
High-Performance Graphics 2023
J. Bikker and C. Gribble
(Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 8

Edge-Friend: Fast and Deterministic Catmull-Clark Subdivision
Surfaces

Bastian Kuth1 Max Oberberger2 Matthäus Chajdas2 Quirin Meyer1

1Coburg University of Applied Sciences and Arts, Germany
2AMD, Germany

(d)(c)

(b)

(a)

d = 4

d = 1

Figure 1: (a) A control mesh after a pre-processing subdivision iteration is quad-only. (b) Our edge-friend data structure implicitly assigns
two opposing edges (red) to each quad. Each quad stores only two edges in neighboring quads (blue). (c) We refine the edge-friend structure
breadth-first down to level d = 4. (d) Refining and rendering the shown model takes under 40µs on an AMD Radeon RX 7900 XTX GPU.

Abstract
We present edge-friend, a data structure for quad meshes with access to neighborhood information required for Catmull-Clark
subdivision surface refinement. Edge-friend enables efficient real-time subdivision surface rendering. In particular, the resulting
algorithm is deterministic, does not require hardware support for atomic floating-point arithmetic, and is optimized for efficient
rendering on GPUs. Edge-friend exploits that after one subdivision step, two edges can be uniquely and implicitly assigned to
each quad. Additionally, edge-friend is a compact data structure, adding little overhead. Our algorithm is simple to implement
in a single compute shader kernel, and requires minimal synchronization which makes it particularly suited for asynchronous
execution. We easily extend our kernel to support relevant Catmull-Clark subdivision surface features, including semi-smooth
creases, boundaries, animation and attribute interpolation. In case of topology changes, our data structure requires little pre-
processing, making it amendable for a variety of applications, including real-time editing and animations. Our method can
process and render billions of triangles per second on modern GPUs. For a sample mesh, our algorithm generates and renders
2.9 million triangles in 0.58ms on an AMD Radeon RX 7900 XTX GPU.

CCS Concepts
• Computing methodologies → Rendering; Parametric curve and surface models; Massively parallel algorithms;

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-9473-8847
https://orcid.org/0000-0001-9648-3171
https://orcid.org/0000-0003-4689-2932
https://orcid.org/0000-0001-7073-442X


B. Kuth & M. Oberberger & M. Chajdas & Q. Meyer / Edge-Friend

1. Introduction

Catmull-Clark subdivision [CC78] is a surface modeling algorithm
that generates a dense and smooth quad mesh from a sparse poly-
gon control mesh. Today, it is a widespread modeling technique.
A subdivision step splits the control-mesh polygons into quads and
transforms the quads’ positions according to refinement rules. The
resulting mesh is continuously subdivided until it is dense enough.

The use of graphics processing units (GPUs) proved to be advan-
tageous: GPU data-parallelism assists in achieving high subdivi-
sion speed. Moreover, the final mesh can be rendered directly from
GPU memory. However, parallelizing subdivision is not trivial and
existing approaches suffer from draw-backs which we improve on
with the following contributions:

A novel quad-mesh-connectivity data structure. Subdivision re-
quires neighbor information through suitable data structures. Exist-
ing ones suffer from a large memory foot-print [PEO09,MWS∗20,
DV21]. We propose a more light-weight data structure that allows
to quickly access neighbor information. We show that it is suffi-
cient to store only two references to neighbor edges per quad, called
edge-friends, see Fig. 1. Since subdivision tends to be a memory-
bound problem, this increases subdivision speed. Furthermore, we
organize edge-friend in a spatially coherent memory layout, which
makes memory access patterns beneficial for GPU performance.

An atomic-operation free gathering approach. Implementations
using atomic floating-point operations [PEO09, MWS∗20, DV21]
come with a performance penalty and require vendor- and API-
specific extensions. Moreover, the non-deterministic scheduling of
atomic operations changes their order on a frame-by-frame basis.
With floating-point arithmetic not being associative, flickering ar-
tifacts can occur, even between frames with identical inputs. We
completely eliminate atomic operations by expressing subdivision
with gather operations as opposed to atomic scatter operations.

A single synchronization barrier. Many existing GPU ap-
proaches [PEO09, MWS∗20, DV21] need multiple dependent
compute-kernel dispatches with expensive barrier synchronizations
for a single subdivision step. We require only a single dispatch,
and thus a single synchronization barrier per subdivision iteration,
which provides additional performance benefits.

Low pre-processing cost. Some methods trade fast surface eval-
uation against expensive pre-processing [NLMD12, Pix22]. This
slows down modeling, animation, and simulation tasks that require
topology changes like face, edge, or point insertion and deletion.
Our approach requires negligible pre-processing enabling real-time
geometric and topological edits.

Simple and extensible. Additionally, our subdivision compute ker-
nel is simple and we demonstrate how to easily integrate rele-
vant subdivision features like boundaries [Nas87], semi-smooth
creases [DKT98], animation, and attribute interpolation, which
makes our method attractive for production environments.

However, our approach possesses the following limitations: Sur-
face evaluation with hardware tessellation [NLMD12, Pix22] re-
mains faster, but requires substantially more pre-processing than
our method. We obtain conformal, crack-free meshes with uniform
subdivision; however, like other methods [MWS∗20,DV21], we do
not handle crack-free adaptive subdivision.

2. Related Work

Catmull-Clark Subdivision Rules [CC78] update the input-mesh
vertices and create one new point per face and edge. A new face-
point is the centroid of the face. A new edge-point is the average of
the edge’s incident new face points f0, f1 and vertices v0,v1:

e =
1
4
(v0 + v1 + f0 + f1) . (1)

With the valence n of an old vertex v, the average Q of all its ad-
jacent face points, and the average R of the midpoints of all edges
incident to v, we get the new vertex point

v′ =
1
n
(Q+2R+(n−3)v) . (2)

An extra-ordinary vertex has valence n ̸= 4. One vertex- and face-
point, as well as two edge-points define a new quad.

Patch-based Subdivision methods split the control mesh into
patches. A patch consists of a face together with the context re-
quired for local subdivision [BS02]. While leading to data dupli-
cation and redundant computations, each patch can be treated in-
dependently enabling both parallel and adaptive subdivision. Extra
triangles close cracks between different levels. However, floating-
point rounding errors cause cracks, but a correct operation order
assures consistent results where patches meet [NLMD12].

Breadth-First Subdivision algorithms apply the subdivision rules
on an entire mesh in parallel. Our method falls into this category.
Methods build mesh data structures that contain neighbor informa-
tion [DV21, PEO09, MWS∗20]. For example, to compute an edge-
point, the data structure must contain information about faces con-
necting to an edge. Patney et al. [PEO09] represent a mesh with
a vertex-, a quad-, and an edge-buffer, where one edge references
two quads and two vertices. They achieve view-adaptive, crack-
free tessellation. Mlakar et al. [MWS∗20] describe topology with
sparse matrices. Combined with specialized linear algebra kernels,
they achieve fast breadth-first subdivision, but require a complex
implementation. Dupuy and Vanhoey [DV21] achieve similar per-
formance. They represent a mesh using the established halfedge
data structure and convert the original subdivision rules to work on
a per-halfedge basis.

Direct Evaluation Catmull-Clark subdivision surfaces generalize
uniform bi-cubic tensor-product B-Spline surfaces and overcome
their topological limitations. Both surfaces are identical for quads
with eight adjacent quads. There, direct B-Spline evaluation is more
efficient than subdivision. As the refinement rules maintain the
number of extra-ordinary vertices, the directly evaluable propor-
tion of the surface grows with each subdivision. Specialized meth-
ods exist for direct evaluation of quads with one isolated extra-
ordinary vertex [Sta98], at an extra-ordinary boundary [LB07], and
with a single semi-sharp crease [NLG12]. For other configura-
tions, we are only aware of approximations [LS08]. Hybrid meth-
ods [NLMD12,BFK∗16] subdivide until direct evaluation is possi-
ble. These methods leverage hardware tessellation minimizing I/O
and enabling adaptive rendering.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



B. Kuth & M. Oberberger & M. Chajdas & Q. Meyer / Edge-Friend

3. Edge-Friend

We first describe the creation of our edge-friend data structure.
Next, we derive edge-friend refinement rules and present a cache-
coherent vertex-memory layout. Furthermore, we demonstrate how
edge-friend handles important extensions, including boundaries.
Finally, we discuss the rendering and attribute interpolation of our
subdivided mesh.

3.1. Creation

We obtain an edge-friend mesh during a first subdivision iteration.
This can be performed as pre-process or every frame with any sub-
division method supporting arbitrary polygons. After one subdivi-
sion, we obtain a quad-only mesh necessary for our data structure.

Let the index buffer of the d-th subdivision be Id (cf. Fig. 2b),
where level d = 0 is the unprocessed input. We call an element
of the index buffer a corner [RSS03], see red numbers in Fig. 2b.
Each input corner of Id−1 maps to a new quad in Id . Here, we
make our key observation: the corners inside a quad can be ro-
tated arbitrarily without causing topological changes. We always
start a new quad with the vertex index of the old corner, continue
with the adjacent edge-point and face-point along the winding or-
der and conclude with the second edge-point. Given a quad with the
corners (v0,v1,v2,v3), we call the opposing edges v0v1 and v2v3
the on-edges of the quad. The opposing edges v1v2 and v3v0 are
called the off-edges of the quad. Fig. 2a shows an example with
on-edges marked by additional lines. Fig. 2b shows the converted
index buffer Id and its corners c.

For the new index buffer, the following properties hold:

• (4c+0,4c+1,4c+2,4c+3) addresses a quad.
• (2c+0,2c+1) addresses an edge.
• (c) addresses a corner.

An on-edge of one quad is an off-edge in an adjacent quad. In
Fig. 2, 11 7 is an on-edge of quad 0, but an off-edge in quad 2.

Let c be a corner index, e be an edge index and ⊕ be a bit-wise
exclusive or operation. Using bit-logic

• CQUAD(c)=
⌊ c

4
⌋

yields the quad index of a corner,
• EQUAD(e)=

⌊ e
2
⌋

yields the quad index of an edge,
• DIAG(c) = c⊕2 yields the corner index across the quad, and
• OFF(c) = c⊕3 yields the corner index along the off-edge.

To add neighborhood information, we assign both off-edges of a
quad the corresponding on-edge indices. Thus, each quad consists
of two opposing on-edges and references two on-edges of neigh-
boring quads. We call these references the edge-friends of a quad.
We store edge-friends in a friend buffer Gd , where d is the subdi-
vision level. An element of Gd is the tuple (g0,g1), where g0 is the
friend of off-edge v1v2 and g1 the friend of off-edge v3v0. Fig. 2b
shows an example of Gd .

For each vertex, we select an arbitrary corner and make that cor-
ner index a vertex attribute. We call this attribute valence loop start,
as it enables gathering points from adjacent faces to update a ver-
tex position. This allows atomic-operation free vertex updates. We
denote the respective buffer Ld , exemplified in Fig. 2c.

5 9 115

2 2

7
1011

quad 1quad 0

quad 2

face 0

... ...

... ... ...

...

...

...

...

(a)
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
Id 5 9 7 11 1 10 7 9 2 11 7 10︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

edge 0 edge 1 edge 2 edge 3 edge 4 edge 5 · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
quad 0 quad 1 quad 2

Gd edge 3 · · · edge 5 · · · edge 1 · · · · · ·
(b)

· · · 1 2 · · · 5 · · · 7 · · · 9 10 11 · · ·
Ld 4 8 0 2 1 5 3

(c)

Figure 2: Edge-friend Data Structure. (a) During pre-processing,
each corner of the original mesh (left) maps to a quad in the sub-
divided mesh (right). We mark the on-edges of each quad with ex-
tra edge lines. Vertices are shown as circled numbers and original
mesh vertices are shown in bold. (b) Using corner indices c (red
numbers), we obtain quads and edges from the index buffer Id . The
edge-friend buffer Gd is used to access neighborhood information.
(c) To gather neighboring vertices, Ld maps each vertex to a cor-
ner. This corner must in turn reference the vertex.

We get the buffer sizes from the vertex and face count Vd and Fd :

Vd = |Vd |= |Ld | ,Fd =
1
4
|Id |= |Gd | .

The buffer sizes increase exponentially with every subdivision step:

Vd+1 =Vd +3Fd , Fd+1 = 4Fd .

3.2. Edge-friend Refinement

We split edge-friend subdivision into two tasks: the quad task and
the vertex task. Both tasks run in the same compute shader kernel.

Quad Task With one thread per quad, the quad task computes the
face-point, the two edge points of the off-edges of the quad, the
indices for four new quads, and eight new edge-friends. First, we
load both edge-friends (g0,g1)← Gd [q] of the current quad with
index q. Remember that gi are edge indices. Hence, we obtain the
corresponding corner indices by 2gi +0 and 2gi +1. Then, we can
read all required vertex indices, as shown in Fig. 3a:

v0 = Id [2g1 +0] , v′0 = Id [OFF(2g1 +0)] ,

v1 = Id [2g0 +1] , v′1 = Id [OFF(2g0 +1)] ,

v2 = Id [2g0 +0] , v′2 = Id [OFF(2g0 +0)] ,

v3 = Id [2g1 +1] , v′3 = Id [OFF(2g1 +1)] .

With vi,v′i , we load the vertex positions, compute the face-point

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



B. Kuth & M. Oberberger & M. Chajdas & Q. Meyer / Edge-Friend

q

v′1

v′2

v1

v2

v0

v3

v′0

v′3

g0 g1

(a)

v′1

v′2

v1

v2

v0

v3

v′0

v′3

e0 e1f

q0q1

q2 q3 n3

n0n1

n2

4q+3

4q+2

(b)

Figure 3: Quad Task. (a) Each quad task uses the edge-friends gi
of quad q to load the vertices vi and v′i . (b) Next, the quad task
computes the new face-point of q and stores it at index f in Vd+1.
Additionally, it computes the new edge-points and stores them at ei
in Vd+1. With vi, ei, f , 4q+2, and 4q+3 the new quads qi are writ-
ten to Id+1. For the friend relations, shown as arrows, we require
the neighbor quads ni. Finally, the quad task writes the three new
valence loop start corners for the generated vertices to Ld+1. All
elements generated by the quad task are highlighted in blue.

of the centering quad and the edge points of the off-edges accord-
ing to Eq. (1). We store the generated face-point in the new vertex
buffer at index f = 4q+1, and the generated edge-points at

e0 = 4(EQUAD(g0)+2+(g0 mod 2)),

e1 = 4(EQUAD(g1)+2+(g1 mod 2)),

i.e., next to the face-point of the friends of q. This improves
caching, as shown in Sec. 3.3. Moreover, the quad task writes the
four new quads emerging from the old quad. The locations in the
new index buffer for the four new quad indices qi, i ∈ [0,3] are
qi = 4q+ i. Again, the new quads start at an original vertex posi-
tion, continue with an edge-point, the face-point and conclude with
the second edge-point:

Id+1[4q0 : 4q1]← (w0,4q+2, f ,e1) ,

Id+1[4q1 : 4q2]← (w1,e0, f ,4q+2) ,

Id+1[4q2 : 4q3]← (w2,4q+3, f ,e0) ,

Id+1[4q3 : 4q3 +4]← (w3,e1, f ,4q+3) ,

where wi is the index of vi in the new vertex buffer. To add the new
friend relations, we need new neighboring quads indices

n0 = 4EQUAD(g1)+2(g1 mod 2)+0,

n1 = 4EQUAD(g0)+2(g0 mod 2)+1,

n2 = 4EQUAD(g0)+2(g0 mod 2)+0,

n3 = 4EQUAD(g1)+2(g1 mod 2)+1,

where ni is adjacent to qi. Using this, we can compute and write

eight new friend indices:

Gd+1 [q0]0← 2q1 +1, Gd+1 [q0]1← 2n0 +0,

Gd+1 [q1]0← 2q2 +1, Gd+1 [n1]1← 2q1 +0,

Gd+1 [q2]0← 2q3 +1, Gd+1 [q2]1← 2n2 +0,

Gd+1 [q3]0← 2q0 +1, Gd+1 [n3]1← 2q3 +0.

To conclude the quad task, we write the new valence loop start
corners for the three newly generated vertices. It is valid to choose
any of the connected corners, and we choose

Ld+1 [ f ]← 4q0 +2,

Ld+1 [e0]← 4n2 +1,

Ld+1 [e1]← 4n0 +1.

For an example, see Fig. 3b.

Vertex Task The vertex task updates each vertex position. In or-
der for our algorithm to work in a single dispatch, we need to re-
formulate the vertex-point update rule to not depend on any points
computed during the same subdivision step. After our required pre-
processing iteration, the mesh is quad-only. According to the sup-
plemental material of de Goes et al. [dGDMD16], given the valence
n of vertex-point vd , the n points connected to vd with an edge E
and the n points diagonally connected to vd with a quad F , the new
vertex-point vd+1 is

vd+1 = αvd +
β

n

n

∑
j

E j +
γ

n

n

∑
j

Fj, (3)

where α = 1−β− γ, β = 3
2n , and γ = 1

4n . We collect the two sums
by iterating over the faces adjacent to the input vertex index v, as
shown in Algorithm 1. The loop starts at the corner c← Ld [v].
We compute the required point locations using the previously es-
tablished bit logic on corners, and add the points to their respective
accumulators. To visit the next corner, one of the two friend ref-
erences of the current quad is used, depending on which off-edge
the current corner lies. We loop around the vertex until we arrive at
the starting corner. We then compute the new vertex point position
with Eq. (3). Typically, the new vertex index is w = 4v, the other
case is discussed in Sec. 3.3. An old corner c maps to a new corner
c′ with c′ = 4c. We can thus propagate the input valence loop start
to Ld+1.

Task Merge For closed topology of genus 0 with the total number
of vertices V , the number of edges E and the number of faces F ,
the Euler characteristic states: V −E +F = 2. As we have uniquely
assigned two edges to each quad, it applies that E = 2F . Thus,
the number of quad and vertex tasks per closed topology is almost
equal: V = F + 2. In addition, we do not require one task to fin-
ish before the other and thus can merge both tasks into a single
compute shader. For the exceeding vertices, the kernel can just ter-
minate early. This simplifies the implementation and is faster to
run, as the algorithm only requires a single synchronization barrier
between each subdivision iteration.

3.3. Vertex Memory Layout

Methods such as the halfedge refinement by Dupuy and Van-
hoey [DV21] store the new face- and edge-points behind the

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



B. Kuth & M. Oberberger & M. Chajdas & Q. Meyer / Edge-Friend

Algorithm 1 Vertex Task

1: procedure VERTEXTASK(vertex index v,
old mesh Fd ,Vd ,Id ,Gd ,Ld ,
new mesh Vd+1,Ld+1)

2: c←Ld [v]
3: c′← c
4: e← 0, f ← 0, n← 0
5: repeat
6: n← n+1
7: e← e+Vd

[
Id

[
OFF

(
c′
)]]

8: f ← f +Vd
[
Id

[
DIAG

(
c′
)]]

9: g←Gd
[
CQUAD

(
c′
)]

10: i←

{
0, if

(
c′ mod 4

)
= 1∨

(
c′ mod 4

)
= 2

1, otherwise
11: c′← 2gi +

(
c′ mod 2

)
12: until c′ = c

13: w←

{
4v, if v≤ Fd

3Fd + v, otherwise

14: β← 3
2n , γ← 1

4n , α← 1−β− γ

15: Vd+1[w]← αVd [v]+
β

n e+ γ

n f
16: Ld+1[w]← 4v
17: end procedure

last memory address for the updated vertex positions. As a new
quad always uses one vertex-point, one face-point, and two edge-
points, the distance between the memory addresses accessed at
once increases exponentially with every subdivision step. With our
method, we can interleave the memory locations of the different
point types to achieve better data locality. This speeds up both the
next subdivision iteration and the final drawing of the generated
geometry. Our vertex buffer is split into chunks of four positions.
The first slot of a chunk i is reserved for the updated vertex-point
position wi of vertex i. The second slot is reserved for the new face-
point fi of quad i. The third and fourth slots are reserved for the
edge-points e2i+0 and e2i+1 of the on-edges of quad i. As previ-
ously established, the number of vertices is unequal to the number
of faces. Therefore, we have to compensate if i is greater to the
number of faces Fd . An old vertex at index v maps to a new index
w:

w←

{
4v, if v≤ Fd

3Fd + v, otherwise.

The resulting vertex buffer for a mesh with a single closed topology,
where V = F +2, looks like this:[

w0, f0,e0,e1,w1, f1,e2,e3, · · · ,e2Fd−2,e2Fd−1,wVd−2,wVd−1
]
.

For other topological genera, the handling of exceeding buffer sizes
works analogously.

3.4. Semi-Sharp Creases

A common extension of the Catmull-Clark subdivision rules is the
use of semi-sharp creases [DKT98]. Individual edges of the control
mesh can be assigned a sharpness value σ ∈ R≥0. The sharpness
denotes whether to apply the original “smooth“ rules from Sec. 2

(σ = 0), or to use additional “sharp“, “crease“ or “corner“ rules in
the current subdivision step (σ ≥ 1). 0 < σ < 1 denotes a blend
between the rules. When a creased edge is subdivided, the two re-
sulting edges receive the sharpness of the original edge minus one,
thus σ

′ = MAX(0,σ−1). Face-points remain the same as is Sec. 2.

Edge-point Given the two points p0 and p1 that connect to an
edge, the sharp rule is:

esharp =
1
2
(p0 + p1) .

Given the smooth point esmooth like in Eq. (1), and the sharpness σ

of the edge, the resulting edge-point is:

e = LERP
(
esmooth,esharp,MIN(σ,1)

)
. (4)

Vertex-point Given two points p0 and p1 connected to a vertex v
with two edges that have a sharpness σ > 0, the crease rule is

vcrease =
1
8
(p0 +6v+ p1) ,

and the corner rule is

vcorner = v.

Given the smooth point vsmooth like in Eq. (2), the number of edges
m that are connected to vertex v with σ > 0, and the average sharp-
ness σ of all these edges, the resulting updated vertex-point v′ is:

v′ =


vsmooth, if m < 2
LERP(vsmooth,vcorner,MIN(σ,1)) , if m > 2
LERP(vsmooth,vcrease,MIN(σ,1)) , otherwise.

We assign a sharpness value to each edge-friend reference. The
required adjustments to the edge point computation directly follows
Eq. (4). In addition, we write out the new sharpness values of the
generated friend relations. For the vertex-task, we add two more
accumulators to the loop: m for the number of adjacent edges with
sharpness σ > 0 and σ̂ for accumulating all sharpness values. Thus
σ = σ̂

m . For the crease rule, we require the two points p0 and p1. If
the loop encounters a creased edge with a connected vertex e, we
set p0← e if m = 0 and p1← e otherwise.

Some assets require smooth subdivision of the sharpness values,
which is known as the Chaikin rule [Cha74]. If this is desired, one
could move the refinement of the sharpness values to the vertex-
task, because there we have access to neighboring sharpness values.

3.5. Meshes with Boundaries

Although our data structure relies on a closed mesh topology, we
support mesh boundaries. As semi-sharp creases are supported, we
can simply close the geometry with ghost quads and mark previous
boundary edges as infinitely sharp. Each boundary consisting of k
edges receives k

2 ghost quads arranged in a fan and one additional
vertex in the center of this fan. With a subdivision iteration on pre-
processing, where each edge gets split into two, it is given that k

2 is
an integer. After subdivision, the ghost quads can simply be ignored
for rendering. Some assets require boundary corners to follow the
corner rule. To achieve this, we mark the ghost edges attached to
this vertex as infinitely sharp.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



B. Kuth & M. Oberberger & M. Chajdas & Q. Meyer / Edge-Friend

3.6. Rendering

After subdividing the desired amount of iterations, we employ a
mesh shader to render the refined meshes to the screen. Here, we
have to handle the problem of attribute interpolation, most com-
monly of texture coordinates, but our approach can also be used for
other face-varying attributes. While subdivision requires a closed
mesh, texture mapping has to slice open a mesh to be able to project
it onto the texture. Usually this can be handled by duplicating the
vertices at texture map seams on asset creation. One vertex receives
the texture coordinate of one side of a texture map seam, and the
other one the coordinate of the other side.

To do this duplication in real-time, we form a meshlet from each
set of subdivided quads that originate from a single quad of our
pre-processed control mesh. This comes with the benefit that the
duplication of the vertices along the edges where texture seams
can happen is done implicitly and without requiring any additional
memory. On pre-processing, we associate one quad with four tex-
ture coordinates, thus one per corner, which are loaded and linearly
interpolated by the mesh shader. Note that this only covers one
possible method for interpolation. OpenSubdiv provides other in-
terpolation methods for face-varying attributes, where the attribute
itself is subject to smooth subdivision [Pix22]. If the number of it-
erations is too great for the output triangle limit of a mesh shader,
we additionally employ an amplification shader. The amplification
shader splits the data of an original quad into tiles that are within
the bounds of the triangle output limit.

The surface normal vector of a vertex is usually not defined by
attributes, but by finding the partial derivatives of the refined sur-
face. We compute the normal vectors using the usual cross-product
formula in the mesh shader. If desired, it is possible to compute
the limit surface normal by using the equations of Halstead et
al. [HKD93]. This limit surface projection can also be applied to
the vertex positions. The computation of the normal vectors and
texture coordinates also allows for normal- and displacement map-
ping. The real-time interpolation of vertex-blend attributes for ani-
mation is not necessary, because the transformation of the positions
is performed before real-time subdivision.

4. Results and Discussion

We evaluate the performance of our method on the meshes of Fig. 4.
The collection includes regular meshes, meshes with boundaries,
and with semi-sharp creases. Big Guy and Pig start at d = 0 as
their initial control meshes already comply with our on-off-edge
rule after rotating every second quad.

Consider the dual graph of the quad mesh. For our on-off-edge
rule to function, we require a closed quad mesh where all dual
chord rings [DSSC08] have a length of 2n. This is true, if the
closed quad mesh is homeomorphic to a sphere. In other cases, the
pre-processing iteration doubles the length of all dual chord rings,
forcing all dual chord rings to be of length 2n. This assures that we
always have a consistent edge-friend data structure.

For non-quad-only meshes we perform a pre-processing iteration
on the CPU when loading the model. Remember that any subdivi-
sion method that supports arbitrary face sizes can be applied for this

Meshes Ogre Big Guy Pig Spot Rook Bishop Car Imrod
Time (ms) 1.28 0.99 0.26 0.42 0.78 0.82 1.81 2.93

Table 1: Pre-processing Time. Each cell is the pre-processing time
in milliseconds required to create the edge-friend data structure for
the meshes from Fig. 4 on the CPU. The measurements include the
creation of a hash-map for mesh connectivity.

step. Tab. 1 provides timings of our naïvely parallelized implemen-
tation of the pre-process iteration. We use GPU timers to isolate
performance measurements for both subdivision and rendering. All
measurements were taken on an AMD Ryzen 9 5950X, together
with an AMD Radeon RX 7900 XTX and an NVIDIA RTX 4080.

We compare our method to the closely related halfedge refine-
ment by Dupuy and Vanhoey [DV21]. We refer to it as Halfedge.
For fair comparison, we ported over the publicly available OpenGL
Halfedge implementation into our Direct3D12 application. As the
input meshes are quad-only, we always employ the quad-only op-
timization of Halfedge, where the Prev, Next, and Face references
of each Halfedge can be trivially computed. For simplicity reasons,
we always use an implementation that supports semi-sharp creases
for both Halfedge and our method, even if a test mesh does not have
any edges tagged as such. Furthermore, as we use the regular crease
refinement in our implementation, we removed the additional com-
pute dispatch from Halfedge for refining the sharpness values ac-
cording to the Chaikin rule. Atomic floating point arithmetic is not
supported by all vendors or APIs. To take this case into account,
we simulate atomic float addition similar to Patney et al. [PEO09].

Fig. 5 shows our subdivision benchmark results without render-
ing. As can be seen, our method outperforms Halfedge by a factor
of about three. This does not change for meshes with boundaries,
where our method has to additionally subdivide ghost quads. Fur-
thermore, the figure reveals that simulating atomic float addition
for Halfedge is evidently slower.

Fig. 6 shows the overall run-time required to subdivide and ren-
der a mesh. We achieve frame-times well above the required thresh-
old for real-time rendering, even when generating more triangles
than framebuffer pixels.

Both Halfedge and our algorithm require two temporary blocks
of memory for subdivision, one for input and one for output. The
semantics of both blocks are swapped each iteration: the old out-
put becomes the new input and vice-versa. Based on the number
of quads F and the number of vertices V , the required temporary
memory sizes to hold a single iteration for Halfedge h(F,V ) and
our algorithm e(F,V ) are

h(F,V ) = 4 ·3 ·4 ·F︸ ︷︷ ︸
halfedges

+4 ·3 ·V︸ ︷︷ ︸
positions

= 48F +12V,

e(F,V ) = 4 ·4 ·F︸ ︷︷ ︸
indices

+4 ·2 ·F︸ ︷︷ ︸
friends

+ 4 ·2 ·F︸ ︷︷ ︸
sharpness

+4 ·3 ·V︸ ︷︷ ︸
positions

+4 ·V︸︷︷︸
loop

= 32F +16V.

Since F ≈ V , Halfedge requires ca. 25% more memory than our
method. Tab. 2 exemplifies this by measurements combining input
and output buffer sizes.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



B. Kuth & M. Oberberger & M. Chajdas & Q. Meyer / Edge-Friend

d=1 d=6
Ogre

d=0 d=6
Big Guy

d=0 d=6
Pig

d=1 d=6
Spot

d=6d=1
Imrod

d=1 d=6
Rook

d=1 d=6
Bishop

d=6d=1
Car

bo
un

da
ri

es
&

cr
ea

se
s

F6 = 6,451,200
V6 = 6,453,157

G6 = 61,440
W6 = 59,531

F6 = 3,829,760
V6 = 3,830,531

G6 = 24,576
W6 = 23,809

F6 = 3,137,536
V6 = 3,138,305

G6 = 24,576
W6 = 23,809

F6 = 21,912,576
V6 = 21,919,733

G6 = 228,352
W6 = 221,235

F6 = 749,568
V6 = 749,570

F6 = 1,560,576
V6 = 1,560,584

F6 = 5,939,200
V6 = 5,939,202

F6 = 5,396,480
V6 = 5,396,482

F1 = 6,300
V1 = 6,397
G1 = 60
W1 = 11

F1 = 3,740
V1 = 3,767
G1 = 24
W1 = 1

F1 = 3,064
V1 = 3,089
G1 = 24
W1 = 1

F1 = 21,399
V1 = 21,643
G1 = 223
W1 = 19

F1 = 732
V1 = 734

F0 = 381
V0 = 389

F0 = 1,450
V0 = 1,452

F1 = 5,270
V1 = 5,272

bo
un

da
ri

es

bo
un

da
ri

es
&

cr
ea

se
s

bo
un

da
ri

es
&

cr
ea

se
s

Figure 4: Test Meshes. Fd denotes the number of faces and Vd the number of vertices. Meshes with boundaries require Gd ghost faces and
Wd ghost vertices. Big Guy and Pig do not require a pre-processing iteration.

Ogre

Big
Guy Pig

Spo
t

Roo
k

Bish
op Car

Im
rod

0.0

0.2

0.4

0.6

0.8

Su
bd

iv
is

io
n

Ti
m

e
(m

s)

0.
19 0.
21

0.
07

0.
04 0.

11 0.
15 0.

22

0.
69

0.
12 0.
13

0.
04

0.
03 0.

07 0.
10 0.

14

0.
43

0.
03

0.
04

0.
02

0.
01 0.
03

0.
03 0.
04 0.

11

AMD Radeon RX 7900 XTX
To d = 4

Ogre

Big
Guy Pig

Spo
t

Roo
k

Bish
op Car

Im
rod

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Su
bd

iv
is

io
n

Ti
m

e
(m

s)

0.
34 0.
38

0.
13

0.
07 0.

20 0.
25 0.

40

1.
32

0.
22 0.
25

0.
08

0.
04 0.

13 0.
17 0.

26

0.
85

0.
06

0.
07

0.
02

0.
01 0.
04

0.
05 0.
08

0.
26

NVIDIA GeForce RTX 4080
To d = 4

Ogre

Big
Guy Pig

Spo
t

Roo
k

Bish
op Car

Im
rod

0

1

2

3

Su
bd

iv
is

io
n

Ti
m

e
(m

s)

0.
69 0.
76

0.
22

0.
12 0.

42 0.
52 0.

78

2.
89

0.
42 0.
47

0.
15

0.
07 0.

28

0.
31 0.

50

2.
04

0.
09

0.
10

0.
04

0.
02 0.
08

0.
10

0.
11

0.
89

AMD Radeon RX 7900 XTX
To d = 5

Ogre

Big
Guy Pig

Spo
t

Roo
k

Bish
op Car

Im
rod

0

2

4

6

Su
bd

iv
is

io
n

Ti
m

e
(m

s)

1.
32 1.
45

0.
41

0.
21 0.

77 0.
95 1.

58

5.
69

0.
85 0.
93

0.
26

0.
14 0.

51 0.
62 1.

02

3.
68

0.
24

0.
27

0.
07

0.
04 0.
15

0.
18 0.
29 1.

00

NVIDIA GeForce RTX 4080
To d = 5

Ogre

Big
Guy Pig

Spo
t

Roo
k

Bish
op Car

Im
rod

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
bd

iv
is

io
n

Ti
m

e
(m

s)

2.
80 3.
14

0.
79

0.
40 1.

58 1.
93 3.

46

12
.8

3

1.
92 2.
21

0.
48

0.
27 1.

04 1.
26 2.

38

8.
90

0.
94 1.
17

0.
10

0.
07 0.
41

0.
57 1.

27

5.
31

AMD Radeon RX 7900 XTX
To d = 6

Ogre

Big
Guy Pig

Spo
t

Roo
k

Bish
op Car

Im
rod

0

5

10

15

20

25

30

Su
bd

iv
is

io
n

Ti
m

e
(m

s)

5.
66 6.
20

1.
53

0.
75 3.

30 4.
04 6.

79

23
.3

3

3.
61 3.
98

0.
98

0.
49 2.

07 2.
59 4.

35

15
.0

3

0.
96

1.
07

0.
28

0.
14 0.
57

0.
69 1.
17 4.

05

NVIDIA GeForce RTX 4080
To d = 6

[DV21] (w/o hardware FP32-atomics) [DV21] Ours

Figure 5: Subdivision Performance. We compare our subdivision performance to level d against Halfedge [DV21] with and without
hardware-supported atomic floating point arithmetic.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



B. Kuth & M. Oberberger & M. Chajdas & Q. Meyer / Edge-Friend

Ogre

Big
Guy Pig

Spo
t
Roo

k

Bish
op Car

Im
rod

0.0

0.2

0.4

0.6

0.8

Su
bd

iv
is

io
n

+
R

en
de

rT
im

e
(m

s)

0.
19

0.
19

0.
06

0.
04 0.

12 0.
16 0.

22
0.

68

AMD Radeon RX 7900 XTX
To d = 4

Ogre

Big
Guy Pig

Spo
t
Roo

k

Bish
op Car

Im
rod

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
bd

iv
is

io
n

+
R

en
de

rT
im

e
(m

s)

0.
23

0.
22

0.
07

0.
05 0.

14 0.
18 0.

27
1.

07

NVIDIA GeForce RTX 4080
To d = 4

Ogre

Big
Guy Pig

Spo
t
Roo

k

Bish
op Car

Im
rod

0

1

2

3

4

Su
bd

iv
is

io
n

+
R

en
de

rT
im

e
(m

s)

0.
57

0.
58

0.
18

0.
11 0.

40 0.
51 0.
69

3.
41

AMD Radeon RX 7900 XTX
To d = 5

Ogre

Big
Guy Pig

Spo
t
Roo

k

Bish
op Car

Im
rod

0

1

2

3

4

5

Su
bd

iv
is

io
n

+
R

en
de

rT
im

e
(m

s)

0.
89 1.
10

0.
22

0.
12 0.

45 0.
57

1.
18

4.
03

NVIDIA GeForce RTX 4080
To d = 5

Ogre

Big
Guy Pig

Spo
t
Roo

k

Bish
op Car

Im
rod

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
bd

iv
is

io
n

+
R

en
de

rT
im

e
(m

s)

2.
96 3.
35

0.
56

0.
34 1.

62 2.
05 3.

67
13

.0
8

AMD Radeon RX 7900 XTX
To d = 6

Ogre

Big
Guy Pig

Spo
t
Roo

k

Bish
op Car

Im
rod

0

5

10

15

Su
bd

iv
is

io
n

+
R

en
de

rT
im

e
(m

s)

3.
71 4.
37

1.
10

0.
42 2.

24 2.
74 4.

66
15

.2
6

NVIDIA GeForce RTX 4080
To d = 6

Figure 6: Overall Performance. Our Direct3D12 implementation
subdivides to level d and renders each mesh of Fig. 4 to a frame-
buffer of size 1920×1080 using the Blinn-Phong reflection model.

Meshes Ogre Big Guy Pig Spot Rook Bishop Car Imrod
[DV21] 386.0 424.8 111.6 53.6 224.4 273.9 461.5 1567.4
Ours 308.8 339.8 89.3 42.9 180.9 220.5 372.7 1266.9

Table 2: Temporary Memory Requirements for six subdivisions.
Each cell is the temporary memory size in MiB required to sub-
divide the meshes from Fig. 4.

As expected from a breadth-first subdivision method, both
Halfedge and our algorithm are memory bound. To achieve a higher
performance, the memory footprint has to be reduced. Our edge-
friend achieves this by reducing neighbor information compared to
Halfedge, as shown in Tab. 2. Additionally, by combining the edge-
and face-point computation, we can make better use of loaded
memory. We further benefit from an improved vertex memory lay-
out, increasing the chances of cache hits. Moreover, we use regular
writes into global memory which are faster than those with atomic
additions. Unlike our approach, atomic-operations may cause flick-
ering artifacts because of their non-deterministic scheduling. Fi-
nally, we only need a single synchronization barrier per iteration,
while Halfedge needs three.

5. Conclusion and Future Work

We introduced a novel quad-based data structure for GPU paral-
lel Catmull-Clark subdivision. Our algorithm is about three times
faster compared to the latest related method. In future work, we
want to expand our method to support adaptive subdivision based
on surface flatness and distance to camera.

Acknowledgments

We thank Marc Stamminger, Dominik Baumeister, Carsten Faber,
Holger Haupt, Pirmin Pfeifer and the reviewers. Meshes are cour-
tesy of Keenan Crane (Ogre, Pig, Spot), Bay Raitt (Big Guy),
Dmitry Parkin (Imrod), and OpenSubdiv (Rook, Bishop, Car).
Open Access funding enabled and organized by Projekt DEAL.

References
[BFK∗16] BRAINERD W., FOLEY T., KRAEMER M., MORETON H.,

NIESSNER M.: Efficient GPU rendering of subdivision surfaces using
adaptive quadtrees. ACM Transactions on Graphics 35, 4 (July 2016),
1–12. 2

[BS02] BOLZ J., SCHRÖDER P.: Rapid evaluation of Catmull-Clark sub-
division surfaces. In Proceedings of the seventh international conference
on 3D Web technology (2002), pp. 11–17. 2

[CC78] CATMULL E., CLARK J.: Recursively generated B-Spline sur-
faces on arbitrary topological meshes. Computer-aided design 10, 6
(1978), 350–355. 2

[Cha74] CHAIKIN G. M.: An algorithm for high-speed curve generation.
Computer graphics and image processing 3, 4 (1974), 346–349. 5

[dGDMD16] DE GOES F., DESBRUN M., MEYER M., DEROSE T.: Sub-
division exterior calculus for geometry processing. ACM Transactions on
Graphics 35, 4 (July 2016), 1–11. 4

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision surfaces in
character animation. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques - SIGGRAPH ’98 (1998),
pp. 85–94. 2, 5

[DSSC08] DANIELS J., SILVA C. T., SHEPHERD J., COHEN E.: Quadri-
lateral mesh simplification. ACM transactions on graphics (TOG) 27, 5
(2008), 1–9. 6

[DV21] DUPUY J., VANHOEY K.: A halfedge refinement rule for par-
allel Catmull-Clark subdivision. Computer Graphics Forum 40, 8 (Dec.
2021), 57–70. 2, 4, 6, 7, 8

[HKD93] HALSTEAD M., KASS M., DEROSE T.: Efficient, fair interpo-
lation using Catmull-Clark surfaces. In Proceedings of the 20th annual
conference on Computer graphics and interactive techniques (1993),
pp. 35–44. 6

[LB07] LACEWELL D., BURLEY B.: Exact evaluation of Catmull-Clark
subdivision surfaces near B-Spline boundaries. Journal of Graphics
Tools 12, 3 (Jan. 2007), 7–15. 2

[LS08] LOOP C., SCHAEFER S.: Approximating Catmull-Clark subdivi-
sion surfaces with bicubic patches. ACM Transactions on Graphics 27,
1 (2008), 1–11. 2

[MWS∗20] MLAKAR D., WINTER M., STADLBAUER P., SEIDEL H.,
STEINBERGER M., ZAYER R.: Subdivision-specialized linear algebra
kernels for static and dynamic mesh connectivity on the GPU. Computer
Graphics Forum 39, 2 (May 2020), 335–349. 2

[Nas87] NASRI A. H.: Polyhedral subdivision methods for free-form
surfaces. ACM Transactions on Graphics 6, 1 (1987), 29–73. 2

[NLG12] NIESSNER M., LOOP C. T., GREINER G.: Efficient evalua-
tion of semi-smooth creases in Catmull-Clark subdivision surfaces. In
Eurographics (Short Papers) (2012), pp. 41–44. 2

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.: Feature-
adaptive GPU rendering of Catmull-Clark subdivision surfaces. ACM
Transactions on Graphics 31, 1 (2012), 1–11. 2

[PEO09] PATNEY A., EBEIDA M. S., OWENS J. D.: Parallel view-
dependent tessellation of Catmull-Clark subdivision surfaces. In Pro-
ceedings of the conference on high performance graphics 2009 (2009),
pp. 99–108. 2, 6

[Pix22] PIXAR RESEARCH: OpenSubdiv, 2022. URL: https://
www.opensubdiv.org/. 2, 6

[RSS03] ROSSIGNAC J., SAFONOVA A., SZYMCZAK A.: Edgebreaker
on a corner table: A simple technique for representing and compress-
ing triangulated surfaces. In Hierarchical and geometrical methods in
scientific visualization (2003), pp. 41–50. 3

[Sta98] STAM J.: Exact evaluation of Catmull-Clark subdivision surfaces
at arbitrary parameter values. In Proceedings of the 25th annual confer-
ence on computer graphics and interactive techniques (1998), pp. 395–
404. 2

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://www.opensubdiv.org/
https://www.opensubdiv.org/

