009 Compute Shaders
	Slide 64: Graphics Pipeline – 2009 Compute Shaders
	Slide 65: Graphics Pipeline – 2009 Compute Shaders
	Slide 66: Graphics Pipeline – 2009 Compute Shaders
	Slide 67: Graphics Pipeline – 2009 Hardware Tessellation
	Slide 68: Graphics Pipeline – 2009 Hardware Tessellation
	Slide 69: Graphics Pipeline – 2009 Hardware Tessellation
	Slide 70: Graphics Pipeline – 2018 Mesh Shading
	Slide 71: Graphics Pipeline – 2018 Mesh Shading
	Slide 72: Graphics Pipeline – 2018 Mesh Shading
	Slide 73: Graphics Pipeline – 2018 Mesh Shading
	Slide 74: Graphics Pipeline – 2018 Mesh Shading
	Slide 75: Graphics Pipeline – 2018 Mesh Shading
	Slide 76: Graphics Pipeline – 2018 Mesh Shading
	Slide 77: Graphics Pipeline – 2018 Mesh Shading
	Slide 78: Graphics Pipeline – 2018 Mesh Shading
	Slide 79: Graphics Pipeline – 2018 Mesh Shading
	Slide 80: Graphics Pipeline – 2018 Mesh Shading
	Slide 81: Graphics Pipeline – 2018 Mesh Shading
	Slide 82: Graphics Pipeline – 2018 Mesh Shading
	Slide 83: Graphics Pipeline – Execute Indirect
	Slide 84: Graphics Pipeline – Execute Indirect
	Slide 85: Graphics Pipeline – Without Execute Indirect
	Slide 86: Graphics Pipeline – Without Execute Indirect
	Slide 87: Graphics Pipeline – Without Execute Indirect
	Slide 88: Graphics Pipeline – Without Execute Indirect
	Slide 89: Graphics Pipeline – With Execute Indirect
	Slide 90: Graphics Pipeline – With Execute Indirect
	Slide 91: Graphics Pipeline – With Execute Indirect
	Slide 92: Graphics Pipeline – With Execute Indirect
	Slide 93: Graphics Pipeline – Execute Indirect – Problems
	Slide 94: Graphics Pipeline – Execute Indirect – Problems
	Slide 95: Graphics Pipeline – Execute Indirect – Problems
	Slide 96: Graphics Pipeline – Execute Indirect – Problems
	Slide 97: Graphics Pipeline – Execute Indirect – Problems
	Slide 98: Graphics Pipeline – Mesh Shading – Problems
	Slide 99: Graphics Pipeline – Mesh Shading – Problems
	Slide 100: Graphics Pipeline – Mesh Shading – Problems
	Slide 101: Graphics Pipeline – Mesh Shading – Problems
	Slide 102: Graphics Pipeline – Mesh Shading – Problems
	Slide 103: Graphics Pipeline – Mesh Shading – Problems
	Slide 104: Why Work Graphs?
	Slide 105: Why Work Graphs?
	Slide 106: Work Graph Playground App
	Slide 107: Work Graph Playground App
	Slide 108: Work Graph Playground App
	Slide 109: Work Graph Playground App
	Slide 110: Work Graph Playground App
	Slide 111: Work Graph Playground App
	Slide 112: Work Graphs HLSL Cheat Sheet
	Slide 113: Connect with us
	Slide 114: GPU Work Graphs – Course Agenda

	Work Graph Concepts - Nodes
	Slide 115: Work Graph Concepts
	Slide 116: Work Graphs
	Slide 117: Work Graphs
	Slide 118: Work Graphs
	Slide 119: Work Graphs
	Slide 120: Work Graphs
	Slide 121: Work Graphs
	Slide 122: Work Graphs
	Slide 123: Work Graphs
	Slide 124: Work Graphs
	Slide 125: Work Graphs
	Slide 126: Work Graphs
	Slide 127: Work Graphs
	Slide 128: Work Graphs
	Slide 129: Work Graphs
	Slide 130: Work Graph Concepts – Nodes
	Slide 131: Work Graph Compilation Model
	Slide 132: Work Graph Compilation Model
	Slide 133: Work Graph Compilation Model
	Slide 134: Work Graph Compilation Model
	Slide 135: Work Graph Compilation Model
	Slide 136: Work Graph Concepts – Nodes
	Slide 137: Work Graph Concepts – Nodes
	Slide 138: Work Graph Concepts – Nodes
	Slide 139: Work Graph Concepts – Nodes
	Slide 140
	Slide 141: Work Graph Concepts – Nodes
	Slide 142: Work Graph Concepts – Nodes
	Slide 143: Work Graph Concepts – Nodes
	Slide 144: Work Graph Concepts – Nodes
	Slide 145: Work Graph Concepts – Nodes
	Slide 146: Work Graph Concepts – Nodes
	Slide 147: Work Graph Concepts – Nodes
	Slide 148: Work Graph Concepts – Nodes
	Slide 149: Work Graph Concepts – Nodes
	Slide 150: Work Graph Concepts – Nodes
	Slide 151: Work Graph Concepts – Nodes
	Slide 152: Work Graph Concepts – Nodes
	Slide 153: Work Graph Concepts – Nodes

	Work Graph Concepts - Records
	Slide 154: Work Graph Concepts
	Slide 155: Work Graph Concepts – Records
	Slide 156: Work Graph Concepts – Records
	Slide 157: Work Graph Concepts – Records
	Slide 158: Work Graph Concepts – Records
	Slide 159: Work Graph Concepts – Records
	Slide 160: Work Graph Concepts – Records
	Slide 161: Work Graph Concepts – Records
	Slide 162: Work Graph Concepts – Records
	Slide 163: Work Graph Concepts – Records
	Slide 164: Work Graph Concepts – Records
	Slide 165: Work Graph Concepts – Records
	Slide 166: Work Graph Concepts – Records
	Slide 167: Work Graph Concepts – Records
	Slide 168: Work Graph Concepts – Records
	Slide 169: Work Graph Concepts – Records
	Slide 170: Work Graph Concepts – Records
	Slide 171: Work Graph Concepts – Records
	Slide 172: Work Graph Concepts – Records
	Slide 173: Work Graph Concepts – Records
	Slide 174: Work Graph Concepts – Records
	Slide 175: Work Graph Concepts – Records
	Slide 176: Work Graph Concepts – Records
	Slide 177: Work Graph Concepts – Records
	Slide 178: Work Graph Concepts – Records
	Slide 179: Work Graph Concepts – Records
	Slide 180: Work Graph Concepts – Records
	Slide 181: Work Graph Concepts – Records
	Slide 182: Work Graph Concepts – Records
	Slide 183: Work Graph Concepts – Records
	Slide 184: Work Graph Concepts – Records
	Slide 185: Work Graph Concepts – Records
	Slide 186: Work Graph Concepts – Records
	Slide 187: Work Graph Concepts – Records
	Slide 188: Work Graph Concepts – Records
	Slide 189: Work Graph Concepts – Records
	Slide 190: Work Graph Concepts – Records
	Slide 191: Work Graph Concepts – Records
	Slide 192: Work Graph Concepts – Records
	Slide 193: Work Graph Concepts – Records
	Slide 194: Work Graph Concepts – Records
	Slide 195: Work Graph Concepts – Records
	Slide 196: Work Graph Concepts – Records
	Slide 197: Work Graph Concepts – Records
	Slide 198: Work Graph Concepts – Records
	Slide 199: Work Graph Concepts – Records

	Work Graph Concepts - Launches
	Slide 200: Work Graph Concepts
	Slide 201: Work Graph Concepts –
	Slide 202: Work Graph Concepts –
	Slide 203: Work Graph Concepts –
	Slide 204: Work Graph Concepts –
	Slide 205: Work Graph Concepts –
	Slide 206: Work Graph Concepts –
	Slide 207: Work Graph Concepts –
	Slide 208: Work Graph Concepts –
	Slide 209: Work Graph Concepts –
	Slide 210: Work Graph Concepts –
	Slide 211: Work Graph Concepts –
	Slide 212: Work Graph Concepts –
	Slide 213: Work Graph Concepts –
	Slide 214: Work Graph Concepts –
	Slide 215: Work Graph Concepts –
	Slide 216: Work Graph Concepts –
	Slide 217: Work Graph Concepts –
	Slide 218: Work Graph Concepts –
	Slide 219: Work Graph Concepts –
	Slide 220: Work Graph Concepts –
	Slide 221: Work Graph Concepts –
	Slide 222: Work Graph Concepts –
	Slide 223: Work Graph Concepts –
	Slide 224: Work Graph Concepts –
	Slide 225: Work Graph Concepts –
	Slide 226: Work Graph Concepts –
	Slide 227: Work Graph Concepts –
	Slide 228: Work Graph Concepts –
	Slide 229: Work Graph Concepts –
	Slide 230: Work Graph Concepts –
	Slide 231: Work Graph Concepts –
	Slide 232: Work Graph Concepts –
	Slide 233: Work Graph Concepts –
	Slide 234: Work Graph Concepts –
	Slide 235: Work Graph Concepts –
	Slide 236: Work Graph Concepts –
	Slide 237: Work Graph Concepts –
	Slide 238: Work Graph Concepts –
	Slide 239: Work Graph Concepts –

	Advanced Work Graphs: Use-case: Material Shading
	Slide 240: Advanced Work Graphs
	Slide 241: Problem: Material Shading
	Slide 242: Problem: Material Shading
	Slide 243: Problem: Material Shading
	Slide 244: Problem: Material Shading
	Slide 245: Problem: Material Shading
	Slide 246: Problem: Material Shading
	Slide 247: Problem: Material Shading
	Slide 248: Problem: Material Shading
	Slide 249: Problem: Material Shading
	Slide 250: Problem: Material Shading
	Slide 251: Problem: Material Shading
	Slide 252: Problem: Material Shading
	Slide 253: Problem: Material Shading
	Slide 254: Problem: Material Shading
	Slide 255: Problem: Material Shading
	Slide 256: Problem: Material Shading
	Slide 257: Problem: Material Shading
	Slide 258: Problem: Material Shading
	Slide 259: Problem: Material Shading
	Slide 260: Problem: Material Shading
	Slide 261: Recap – Work Graph – Nodes
	Slide 262: Recap – Work Graph – Records
	Slide 263: Recap – Work Graph – Records
	Slide 264: Recap – Work Graph – Records
	Slide 265: Recap – Work Graph – Launches
	Slide 266: Recap – Work Graph – Launches
	Slide 267: Recap – Work Graph – Launches
	Slide 268: Recap – Work Graph – Launches
	Slide 269: Recap – Work Graph – Launches
	Slide 270: Recap – Work Graph – Launches
	Slide 271: Recap – Work Graph – Launches
	Slide 272: Recap – Work Graph – Launches
	Slide 273: Material Shading
	Slide 274: Material Shading
	Slide 275: Material Shading
	Slide 276: Material Shading
	Slide 277: Material Shading
	Slide 278: Material Shading
	Slide 279: Material Shading
	Slide 280: Material Shading
	Slide 281: Material Shading
	Slide 282: Material Shading
	Slide 283: Material Shading
	Slide 284: Node Arrays
	Slide 285: Node Arrays
	Slide 286: Node Arrays
	Slide 287: Material Shading
	Slide 288: Material Shading
	Slide 289: Material Shading
	Slide 290: Material Shading
	Slide 291: Material Shading
	Slide 292: Material Shading
	Slide 293: Classify & Execute
	Slide 294: SIMD Efficiency
	Slide 295: SIMD Efficiency
	Slide 296: SIMD Efficiency
	Slide 297: SIMD Efficiency
	Slide 298: SIMD Efficiency
	Slide 299: SIMD Efficiency
	Slide 300: SIMD Efficiency
	Slide 301: SIMD Efficiency
	Slide 302: Conclusion
	Slide 303: Conclusion
	Slide 304: Summary

	Advanced Work Graphs: Recursion
	Slide 305: Advanced Work Graphs
	Slide 306: Recursion
	Slide 307: Recursion
	Slide 308: Recursion
	Slide 309: Recursion
	Slide 310: Recursion
	Slide 311: Recursion
	Slide 312: Recursion
	Slide 313: Recursion
	Slide 314: Recursion
	Slide 315: Recursion
	Slide 316: Recursion
	Slide 317: Recursion
	Slide 318: Recursion
	Slide 319: Recursion
	Slide 320: Recursion
	Slide 321: Recursion
	Slide 322: Recursion

	Advanced Work Graphs: Synchronization
	Slide 323: Advanced Work Graphs
	Slide 324: Synchronization
	Slide 325: Synchronization
	Slide 326: Synchronization
	Slide 327: Synchronization
	Slide 328: Synchronization
	Slide 329: Synchronization
	Slide 330: Synchronization
	Slide 331: Synchronization
	Slide 332: Synchronization
	Slide 333: Synchronization
	Slide 334: Synchronization
	Slide 335: Synchronization
	Slide 336: Synchronization

	Advanced Work Graphs: Procedural Generation
	Slide 337: Advanced Work Graphs
	Slide 338: Advanced Work Graphs
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370
	Slide 371
	Slide 372
	Slide 373
	Slide 374
	Slide 375
	Slide 376
	Slide 377
	Slide 378
	Slide 379
	Slide 380
	Slide 381
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Slide 393
	Slide 394
	Slide 395
	Slide 396
	Slide 397
	Slide 398
	Slide 399
	Slide 400
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412

	Advanced Work Graphs: Work Graphs under the Hood
	Slide 413: Advanced Work Graphs
	Slide 414: How does it work?
	Slide 415: How does it work?
	Slide 416: How does it work?
	Slide 417: How does it work?
	Slide 418: How does it work?
	Slide 419: How does it work?
	Slide 420: How does it work?
	Slide 421: How does it work?
	Slide 422: How does it work?
	Slide 423: How does it work?
	Slide 424: How does it work?
	Slide 425: How does it work?
	Slide 426: How does it work?
	Slide 427: How does it work?
	Slide 428: How does it work?
	Slide 429: How does it work?
	Slide 430: How does it work?
	Slide 431: How does it work?
	Slide 432: How does it work?
	Slide 433: How does it work?
	Slide 434: How does it work?
	Slide 435: How does it work?
	Slide 436: How does it work?
	Slide 437: How does it work?
	Slide 438: How does it work?
	Slide 439: How does it work?
	Slide 440: How does it work?
	Slide 441: How does it work?
	Slide 442: How does it work?
	Slide 443: How does it work?
	Slide 444: Forward Progress
	Slide 445: Forward Progress
	Slide 446: Forward Progress
	Slide 447: Forward Progress
	Slide 448: Forward Progress
	Slide 449: Forward Progress
	Slide 450: Mesh Nodes
	Slide 451: Mesh Nodes
	Slide 452: Mesh Nodes
	Slide 453: Mesh Nodes
	Slide 454: Mesh Nodes
	Slide 455: Mesh Nodes
	Slide 456: Mesh Nodes
	Slide 457: Mesh Nodes
	Slide 458: Mesh Nodes
	Slide 459: Summary

	Summary
	Slide 460: Summary
	Slide 461: Summary
	Slide 462: Summary
	Slide 463: Work Graph Playground
	Slide 464: Work Graph Playground
	Slide 465: Work Graph Playground
	Slide 466: Work Graph Playground
	Slide 467: Samples
	Slide 468: Samples
	Slide 469: Connect with us
	Slide 470

	References
	Slide 471: References

	Disclaimer
	Slide 472: Disclaimer
	Slide 473

