
Real-Time View-Dependent Rendering of Parametric Surfaces

Christian Eisenacher∗

University of Erlangen-Nuremberg
Quirin Meyer†

University of Erlangen-Nuremberg
Charles Loop‡

Microsoft Research

Figure 1: We adaptively subdivide rational Bézier patches until a view-dependent error metric is satisfied. For a 1600x1200 image of the car
model (right) we render 192k quads at 143 fps on a NVIDIA GTX 280 – including CUDA transfer overheads, texturing, Phong shading, and
16x multisampling.

Abstract

We propose a view-dependent adaptive subdivision algorithm for
rendering parametric surfaces on parallel hardware. Our frame-
work allows us to bound the screen space error of a piecewise lin-
ear approximation. We naturally assign more primitives to curved
areas while keeping quads large for flatter parts of the model and
avoid cracks resulting from the polygonal approximation of non-
uniform patch subdivision. The overall algorithm is simple, fits
current GPUs extremely well, and is surprisingly fast while pro-
ducing little to no artifacts.

CR Categories: I.3.7 [Computing Methodologies]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture;

Keywords: adaptive surface rendering, GPGPU, real-time render-
ing

1 Introduction

Polygon rendering has been the workhorse of computer graphics
for decades. It is straightforward to efficiently cull, clip, and deter-
mine pixel coverage for these simple primitives. Smoothly varying
shapes can be approximated to an arbitrary precision by polygons.
When this approximation is done as an offline pre-process, silhou-
ette faceting and normal field inaccuracies occur when the shape

∗e-mail: Christian.Eisenacher@cs.fau.de
†e-mail: Quirin.Meyer@cs.fau.de
‡e-mail: Charles.Loop@microsoft.com

is viewed up close. Similarly, computation is wasted for sub-pixel
polygons when the shape is viewed from afar. Moreover, finely ap-
proximated objects can consume considerable disk space, memory,
and bus bandwidth. Finally, dense approximations are expensive to
animate, since a high number of vertices must be touched for each
new pose.

A much more flexible and compact approach would be to retain a
higher order surface representation well into the graphics pipeline,
where a polygonal approximation could be generated on-the-fly.
We propose to do this using adaptive patch subdivision and design
an algorithm that takes advantage of the massive parallelism avail-
able with current (ca. 2008) GPGPU technology. At a high level
our approach can be described as:

Recursively subdivide each initial patch until its screen
space projection satisfies an error metric. Approximate
each of these patches with a quadrilateral and render.

On parallel hardware this poses a number of challenges. To over-
come them we present:

• a very efficient mapping onto parallel hardware,

• a simple, effective screen space error metric, and

• a method to avoid cracks induced by adaptive subdivision.

After summarizing previous work, we will describe our algo-
rithm and its individual components. Then we will present some
representative renderings and timings for our implementation in
CUDA [Nvidia Corporation 2008]. Finally we will discuss the ad-
vantages and shortcomings of our approach and identify avenues
for future research.

2 Previous Work

Many papers concerned with rendering parametric surfaces have
appeared over the last 35 years; we mention a few highlights and
recent work that is relevant to GPU acceleration.

Catmull [1974] proposed that bicubic polynomial patches could be
recursively subdivided until their screen space projection was no
larger than a pixel; the depth and color of these patches were then
assigned to the nearest pixel. Due to the large number of arithmetic



operations needed for patch subdivision, together with the large
amount of memory needed to store sub-pixel patches, this algo-
rithm and related variants have been used only for offline rendering.
Since Catmull’s algorithm subdivides patches to pixel level, cracks
caused by differing subdivision levels between adjacent patches are
not apparent. Trying to combine adaptive subdivision with polygon
rasterization will lead to these artifacts. A clever solution to this
problem was proposed by Clark [1979].

An algorithm for adaptively tessellating trimmed NURBS surfaces
was presented by Rockwood et al. [1989]. Their idea was to a priori
determine a sampling rate for the screen space projection of patch
edges. This was estimated by finding an upper bound on the mag-
nitude of the first derivative of patch boundary curves. A dynamic
triangulation process was used to tessellate a patch domain and the
surface was evaluated at the resulting uv vertices. Due to the trian-
gulation step, the performance of this algorithm was not impressive.
Also, the a priori sampling bound only guarantees maximum (not
minimum) sample spacing, so oversampling may occur.

In the work of Guthe et al. [2005], bicubic control points are passed
from the CPU to the GPU and a vertex program evaluates the patch
with the help of pre-tessellated domain meshes that uniformly sam-
ple the parameter space of the patch. Several domain meshes are
placed on the GPU to account for different tessellation levels. In
order to hide cracks between adjacent patches of different tessella-
tion levels, patch boundary curves are re-sampled and rendered as
line strips. A similar idea has appeared in the work of Boubekeur
and Schlick [2007]. While these schemes leverage parallelism to
evaluate surface patches, the adaptivity is limited by the relatively
small number of domain mesh tessellations.

Dynamic domain tessellation will become a new fixed function
pipeline stage called the tessellator unit on the next generation of
graphics hardware (expected release summer 2009) [Microsoft Cor-
poration 2008]. This unit will leverage SIMD parallelism via con-
current surface evaluations. The locations of these surface samples
will be determined a priori by the tessellator unit based on user
provided edge tessellation factors. The adaptivity of the resulting
polygonal approximation will be determined by relatively few in-
puts that apply to the entire patch. Inner-patch adaptivity to guaran-
tee pixel accuracy at silhouettes, to avoid oversampling flat regions,
or inefficient small triangles, is not possible with this approach to
GPU tessellation.

Hardware implementations of recursive subdivision have previ-
ously not gained traction due to the large high speed stack memory
needed to push and pop sub-patches visited in a depth first traver-
sal. Recently, Patney and Owens [2008] have shown that by using
a breadth first traversal along with parallel scan primitives, recur-
sive subdivision can be efficiently mapped to data parallel hard-
ware. Their objective was to mimic the bound and split approach of
the Reyes renderer [Cook et al. 1987] and generate sub-pixel poly-
gons via dicing. Our objective here is to only generate as many ap-
proximating polygons as needed to capture the parametric surface
faithfully. Due to algorithmic improvements, and since we do not
overwhelm the pipeline with an excessive number of small, com-
pute intensive primitives, the performance we report is two orders
of magnitude better than Patney and Owens.

3 View-Dependent Rendering of Parametric
Surfaces

In order to render a parametric surface we transform its initial con-
trol structure – the ur-patches – into a view-dependent polygonal
approximation of the real surface. We do this by recursively subdi-
viding each ur-patch until the sub patches satisfy our error metric.

Figure 2: Algorithmic overview: We subdivide the initial ur-
patches breadth first until they satisfy our error metric.

Figure 2 shows a high level view of how this can be done very ef-
fectively on parallel hardware using a breadth first approach. The
key idea is to maintain a patch queue and examine all patches inde-
pendently and in parallel. When they satisfy our metric we render
them as quads1. Otherwise they are subdivided and the sub patches
are placed in the queue to be tested again in the next iteration. In
the following sections we will describe the individual components
and our design decisions in detail.

3.1 Ur-patches and Their Transformation

We work with rational bicubic Bézier patches due to their popu-
larity and expressive power (e.g. exact representation of spheres,
cones, tori, etc.). They are also invariant under projective map-
pings, allowing us to transform the ur-patches into clip space by the
composite Model-View-Projection matrix (MVP) and directly sub-
divide the transformed patches. This reduces the number of vertex
transformations, both in the oracle and during the final rendering,
by 2-4 orders of magnitude.

3.2 Oracle

The oracle kernel, shown in Figure 3, prepares patches for subdivi-
sion. We examine each patch from the patch queue independently
and compute a decision bit field to guide the split stage described
in Section 3.3. Further we prepare indices for child patches and
polygons using a standard parallel prefix scan technique [Blelloch
1990; Sengupta et al. 2007].

Algorithm 1 outlines the oracle. The individual functions
are designed to exploit the Single-Instruction-Multiple-Threads
(SIMT) [Nvidia Corporation 2008] nature of current hardware and
we have one lightweight thread running in parallel for each control
point. The relevant functions are:

• computeDegreeElevatedPatch(CPs): Each thread determines
its control point of the degree elevated bilinear patch (Fig-
ure 4(b)) by averaging the corner vertices of the bicubic patch.

• computeBilinearErrorBitfield(CPs, DEP CPs): Each thread
computes the distance between its control point and the de-
gree elevated bilinear approximation in screen space. If the
desired precision is reached, the corresponding bit is set (see
Figure 4 and Section 6.3). Since corner bits will always be

1As direct access to the frame buffer is currently not supported in CUDA
and context switches are expensive, we store the quads in a vertex buffer and
render them in a single draw call after subdivision is finished.



Figure 3: Oracle: We examine all patches in parallel and compute
a decision bit field and storage requirements. A parallel prefix scan
transforms the latter into array positions for the subdivision kernel.

set, we cannot confuse culled patches (no bits set) with those
requiring subdivision.

• patchReady(BF): If all bits in BF are set, the patch fulfills
our precision requirements and the split stage will generate
primitives. Otherwise the patch will be subdivided.

• backfacing(DEP CPs): We compute the z components of the
bilinear patch normals at the corners. If all are negative, the
quad is back-facing and can be culled. This reduces the num-
ber of normals to be computed and primitives to be rendered
roughly by half.

• computeStorage(DECISION BITS): The split kernel will need
space for four subdivided patches (TODO) or one finished
patch (DONE).

Algorithm 1 Oracle kernel: for each patch in parallel
1: CPs = loadControlPoints(patchQueue)
2: BB = computeBoundingBox(CPs)
3: if (outsideFrustum(BB)) then
4: DECISION BITS = CULL
5: else
6: DEP CPs = computeDegreeElevatedPatch(CPs)
7: BF = computeBilinearErrorBitfield(CPs, DEP CPs)
8: DECISION BITS = BF
9: if (patchReady(BF) and (backfacing(DEP CPs)) then

10: DECISION BITS = CULL
11: end if
12: end if
13: (TODO, DONE) = computeStorage(DECISION BITS)

Figure 4: ComputeBilinearErrorBitfield(): If the difference (c) be-
tween a control point (a) and its degree elevated bilinear counter-
part (b) in screen space is within a given tolerance, the correspond-
ing bit is set (d). We subdivide patches until all bits are set.

3.3 Subdivide and Split

The split kernel, visualized in Figure 5, subdivides patches that
need further refinement into four sub-patches (see Section 6.2) and
generates primitives for patches that are ready to be rendered. The
prefix sums TODO and DONE determine the locations in patch
queue and vertex buffer. As illustrated by Algorithm 2 this is con-
ceptually very simple. The interesting functions are:

• notCulled(DECISION BITS): At least the corner bits are set.

• makeEdgesLinear(CPs, DECISION BITS): This is to avoid
cracks. Details are described in Section 3.4.

• subdivide(CPs): Allocate four threads per control point row,
one for each component. Subdivide into shared memory along
u. Subdivide the two sub-patches into global memory along v.
Note: The stores to global memory are completely coalesced.

• generatePrimitives(CPs): Evaluate normals from the ur-
patches using one thread per normal. Store vertices, normals,
and texture coordinates at the locations specified by DONE.

Algorithm 2 Split kernel: for each patch in parallel
1: if (notCulled(DECISION BITS)) then
2: CPs = loadControlPoints(patchQueue)
3: CPs = makeEdgesLinear(CPs, DECISION BITS)
4: if (patchReady(DECISION BITS)) then
5: newPatchQueue[TODO] = subdivide(CPs)
6: else
7: vertexBuffer[DONE] = generatePrimitives(CPs)
8: end if
9: end if

3.4 Crack Prevention

To prevent cracks without losing patch independence and paral-
lelism, we adapt the idea presented by Clark [1979] to Bézier
curves: We consider the decision bits computed previously. If all
bits corresponding to a patch edge are set, indicating that its screen
space projection is within tolerance of being a line, we replace the
inner two control points by their linear counterparts. This will turn
the curved patch edge into a line. Since corresponding decision bits
of adjacent patches will be set identically, the patches will share the
now linear edge. Further subdivision cannot deviate from this line,
so cracks cannot appear, as illustrated in Figure 6.

Figure 6: Crack prevention: Patches sharing an edge (a), are sub-
divided to different levels, generating a crack (b). If an edge is
close to being linear (control points green) we set it to linear (c)
and subdivision cracks are avoided (d).

Though not reported by Clark, forcing nearly linear edges to lines
does not preserve C1 continuity between patches, resulting in vis-
ible shading discontinuities across patch boundaries. As we keep
track of domain coordinates for texture mapping purposes, we can
evaluate shading normals from the unmodified ur-patches and avoid
shading artifacts.



Figure 5: Split kernel: Using the previously computed decision bit fields, we either subdivide the patches from the patch queue or create
primitives to be rendered. Prefix sums obtained from a parallel scan determine the position of new elements.

4 Results

To benchmark our implementation, we render four models with
different geometric complexity at 512x512 and 1600x1200 pixels.
Figure 7 shows the models and the pose used for the measurements
in this section. We subdivide the patches until the screen space error
is below 0.5 pixel and evaluate 16 normals for each finished bicubic
patch. By writing 9 quads, created from the vertices of the degree
elevated bilinear patch, into the vertex buffer we avoid managing
a tiny normal map for each patch. As shown in Table 2, we still
generate a rather low number of primitives.

For real-time applications with very complex scenes, we can reduce
memory and bandwidth consumption considerably by evaluating
only four normals and placing a single quad in the vertex buffer.
While this sacrifices shading quality for speed, we maintain artifact-
free silhouettes (see Section 6.3); this approach would work well in
combination with normal mapping.

In fact, the killeroo was the only model to show reduced shading
quality with four normals (see inset in Figure 7). We believe the
reason for this is its very fine initial control mesh, resulting in a low
number of subdivisions needed to guarantee smooth silhouettes.
Rendering only one quad per patch, we basically reduce detail in
a very crude way.

Table 3 shows the total time needed per frame. We observe that
the view-dependent subdivision accounts only for a fraction of the
time spent per frame. Evaluating normals and generating primi-
tives, mapping memory, and the final draw call require consider-
able time. For our most complex model, the killeroo, we present a
detailed analysis of where time is spent in Table 1.

no MSAA 16x MSAA
shading normals 4 16 4 16
system overhead 0.3 0.3 1.4 1.4
ur-patch transform 0.1 0.1 0.1 0.1
oracle 1.4 1.4 1.4 1.4
scan 0.1 0.1 0.1 0.1
sub/split 2.0 5.0 2.0 5.0
transfer overhead 1.9 1.9 1.9 1.9
draw call 0.5 3.7 1.6 4.4
total 6.4 12.6 8.6 14.3

Table 1: Detailed timing analysis for rendering the 1600x1200 im-
age of the killeroo model. Time in ms on a GTX 280 card.

5 Implementation Details

We believe we found some very good optimization and program-
ming strategies for SIMT architectures. This section gives a few
very technical pointers on what we do to make our kernels fast.

Some calculations are naturally parallel, some are not. Forcing
thread cooperation with shared memory and arcane address calcula-
tions turned out to be slower than just having one active thread and
“wasting” the remaining threads in many cases. In order to max-
imize SIMT efficiency and memory bandwidth usage, we allocate
a “thread pool”; i.e. we process patches in bundles and switch our
level of parallelism inside kernels. We demonstrate this idea on our
oracle kernel:

For each CUDA thread block we bundle several bicubic patches
and allocate 16 threads per patch. First we load control points, per-
form perspective division, compute bounding boxes and decision
bits. Those computations are trivially parallel using one thread per
control point and all allocated threads are running in parallel.

Then we synchronize the threads of the block, and switch to one
thread per patch for oracle logic and predicate computation, both
having no “natural” parallelism at all. As current GPUs provide a
virtual vector processor, only the few active threads are scheduled
and this works surprisingly well.

Current hardware hints at bundle sizes of 32 to maximize the com-
pute density. However, this uses large amounts of the limited shared
memory and reduces the number of concurrently running blocks,
preventing global memory latency hiding. We found bundle sizes
of four performing best, being almost four times as fast as process-
ing single patches: The decision logic (back-face culling) is com-
parably complex and the aggregated global memory writes waste
less memory bandwidth. Using larger bundles reduced overall per-
formance moderately.

6 Discussion

Our algorithm is simple and should scale well with future hardware
and an increasing number of cores2. We expect it to be useful in
a wide range of applications. Since no publicly available API cur-
rently exists, we cannot compare our performance directly to hard-
ware tessellation. Due to the more direct (and arguably brute force)
approach to adaptivity, combined with dedicated silicon, we do not
expect to outperform a tessellator unit. That being said, we believe

2We have fixed overheads of about 2.5 ms per frame. This results in a
sublinear speedup in total frame time from G80 to GT200 for small models.



Figure 7: Models used for measurements: We subdivide until we can guarantee a silhouette error of less then 0.5 pixels. For a 1600x1200
image we obtain the sub-patches shown as line drawing and render them as quadrilaterals with texturing, Phong shading, and 16x MSAA. The
sub-patches are rendered evaluating 16 normals each. The magnified crops illustrate the reduced shading quality using only four normals.



512x512 512x512 1600x1200
ur-patches [Patney and Owens 2008] 16 normals 4 normals 16 normals 4 normals

teapot 32 1 234 688 (4 823 x 256) 39 870 4 430 103 770 11 530
big guy 3 570 - 87 840 9 760 200 106 22 234
car 5 067 - 142 677 15 853 335 511 37 279
killeroo 11 532 3 693 056 (14 426 x 256) 173 646 19 294 408 465 45 385

Table 2: Primitives sent to the rasterizer: Using a threshold of 0.5 pixels, our algorithm produces a comparably low number of primitives.
For applications with a tight computational budget the number of primitives can be reduced further (4 normals). While this sacrifices shading
quality, it maintains the 0.5 pixel guarantee for silhouettes. Renderings with 16 normals at 1600x1200 are shown in Figure 7.

[Patney and Owens 2008], G80 G80 GT200 GT200 GT200, 16x MSAA
512x512 512x512 512x512 1600x1200 1600x1200

normals per sub-patch 256 16 4 16 4 16 4 16 4
teapot 82 (12.41 fps) 4.3 3.5 3.8 3.3 5.4 4.1 7.5 (133 fps) 5.7 (175 fps)
big guy - 5.9 3.8 4.4 3.2 7.4 4.5 9.3 (108 fps) 6.5 (154 fps)
car - 8.4 5.0 5.7 3.6 10.4 5.5 12.3 (81 fps) 7.5 (133 fps)
killeroo 241 (4.15 fps) 10.0 5.7 6.6 3.9 12.6 6.4 14.3 (70 fps) 8.6 (116 fps)

Table 3: Total time per frame in ms (including subdivision, transfer overheads, rasterization, and shading). Note that Patney and Owens use
vertex shading, while we use Phong shading with drastically fewer primitives. Except for the killeroo model, everything shades surprisingly
well with only 4 normals per patch. We use a GTX 8800 Ultra (G80) and a GTX 280 (GT200) on Windows XP.

that in the long run a relatively simple software solution on parallel
hardware may prove superior to one implemented as a fixed func-
tion pipeline stage. In the following sections we will discuss our
algorithm in more detail.

6.1 Memory and Bandwidth Requirements

Due to the low number of primitives generated, our algorithm uses
little memory in addition to the vertex buffers we need for interac-
tion between CUDA and the rasterizer. A 16 MB patch queue is
sufficient for our largest example, the killeroo at 1600x1200. How-
ever, as the rasterizer is currently not accessible from CUDA, we
need to allocate additional 80 MB for vertices, normals, and texture
coordinates. We hope that this limitation will disappear in future
versions of CUDA.

A related issue is the memory bandwidth used during subdivision.
Compared to the ”subdivide and compact” approach of Patney and
Owens [2008], our ”compute indices and subdivide” algorithm uses
less than half the bandwidth, as it does not touch every patch again
during compactification. Due to the bandwidth hungry nature of
both algorithms, this directly translates to an almost twofold in-
crease in performance.

Our algorithm naturally clusters subdivided patches by ur-patch.
This allows us to use the available caching mechanisms very effi-
ciently when we evaluate normals from the ur-patches, further re-
ducing the pressure on global memory bandwidth.

6.2 Performance

Our algorithm is simple and the bicubic patches used fit current
hardware nicely. We observe excellent performance, and even
for large images and complex models we can spend additional re-
sources on multi sampling.

Guaranteeing an error of less than 0.5 pixels in screenspace,
we subdivide to a number of patches comparable to Patney and
Owens [2008] (see Table 2, 4 normals for 512x512). However, as
we do not aim to mimic the Reyes pipeline, we do not dice them
into 256 pixel sized micropolgons. This means significantly fewer
primitives need to be computed and transfered to the rasterizer, re-

sulting in less vertex processing3 and triangle setup. About half of
the reported performance advantage can be attributed to the reduced
primitive count.

During development we found that subdividing each patch into four
sub-patches, instead of two, leads to a significant increase in per-
formance for two reasons: First, there is no need to determine the
subdivision direction in the oracle and no need to branch for direc-
tions in the split kernel. Second, we need fewer iterations until all
sub-patches meet our precision requirements. This saves memory
bandwidth and computations considerably.

The obvious drawback is that we generate more primitives for long
thin patches than the asymmetric subdivision into two patches, e.g.
at the teapot rim and the killeroo legs. In our experiments the to-
tal number of patches increased about 5%. However the cost for
additional patches is dwarfed by the reduced complexity and the
reduced number of iterations. Overall we observe performance
up to two orders of magnitude faster than reported by Patney and
Owens [2008].

While we archive comparable frame rates, it is difficult to com-
pare our approach to the GPU based mesh refinement techniques of
Boubekeur [2007]. As we aim to keep the final number of prim-
itives small, we do not intend to reach the high polygon counts
reported. Further, our approach is very simple and does not have
any CPU involvement besides launching three kernels and one draw
call. Our algorithm is completely screen space driven and operates
at the final patch granularity: We do not need to store pre-tessellated
meshes or compute a subdivision level per ur-patch from distance
and curvature.

6.3 View-Dependent Metric

Our view-dependent error metric measures the distance in screen
space between control points of the bicubic patch and the (degree
elevated) bilinear patch sharing the same corner points, see Fig-
ure 4. We chose this metric for its simplicity, accuracy, and ideal fit
to SIMT hardware. When the maximum difference is below a pixel
unit threshold, we render the bilinear approximation. Due to the

3Note that our algorithm delivers the vertices already transformed to clip
space, so the vertex shader has little work to do.



convex hull property of Bézier curves, this gives us a guaranteed
error bound on silhouettes, densely approximates highly curved re-
gions, and uses fewer polygons in more flat regions.

Our algorithm provides accurate silhouettes and high frame rates,
but does not give guarantees for accurate shading. However, even
for pathological failure cases, we get surprisingly reasonable shad-
ing by evaluating 16 normals and using Phong shading. All exam-
ple figures are rendered with 16 normals per patch.

6.4 Crack Prevention

We avoid the creation of cracks between patches caused by non-
uniform levels of subdivision, but we cannot remove cracks that are
inherent to the model, e.g. when the given piecewise bicubic model
consists of several patches that are not perfectly C0 continuous (ad-
jacent patches do not share Bézier control points). Small thresholds
for our metric hide these artifacts to some extent, but do not solve
the underlying issue. Examples for this can be found in the killeroo
model as demonstrated in Figure 8.

Figure 8: We avoid cracks created by adaptive subdivision, but do
not fix cracks that are inherent to the model. Small thresholds ease
but do not fix the problem (right, threshold 0.5 pixels).

A different but related artifact caused by T-junctions leads to occa-
sional pixel dropouts between patch approximations. This artifact
is the result of rasterization rules and finite precision arithmetic.
Our experiments confirm the presence of this problem. However,
when multi sample anti-aliasing is turned on, pixel dropouts are not
detectable and image quality in general is greatly improved.

7 Future Work

While rational bicubic patches fit extremely well on current hard-
ware, the adaptive subdivision approach presented here could be
applied to arbitrary bidegree tensor product patches, as well as poly-
nomial patches with triangular domains.

Animating a piecewise bicubic surface directly is complicated by
the smoothness constraints among patch control points. By animat-
ing the vertices of a subdivision surface control mesh, this problem
is avoided. However, applying our result to Catmull-Clark subdi-
vision surfaces will require additional processing at the front-end.
The challenge will be to convert a two-manifold control mesh, with
extraordinary vertices, into a collection of bicubic patches at high
frame-rate on the GPU.

Currently we create all sub-patches from scratch every frame. The
high inter-frame coherency could be exploited to cache intermedi-
ate subdivision levels e.g. replace the subdivision tree by a forest,
further increasing performance.

While our metric produces patches that shade very well with real
world models, it only gives a guarantee for the silhouette error. In
the future, we would like to integrate a guarantee for the shading
error without sacrificing simplicity and efficiency.

The use of displacement mapping is very popular. It will be a very
interesting challenge to find a simple and efficient metric that only

generates fine grained geometry where variations in the displace-
ment map require it.

Acknowledgments

We would like to express our thanks to David Luebke of NVIDIA
for providing a GTX280 graphics card, and Avneesh Sud, Yuri Dot-
senko and Shubhabrata Sengupta for sharing their understanding of
parallel hardware. We also want to thank the anonymous review-
ers for their work and detailed feedback, as well as Bay Raitt of
Valve Software for the big guy and sports car models. The Killeroo
model is courtesy of Headus (metamorphosis) Pty Ltd (available at
http://www.headus.com).

References

BLELLOCH, G. E. 1990. Vector Models for Data-Darallel Com-
puting. MIT Press, Cambridge, MA, USA.

BOUBEKEUR, T., AND SCHLICK, C. 2007. Generic adaptive mesh
refinement. In GPU Gems 3. Addison-Wesley, ch. 5, 93–104.

CATMULL, E. 1974. Subdivision Algorithms for the Display of
Curved Surfaces. PhD thesis, The University of Utah.

CLARK, J. H. 1979. A fast scan-line algorithm for rendering para-
metric surfaces. In Computer Graphics (Proceedings of SIG-
GRAPH 79), 7–11.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes image rendering architecture. In Computer Graphics
(Proceedings of SIGGRAPH 87), 95–102.

GUTHE, M., BALÁZS, A., AND KLEIN, R. 2005. GPU-based
trimming and tessellation of NURBS and T-spline surfaces.
ACM Transactions on Graphics 24, 3 (Aug.), 1016–1023.

MICROSOFT CORPORATION. 2008. Introduction to the Direct3D
11 graphics pipeline.

NVIDIA CORPORATION. 2008. NVIDIA CUDA: Compute unified
device architecture, June.

PATNEY, A., AND OWENS, J. D. 2008. Real-time Reyes-style
adaptive surface subdivision. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH Asia) (Dec.), 143:1–143:8.

ROCKWOOD, A. P., HEATON, K., AND DAVIS, T. 1989. Real-time
rendering of trimmed surfaces. In Computer Graphics (Proceed-
ings of SIGGRAPH 89), 107–116.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for GPU computing. In Graphics Hard-
ware 2007, 97–106.


